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Abstract

Unidirectional solitonic wave-mediated transport is shown to be possible for a class of anharmonic lattice problems

where, due to wave asymmetry, the waves can be used as a traveling periodic ratchet. Using a (mesoscopic) probabilistic

description we have assessed the role of both viscous friction and temperature in both the direction of transport and its

quantitative features. No asymmetry is required on the potential. Furthermore its actual form and even that of the periodic

wave, save its asymmetry, play no significant role in the results obtained and hence they exhibit rather universal value.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction. Wave mediated transport and lattice model-dynamics

Surface waves can be broadly classified as either oscillatory or translatory. Oscillatory waves are periodic in
character, imparting to the liquid an undulatory motion with both horizontal and vertical components
without causing appreciable displacement. Indeed in each period a fluid particle combines its motion round a
circle with forward movement through a distance (Stokes drift) varying as the square of the radius of that
circle. Stokes drift represents a second-order correction to the paths of fluid particles according to linear
theory [1].

Translatory waves, on the contrary, cause a net displacement of the liquid in the direction of the wave
motion. Solitary waves or solitonic periodic waves, usually, ‘‘shallow’’ water waves are waves of translation.
For nonlinear translatory waves, directed drift or transport is thus first-order effect. In the extreme case of real
shallow water the liquid is set in motion over the full depth with nearly constant velocity over any cross section
at any instant.1
e front matter r 2006 Elsevier B.V. All rights reserved.
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owever, waves in their rapid motion across the surface like tsunami in the ocean with speeds over 500 km/h traveling over

2–4 km do not move the whole water mass itself at such breakneck speeds. Water moving at high speed behaves almost as

e. If, as a usual thing, the water itself were to move with the speed of the waves ships would never have been invented. No

uld build would be strong enough to take the pounding it would get [2].
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Wave-mediated, directed transport has been advocated in the context of Brownian ratchets and motors
[3–15]. In particular (deterministic and stochastic) Stokes drift has been studied. Here we shall focus attention
to soliton-mediated drift and hence to transport associated to nonlinear translatory waves. For illustration,
rather than considering the medium as a continuum we shall consider a lattice with (anharmonic) nonlinear
interactions between its units. We shall restrict consideration to only longitudinal modes of motion. To be
specific we shall take a Toda lattice [16] although similar results can be obtained using Morse interactions or
other strongly repulsive interactions. Indeed the Morse potential is not too different from the Lennard–Jones
interaction [17–25]. The choice of Toda lattice is dictated by two facts: on the one hand experimental
interactions are easy to implement electronically [26] and, on the other hand, by its solutions are known
analytically. It is a Hamiltonian and integrable system. It possesses solitary and periodic cnoidal waves that
can travel freely along the lattice at supersonic speed. In our case here we shall take into account that realistic
systems are bound to dissipate energy and hence we shall augment the conservative Hamiltonian dynamics
with an appropriate input–output energy balance thus ensuring the robustness and long lasting character of
the solitonic solutions. We shall be working with parameter values such that the dissipation-modified solutions
depart little from the exact solutions of the conservative Toda lattice save their asymmetry around maxima.
The adequacy of such choice has recently being assessed by comparing analytical results, numerical
simulations and experimental results obtained with the electronic implementation of the system, i.e., with the
electrical circuit equivalent to the original mechanical lattice [27,28]. The latter approach has been done
following earlier work for the original conservative lattice [29,30].

The Hamiltonian of the Toda lattice is

H ¼
X

j

p2
j

2
þ

o2
0

b
ebðxj�1�xj�sÞ

" #
, (1)

where x and p denote space and momentum coordinates, o0 denotes frequency (to be specified below), b is the
stiffness of the mechanical springs, s is the mean interparticle distance and Dxj is the displacement of particle j

from its equilibrium position, sj. As shown in Ref. [20] any exponentially decaying repulsive force with
potential vðxÞ can be locally approximated by a Toda force by using the Taylor expansion

vðxÞ ¼ vðx0Þ þ ðx� x0Þv
0ðx0Þ þ

1

b0
mo2

0½e
�bðx�x0Þ � 1þ bðx� x0Þ� þ higher-order terms. (2)

Thus we see that the first contribution is the harmonic oscillator, and subsequent Taylor terms correspond to
the asymmetric Helmholtz potential [31], the symmetric Duffing oscillator and so on [32]. On the other hand
for large values of the stiffness ðb!1Þ the potential approaches the impulsive hard sphere (rod) interaction.
Note that the physically meaningless constant and the linear terms in Eq. (2) are not significant for our
purpose here.

As earlier noted we shall augment the Hamiltonian dynamics with an appropriate energy pumping
balancing the expected dissipation. Accordingly we shall consider a lattice where the Newton equations in
suitable dimensionless variables for the units are

dxj

dt
¼ pj,

dpj

dt
¼ o2

0ðe
bðxj�1�xj�sÞ � ebðxj�xjþ1�sÞÞ þ ðm� p2

j Þpj, ð3Þ

with xj ¼ sj þ Dxj . At equilibrium Dxj ¼ 0. Further we shall consider a lattice ring, hence periodic boundary
conditions (b.c.) Dx1 ¼ DxðNþ1Þ. The system possesses the following independent parameters: o0 is the
oscillation frequency of the harmonic approximation to (1), b has already been defined, and m is the
‘‘pumping’’ parameter.

The second term in Eq. (3) demands clarification [33–35]. The currently most popular approach to maintain
harmonic oscillations in the presence of dissipation is that first introduced by van der Pol [36]. It has proven
useful in many realms of science and technology from physics to engineering to neurodynamics. Dissipation
usually appears through a term proportional to velocity or momentum, p, added to the conservative Newton’s
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equation of the oscillator. Van der Pol added to the dissipative harmonic oscillator equations a term
proportional to the square of the elongation of the motions, x2. By doing this van der Pol transformed the
harmonic oscillator into a nonlinear oscillator exhibiting limit cycle oscillations, hence maintained, robust
vibrations.

The choice made by van der Pol is not the only possible choice. Indeed, much before van der Pol, Lord
Rayleigh [37,38] suggested adding a term proportional to the square of the velocity, v2, or the momentum, p2.
Thus, he introduced a friction force like gv ð1� v2Þ with g the corresponding friction coefficient. After suitable
redefinition of the latter coefficient and using and appropriate reference velocity scale [34,35] the friction force
can be expressed in the form shown in Eq. (3) ðm� p2Þp, using p rather than v. Hence this friction force
contains both dissipation (passive friction) mp (positive on the right-hand side of (3)) and a term ð�p2pÞ that
has been called active friction. With Lord Rayleigh’s choice we ensure that by varying the value of m the
oscillations can be maintained. Clearly there is a value of m such that system (3) becomes conservative, and
indeed we recover the Toda model. Other forms of active friction are available in the literature [34,35]. One
way to visualize Lord Rayleigh’s idea is to think about the feedback upon a violin string of the multimodal
energy accumulated in the instrument’s bow. This multimodal energy appears as a kind of noise bath for the
string. As we plan to consider Brownian particles immersed in a heat bath we shall retain Lord Rayleigh’s
energy pumping function.

We have extensively studied Eq. (3) [21,22,25,27,28]. At m ¼ 0 there is bifurcation from the motionless
case to wave propagation along the lattice. In Section 2 we recall solutions of Eq. (3) with a significant
feature, the asymmetry around the peak of a solitary wave or around all peaks for quasi-cnoidal
periodic waves. It has been shown in Ref. [20] that an external harmonic driving wave, likely to be performed
by a suitable piezoelectric excitation, creates about the same solitonic waves. Here we only need the
(asymmetric) wave form, not the actual means of excitation. Section 3 is devoted to the description of the
drifting solitonic ratchet using a suitable sawtooth approximation. The motion of active Brownian particles in
a static sawtooth has been studied in Ref. [39]. In Section 4 we discuss the role of noise level and hence
temperature upon transport. Finally, in Section 5 we provide a summary of results and a few concluding
remarks.
2. Lattice ring, wave propagation and wave asymmetry

Let us consider a 1D lattice composed of units as shown in Fig. 1. As earlier noted we shall restrict attention
to the case with periodic b.c. hence to a lattice ring. It has been shown analytically, numerically and
experimentally using the electric analog circuit or computer (Fig. 2) [27,28] that along such lattice ring periodic
quasi-cnoidal waves and solitary waves can stably travel. Fig. 3 depicts one such wave for N ¼ 6. This is not
the only wave possible. Indeed, with N units in the ring there are ðN � 1Þ wave modes possible. For N even
there is also an optical-like mode with units longitudinally vibrating in antiphase. Noticeable in Fig. 3 is the
asymmetry of the wave peaks, a feature shared by all other modes in the system save the ‘‘optical’’-mode. The
highest asymmetry occurs for the mode m ¼ 1 (or its symmetric m ¼ �1. The latter possess ‘‘negative’’
velocity which denotes motion in the opposite direction to that of the former; the m ¼ �1 is also obtained by
the appropriate t!�t time inversion). The quasi-cnoidal wave travels with velocity v ¼ sl=t0 ¼ ðsl=2pÞo1,
Δxj 

ION

J+1J

IONION

J-1

σ

Fig. 1. Toda lattice. Three units (ions) interacting through anharmonic ‘‘springs’’. s is the mean distance between units, Dxj is the

displacement from the equilibrium position of unit ‘‘j’’.
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Fig. 2. Analog electronic unit, building block or element ð1pnpNÞ of the corresponding lattice ring (Fig. 1) with Newton equations (3). V

and I denote voltage and current intensity, respectively. DC is a double capacitor [26], NR a nonlinear resistor, VA is a voltage adder with
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Fig. 3. Waveform in the analog circuit of a lattice ring with N ¼ 6 units as in Fig. 6. The wavetravels down while the ‘‘longitudinal’’

motions of the units bring them all left to right. Experimental data correspond to voltage versus time at a given point (as it appears in the

oscilloscope).
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where t0 denotes its period and o1 is the angular frequency ðm ¼ 1Þ,

om ¼ 2o0 sin
pm

N
1þ

m
12o2

0

� �
, (4)

which defines m.
3. Traveling solitonic ratchet

Let us now consider the units in the original mechanical lattice ring as heavy ions and let us add a light

particle in 3D-geometry to rule out unnecessary singularities due to (1D and 2D) geometry. The light particle
can be an ‘‘electron’’, and hence with opposite albeit equal charge to the ions, the electron–lattice interaction
can be taken, e.g., as

UeðrÞ ¼
�U0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=h2

q , (5)

or

UeðrÞ ¼ �U0e
�r2=2h2 , (6)

which is a Gaussian well. In both cases, U0 is the maximum and h is the minimal distance allowed between the
light electron and the heavy ions, hos. We shall see that the particular choice of such interaction plays no
significant role.

As earlier emphasized, in the case we are interested here (Eq. (3)) and that we have dealt with recently
[27,28] solitonic waves or excitations are described, e.g., by combinations of elliptic functions like cnoidal and
quasi-cnoidal waves [16]. Then in view of Fig. 3 we can approximate the actual waveform by a sawtooth

function, such that

Dxj ¼ Ac
j

l
�

t

t0

� �
, (7)

where

cðzþ 1Þ ¼ cðzÞ ¼

lz if z 2 S1 ¼ 0;
1

l

� �
;

l
l� 1

ð1� zÞ if z 2 S2 ¼
1

l
; 1

� �
:

8>>><
>>>:

(8)

The quantities A, t0 and l correspond to amplitude, period and wave-length (number of units), respectively.
Fig. 4 illustrates the choice done for m ¼ �1 for l ¼ 6 and A ¼ 1:2, with v ¼ �sl=t0.
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Fig. 4. Dissipative Toda lattice. Sawtooth approximation to the waveform depicted in Fig. 3 (for convenience we have taken the

equivalent symmetric form). Parameter values: l ¼ 6 and A ¼ 1:2. For convenience we have taken the equivalent left moving waveform.
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Using the sawtooth approximation the overall electron–lattice interaction potential for the light particle
placed at position y can be explicitly expressed in the following form:

Uðt; yÞ ¼
Xnyþn

j¼ny�n

Ueðxk � yÞ ¼
Xnyþn

j¼ny�n

Ue sj þ Ac
ðs=vwÞj � t

t0

� �
� y

� �
. (9)

Taking y ¼ nysþ Dy, with jDyjos, we can safely neglect in Eq. (9) the contributions arising from lattice units
beyond ns. Noteworthy is that in the present case the wave group velocity is time-dependent at variance with
the standard traveling ratchets [40,41] and the Brownian surfer considered in Ref. [42].

However ‘‘light’’ the electron is relative to the ‘‘heavy’’ lattice ions, we shall take it Brownian in a thermal
bath surrounding the entire system. Accordingly, it obeys the following Newton’s (Langevin) equation of
motion:

d2y

dt2
þ g

dy

dt
þ

qUðt; yÞ

qy
¼ g

ffiffiffiffiffiffiffi
2D
p

xðtÞ, (10)

with g and D, both positive, account for viscous friction and spatial diffusion, respectively. The noise is taken
white Gaussian of zero mean and delta-correlated in time. Further x, g and D obey the fluctuation–dissipation
theorem and Einstein’s relation, thus the noise strength or level, kBT , provides the temperature, T, of the bath;
kB denotes Boltzmann’s constant [43,44].

Let us analyze the behavior of the potential (9) due to wave propagation with the sawtooth peaks. Its
extrema are obtained by setting

qUðt; yÞ

qy
¼ �

Xnyþn

j¼ny�n

U 0e sj þ Ac
ðs=vwÞj � t

t0

� �
� y

� �
¼ 0. (11)

On the other hand the time-derivative of Eq. (11) permits to obtain the local speed of points with
qUðt; yÞ=qy ¼ constant, and, needless to say of the extrema. Thus we have

dy

dt
¼

A

t0

l
l� 1

P
j2j2

U 00ej � ðl� 1Þ
P

j2j1
U 00ejP

j2j2
U 00ej þ

P
j2j1

U 00ej

, (12)

with

Uej � Ue sj þ Ac
ðs=vwÞj � t

t0

� �
� y

� �
, (13)

where the subscript j1 indicates S1 in Eq. (8), i.e., c is evaluated at point P1 in Fig. 5a, along the side of
positive slope. Accordingly, j2 refers to a point like P2 in Fig. 5a in the region of negative slope. It appears that
dy=dt does not depend on U0, and that Eq. (12) reflects the discrete lattice character of the system.

Two significant cases exist. One appears when

X
j2j2

U 00ej

�����
�����bðl� 1Þ

X
j2j1

U 00ej

�����
�����, (14)

and the other corresponds to the opposite situation

X
j2j2

U 00ej

�����
�����5ðl� 1Þ

X
j2j1

U 00ej

�����
�����. (15)

In the former case (14) it can be seen that the contribution of points along the side of the sawtooth with
positive slope to the speed of the light particle is not significant, hence it can be neglected. Thus according to
Eq. (12) we can write dy=dt � v1 ¼ l=ðl� 1ÞA=t040, which is the speed of the lattice units in the P1 region of
Fig. 5a. In the other case, the velocity is dy=dt � v2 ¼ �lA=t0o0, the value corresponding to the lattice
particles in region P2 of Fig. 5a. As a matter of fact, if h is so short that once the light particle is bound to a
given lattice unit so that we can neglect the influence of the other lattice particles, then condition (14) or (15) is
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Fig. 6. Different attractor regions offered to the light particle according to the values of g, with g1m ¼ 5:29 and g2m ¼ 1.
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satisfied, provided the particles are in region P1 or P2, respectively. If, however, h is much large relative to s,
neither (14) nor (15) is satisfied and the potential will follow the direction of wave motion and no minima, m1,
appears in the corresponding Fig. 5b. The computations have been done using

Ueðy� xkÞ ¼ �U0=½1þ ðy� xkÞ
2=h2
�1=2, (16)

under the assumption that (free) ‘‘electrons’’ cannot penetrate (screened) ion cores. The pseudopotential (16) is
of current use in the literature [45].

If at given instance, condition (14) is satisfied, we expect periodically spaced regions where the (potential)
wave moves left to right as point m1 in Fig. 5b. Alternatively, when condition (15) is satisfied the (potential)
wave will accordingly proceed right to left, as points m2 in Fig. 5b. Note the key role played by the value of h

in Eq. (16). Yet the actual wave form plays little role save its asymmetry. As la2 the ratchet is asymmetric
with jv1jajv2j.

In the noiseless case, there are values of g for which the light particle moves with positive velocity (left to
right; region A in Fig. 6) vr ¼ l=ðl� 1Þs=t040, slightly different from v1. This is due to the fact that the light
particle periodically jumps when it finds a minimum traveling in opposite direction. Besides, there are regions
of values of g where the light particle moves with negative speed (region B in Fig. 5), vl ¼ vwo0. In this latter
case the light particle speed is higher (in absolute value) than the velocity of the lattice particles. Both above
given cases are depicted in Fig. 5.

Let us now study the behavior of the light particle in the neighborhood of the minima as a function of the
values of the parameter g accounting for viscous friction. We take a washboard potential by means of a
suitable Galilean transformation [42], y ¼ zþ v1t, and then Eq. (10) becomes

d2z

dt2
þ g

dz

dt
þ

qðU þ gv1zÞ

qz
¼ g

ffiffiffiffiffiffiffi
2D
p

xðtÞ. (17)
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Our case bears similarity with the Brownian surfer analyzed in Ref. [42], save that ours has a local velocity
(note that a surfer rides the traveling wave while a swimmer dynamically travels on the surface of the ocean).

It appears that the potential in Eq. (17) possesses a stationary minimum, corresponding to the well of m1 in
Fig. 5b, if g is below g1m � U 0max=v1 where U 0max is the maximum of U 0 in between the maximum of U previous
to the minimum m1 and m1. So for g4g1m there are time intervals where ðU þ gv1zÞ exhibits no minima. Then
the potential in Eq. (10) does not provide enough energy to the light particle to allow it maintaining its speed
v1 (see Fig. 5a). Such is the case for g ¼ 5:71 shown in Fig. 7. The light particle remains oscillating in the
potential well offered by a lattice particle, until the possibility appears to jump to the next available potential
well of the nearest nearby lattice particle. Thus we shall see long lasting trajectories (long time periods) and
low speeds as the value of g increases as shown in Fig. 6. Actually, the upper bound of region A covers values
below g1m as vr4v1 (g ¼ 4:42 in Fig. 6). This argument applies verbatim to the minimum m2 in Fig. 5b
provided use is made of the Galilean transformation y ¼ zþ v2t leading to the potential value ðU þ gv2zÞ. In
this case we have a value g2m such that for g4g2mthe light particles cannot pump enough energy to be able to
maintain the speed v2. Here g2mog1m, and the light particles in region A of Fig. 6 have speed vr (g ¼ 2:51 in
Fig. 7, trajectory with positive velocity in Fig. 5a). In region B of Fig. 6 the potential barrier ðU þ gv2zÞ is
higher than the other one ðU þ gv1zÞ and the light particle takes on negative speed (g ¼ 0:29, Fig. 5a). Such
behavior in regions A and B bear similarity with the description given in Ref. [40] in the noiseless case. There is
also similarity with the noiseless and the traveling solutions described in Ref. [44] which in our case would
appear as jumps over the potential barrier DU1 in Fig. 5.

Between regions A and B an alternative appears: motion with positive speed in one minimum or in another
with negative speed. Near g ¼ g2m (thicker black region in Fig. 6) the speed is zero as the particle moves back
and forth around the same lattice unit (g ¼ 1 trajectory in Fig. 7). Between this region and regions A and B
numerous possibilities exist in the two narrow zones C and D of g values (Fig. 6). Several possible trajectories
in region D are depicted in Fig. 7. To avoid a messy graph no trajectories belonging to region C have been
drawn. Indeed, for g ¼ 4:43 and 5.71 they practically overlap each other.

To be noted is that we have no g-related hysteresis here at zero temperature, at variance with cases discussed
in the literature [42]. Yet, as earlier indicated, we do not have a single phase wave velocity.

In view of the above, we can conclude that for values of g in the regions A and B the quasi-cnoidal periodic
waves operate along the lattice as typical ratchets (traveling or drifting ratchets).

4. The role of noise and temperature upon transport

Let us now discuss the role of noise in the system for values around g2m and in region A. One may expect
that the noise strength alters the direction of motion. For low noise level, particles with g in the region A, move
within a potential minimum (Fig. 5b, m1) with velocity vr40, in opposite direction to the solitonic wave. After
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Fig. 9. Dissipative Toda lattice. Three units are used to display four light particle trajectories with their corresponding probabilities.
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some time lapse, they take on a deeper nearby available minimum (Fig. 5b, m2) and travel with negative speed
higher in absolute value and hence in the soliton motion direction. Then due to the noise level, the particle may
change its direction of motion, transferring to another minimum, with conditional probability, Pr!l , Fig. 8. If
such is the case (trajectories noted with broken arrows in Fig. 8), a fraction of period later it finds another
minimum traveling with vr40 and hence the particle has probability Pl!r to return to its previous
antisolitonic motion. In Fig. 8a, Pr!lo1 although Pl!r � 1. This is due to the fact that all trajectories with
negative speed (indicated by the broken arrows) change to positive velocity as soon as they see nearby a
minimum with one such velocity. This is not the case for Fig. 8b, where trajectories with negative velocity keep
their velocity even after meeting a minimum with positive velocity (noted with an arrow in Fig. 8b). Thus two
different underlying mechanisms control Pr!l and Pl!r.

For a Brownian particle we can estimate its mean velocity, vB, in term of these two probabilities. It suffices
to consider the evolution of a particle over a long enough time interval, T0. Fig. 9 depicts several lattice
compressions, nodes (three are marked with open circles) along with four paths (see Fig. 8, and corresponding
conditional probabilities).
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Let Nl denote the total number of steps towards the left (up–down in Figs. 8 and 9) done by a particle in the
time lapse T0. The quantity Nr refers to the opposite case (down–up motions in Figs. 8 and 9). Let the time
duration of each step be tl and tr, respectively. The total time lapse is T0 ¼ ðtlNl þ trNrÞ for N ¼ Nl þNr

steps. The mean velocity is

vB ¼
sðNr �NlÞ

trNr þ tlNl

. (18)

As Fig. 9 shows, the particle may change direction of motion at each node. Let Nl!r be the total number of
steps from left to right, and Nr!l in the opposite case. If the number of steps is high enough, we can write
Pl!rNl ¼ Nl!r and Pr!lNr ¼ Nr!l . As Nl!r ¼ Nr!l , we have

Nl

Nr

¼
Pr!l

Pl!r

. (19)

Then from (18) and (19) follows

vB ¼
1� Pr!l=Pl!r

1� ðV r=V lÞPr!l=Pl!r

vr ¼
1� ðPr!l=Pl!rÞ

l� 1þ ðPr!l=Pl!rÞ

ls
t0

, (20)

where use has been made of tr ¼ s=vr and tl ¼ s=vl . Note that if (8) is symmetric, l ¼ 2, as Pr!l ¼ Pl!r, it
follows vB ¼ 0, whatever the noise level and hence the value of the temperature. On the other hand, if vB ¼ 0
at zero temperature, around g2m and la2 when (8) is asymmetric, then for nonvanishing tempera-
ture, Pr!laPl!r, and hence vB may be positive or negative as we shall discuss further below (see g ¼ 1:14
in Fig. 10).

Let us estimate the probabilities Pr!l and Pl!r and hence the velocity vB. According to Fig. 8 the upward
moving Brownian particle trajectories remain within a tube of positive velocity around the deterministic
trajectory (broken line, Fig. 8). Those particles far away than x0 change direction of motion even in the
absence of noise at a node as the nearest lattice unit does so. In Fig. 8a around nodes we see that not all
trajectories below the deterministic path change direction. However, in Fig. 8b, all trajectories below the
deterministic one do change direction of motion, hence x0 � 0. The value of x0 depends on g in region A. The
nearer is the value of the latter parameter to the lower boundary of such region, the lower is the distance x0

acceptable for the trajectory to remain around the deterministic path, xdet.
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Fig. 10. Normalized mean velocity ðvB=vrÞ of one hundred Brownian particles versus noise level
ffiffiffiffiffiffiffi
2D
p

. Curves are parameterized by g.
Results obtained by direct numerical integration of Eq. (10) during a time lapse of 2000t0. Solid lines correspond to the approximation

equation (20) with (22) and (24) for the three upper curves. For g ¼ 1:14, lower curve, Eq. (22) is to be substituted by Eq. (26). The dashed

lines correspond to Eq. (20), with Pl!r ¼ 1. Parameter values common to all curves: t0 ¼ 0:2t0, t1 ¼ 0:05t0, o ¼ 4:2, DU ¼ 0:01. For x0,

which depends on g, we have g ¼ 2:52! x0 ¼ 0:07, g ¼ 1:43! x0 ¼ 0:045, g ¼ 1:26! x0 ¼ 0:001 and g ¼ 1:14! x0 ¼ 0:05.
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The behavior of the particles in the tube can be approximately described by a diffusive stochastic process
around xdet, with

Pðxdetjx; t0Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffi
pDt0
p e

�
ðxdet�xÞ2

4Dt0 , (21)

where t0 is the diffusion time needed to attain a stationary process. Accordingly,

Pr!l ¼

Z �x0

�1

Pðxdetjx; t0Þdx ¼
1

2
erfc

x0

2
ffiffiffiffiffiffiffiffi
Dt0
p

� �
. (22)

Clearly (22) is like the probability associated to the diffusion over a hard obstacle in absolute negative mobility
(ANM) processes for relatively long times [3]. In our case the hard wall comes from the potential barriers DU1

(Fig. 6). The end of the wall is the position, albeit time-dependent of the maximum M. Note that the time lapse
t0 is significant only when the values of g are far enough from the minimum in region A. Otherwise, x0 � 0 and
very quickly Pr!l !

1
2.

On the other hand, Pl!r is related to the escape probability, Pesc, from a local potential minimum,
hence Pl!r ¼ 1� Pesc. At variance with the ANM case here, a priori, we cannot neglect this probability
as the minimum moves up as time proceeds. In standard ratchet studies [4,5] the variations of the potential
are generally taken adiabatic hence neglecting the transition times relative to the time lapse where the
sawtooth operates. This together with the rather high level of the potential barrier makes negligible the
probability of the Brownian particle to jump over. In our case the growth of the barrier from zero to its
maximum is due to the oscillatory motion of the lattice units with period about t0=l. Then the Brownian
particle has such a time internal to escape with probability Pesc. This probability can be estimated using
Kramers’ formula [43,44]

Pesc ¼

Z t1

0

ae�atdt and a ¼ Ge�DUg=D, (23)

where DU is an adjustable parameter as the potential barrier does not remain constant. As DU does not
depend on g in the time lapse under consideration, we can write

Pl!r ¼ e�at1 . (24)

In our case, the value t1 in (23) or (24) is approximately t1 � 0:12t0. The escape rate a contains the usual
Arrhenius factor and the preexponential factor G. In the intermediate to high dissipation (IHD) limit [6,43]

G ¼
oa

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

g2

4o2
c

s
�

g
2oc

 !
, (25)

where oa and oc denote the frequencies corresponding to the potential minimum and maximum, respectively.
In our case they are approximately equal, oa ¼ oc ¼ o. Note that the IHD approximation refers to stationary
processes. In our case the stationary probability is attained in a time lapse much shorter than any ratchet
characteristic time.

Introducing (22), (24) in (20) we get the velocity as shown in Fig. 10, where we plot vB=vr versus g. It appears
that for relatively high values of g ðg ¼ 2:51Þ the distance x0 is large enough for the system not to be so much
sensitive to diffusion (responsible of the growth of Pr!l from zero to about 0.5). This is not so for g ¼ 1:26
when the system is near the boundary of region A. There x0 is so small and it suffices a slight backward motion
of the Brownian path relative to the deterministic trajectory to loose a step forward. Then vB is very sensitive
to temperature near zero. Lowering g to g ¼ 1:14 we enter the region with v ¼ 0 (Fig. 6; see also the trajectory
in Fig. 7). Then all particles reflected backward relative to the deterministic trajectory do not affect the mean
velocity value. On the contrary, those particles scattered forward gain one step further thus yielding a positive
mean velocity. Accordingly, in the noiseless case Pr!l ¼ 1 whereas Pr!l !

1
2
as the noise level increases. In

view of the above, Eq. (22) becomes

Pr!l ¼ 1�

Z �1
x0

Pðxdetjx; t0Þdx ¼
1

2
1þ erf

x0

2
ffiffiffiffiffiffiffiffi
Dt0
p

� �� �
, (26)
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and so in Eq. (20) we must use (26) rather than (22) as earlier done. In Fig. 10 this case is depicted for g ¼ 1:14
together with the result of the direct numerical integration of Eq. (3). It appears that for nearly vanishing
temperature the diffusion with Pr!l produces a positive mean velocity. As temperature rises, the latter effect is
compensated by the evolution of Pl!r, as in previous cases with Eq. (24). This brings once more zero velocity
and change of direction of motion. Fig. 10 also depicts Eq. (20) with Pl!r ¼ 1, when only diffusion affects
Pr!l . The approximation appears acceptable for low temperatures only (point a in black corresponds to the
parameter values of Fig. 8a). Our computations show that in such a case the escape probability over the
potential barrier, Pl!r, is practically vanishing. Indeed, we have computed Nl and Nr, Eq. (18), together with
Nl!r and hence Pl!r � ðNl!r=NlÞ and Pr!l � ðNl!r=NrÞ. For

ffiffiffiffiffiffiffi
2D
p

40:15, the escape becomes significant,
and the computations diverge when Pl!r ¼ 1. This is so because Pl!r decreases due to the jump over the local
potential barrier and matches the analytical estimate. For instance, we can see in Fig. 10 that at point b (black)
there is a tendency to depart from the dashed line. There are trajectories that upon reaching negative velocity
keep it for a few steps (arrow in Fig. 8b). For high noise levels, Pr!l !

1
2
and Pl!r ! e�Gt1=2p, and hence

vB

vr

!
2e�Gt1 � 1

2vle�Gt1 � vr

¼
2e�Gt1 � 1

2ðl� 1Þe�Gt1 þ 1

sl
t0

. (27)

The asymptotic value (27) is never reached. At very high temperatures the light particle takes enough energy to
jump over several successive potential maxima, a case not considered in the present study. Yet such asymptotic
value (27) indicates a temperature-driven change of direction in the motion of the light particle, provided

Gt14 ln 2. (28)

5. Concluding remarks

Wave-mediated transport is first-order in nonlinear propagating waves. To implement it we have used this
fact together with the ratchet character of dissipative solitons traveling along a lattice with anharmonic
(exponentially repulsive) interactions. The specific form of the potential is not significant from the physical
standpoint and the main results found. What matters is that such (periodic) solitons have asymmetric wave
forms while the underlying potential is, generally, symmetric. As in principle those dissipative solitons may
move clockwise or counterclockwise, (Brownian) light particles traveling with them (a kind of surfing) are also
allowed to move in either direction. However, viscous friction helps breaking the symmetry and hence the
ratchet wave mechanically separates the light particles leading to net unidirectional transport. We have
determined the mean velocity and how those particles may reverse motion. We have also studied related
features depending on noise strength and hence temperature. In conclusion, we have shown how the interplay
of the soliton ratchet and unbiased random fluctuations does generate net transport. In view of the possible
mechanical or electrical implementation of the ratchet device here described we can say that the latter can
provide a method to convert mechanical or even chemical energy into net transport and, eventually, electricity.
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