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We study electron transport in a one-dimensional molecular lattice chain. The molecules are linked by Morse
interaction potentials. The electronic degree of freedom, expressed in terms of a tight binding system, is
coupled to the longitudinal displacements of the molecules from their equilibrium positions along the axis of
the lattice. More specifically, the distance between two sites influences in an exponential fashion the corre-
sponding electronic transfer matrix element. We demonstrate that when an electron is injected in the undis-
torted lattice it causes a local deformation such that a compression results leading to a lowering of the
electron’s energy below the lower edge of the band of linear states. This corresponds to self-localization of the
electron due to a polaronlike effect. Then, if a traveling soliton lattice deformation is launched a distance apart
from the electron’s position, upon encountering the polaronlike state it captures the latter dragging it afterwards
along its path. Strikingly, even when the electron is initially uniformly distributed over the lattice sites a
traveling soliton lattice deformation gathers the electronic amplitudes during its traversing of the lattice.
Eventually, the electron state is strongly localized and moves coherently in unison with the soliton lattice
deformation. This shows that for the achievement of coherent electron transport we need not start with the

polaronic effect.
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I. INTRODUCTION

In their pioneering studies of charge transport in molecu-
lar systems Landau [1] and Pekar [2] introduced the concept
of self-trapped states. This involves an electron accompanied
by the lattice deformation. It creates thus a localized quasi-
particle compound also called a polaron. Davydov showed
that, when the size of the polaron is large enough that the
continuum approximation can be applied to the underlying
lattice system, a mobile self-trapped state can travel as a
solitary wave along the molecular structure [3]. The electron
was assumed to be under tight binding by the lattice, hence a
nonlinear coupling. Since the work of Davydov in the 1970s
the relevance of solitons and/or polarons to the energy and
particle transport in macromolecules has been recognized
and has remained of great interest (see, e.g., Refs. [4,5]).
Most of the studies of transport properties in macromol-
ecules have been based on one-dimensional lattice models.
Later Davydov generalized the idea of solitonic exciton
transport always considering harmonic hence infinitesimal
lattice vibrations to include also charge transport in proteins
leading to the term “electro-soliton” [6]. The soliton’s stabil-
ity is the result of the attained balance between two compet-
ing mechanisms, namely the interaction between an exci-
tonic degree of freedom and the lattice vibrations of a
molecular chain and, on the other hand, the lattice disper-
sion. The theory of the solitonlike electron transport mecha-
nism in one-dimensional chain models of biomolecules is
described in Refs. [5,6]. If anharmonicity is included to ac-
count for finite amplitude lattice vibrations in the description
of the lattice vibrations either by adding higher-order terms
to the potential or considering potentials with strong repul-
sive parts, represented, e.g., by Toda and Morse potentials
[7.8] the lattice dynamics itself can support supersonic soli-
tons. The latter can accommodate matter or charge transport
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[9] and excitonic energy or self-trapping modes establishing
transfer beyond the subsonic regime [10-22]. Such electron
trapping by the soliton leads to a dynamic bound state that
was called “solectron” in Ref. [11]. Note that the nonlinearity
of the “electro-soliton” comes from the above-mentioned
electron-lattice tight binding interaction while for the “solec-
tron” the nonlinearity originates in the lattice dynamics
alone, with or without charges. The interacting pair “electro-
soliton”-soliton is what the “solectron” becomes when the
classical charge is replaced by a quantum electron with tight
binding description. Accordingly there are two types of non-
linearity and hence two different transport mechanisms not
necessarily providing the same effect, as already noted in
Refs. [10,17]. It should be mentioned that the due to the
fairly strong electronic coupling the electron transport con-
sidered in this paper can indeed be adiabatic. In the limit of
weak electronic coupling the nonadiabatic regime of electron
transfer is relevant as described by the Marcus theory
[18,19].

The aim of the present work is to elaborate on the capture
mechanism of solitonic lattice deformations. In particular we
aim to clarify whether coherent electron transport is achiev-
able although a lattice soliton is launched a distance away
from the injected electron. A further aspect is possible restor-
ing of localization for an initially completely distributed
electron through passing lattice solitons. In Sec. II we pose
the problem by introducing the Hamiltonian for the electron
and the lattice dynamics and define the electron-lattice cou-
pling thus leading to the equations of motion. The latter are
integrated for various initial conditions and the results are
provided in Sec. III. Finally, in Sec. IV we summarize the
major results found.

II. DYNAMICAL SYSTEM

We investigate a one-dimensional lattice chain of mol-
ecules coupled by Morse forces [8] in which one excess elec-
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tron has been injected. Our model Hamiltonian of charge
transport in the system consists of the following two parts:

H=Hel+Hlattice‘ (1)

H,, describes quantum mechanically the electron transport
over the molecules in the context of a tight-binding system
and H,,,.. represents the classical dynamics of longitudinal
vibrations of the molecules, viz. the deformations of the cor-
responding bonds between them. The -electronic tight-
binding system is given by

Hel == 2 Vnn—l(cjlcn—l + Cnc:—l) . (2)

The index n denotes the site of the nth molecule on the chain
and |c,|* determines the probability to find the electron
(charge) residing at this site. V, ,_; is the transfer matrix
element (its value is determined by an overlap integral) being
responsible for the nearest-neighbor transport of the electron
along the chain.

The lattice part of the Hamiltonian, H;,;;.., models dy-
namical longitudinal changes of the equilibrium positions of
the molecules yielding alterations of the length of bonds. The
dynamics can appropriately be modeled by Morse potentials
[10,12,15,24]. The Hamiltonian of the H,,,;., is given by

2
Hlarzice = E {21)1:14 +D{1 - eXp[_ B(Qn - Qn—l)]}z} . (3)

The coordinates ¢, quantify the displacements of the mol-
ecules from their equilibrium positions along the molecular
axis. D is the breakup energy of a bond, B is the range
parameter of the Morse potential (the stiffness), and M de-
notes the mass of a molecular unit. The Morse potential ex-
hibits an exponential-repulsive part preventing the crossover
of neighboring lattice particles (molecules) for large dis-
placements. Note that, with an expansion of the exponential
functions, one recovers in lowest order the harmonic limit
and taking into account higher-order terms anharmonic po-
tentials, as currently done in condensed matter physics
[25-27].

The interaction between the electronic and the vibrational
degrees of freedom yields modifications of the electronic pa-
rameters V,,_; due to the displacements of the molecules
from their equilibrium positions. To be precise, the transfer
matrix elements V,,,_; are supposed to depend on the relative
distance between two consecutive molecules on the chain in
the following exponential fashion:

Vnn—l = VO CXp[— a(qn - qn—l)]- (4)

The quantity « regulates how strong V, ,_; is influenced by
the distance, r,=¢,—q,_;, or in other words it determines the
coupling strength between the electron and the lattice sys-
tem. On the other hand the actual charge occupation has its
(local) impact on the longitudinal distortion of the molecular
chain (the polaronlike effect). Note that here the exponential
form of the electron-lattice interaction accounts for both
small and large displacements of the lattice units thus going
beyond the range of harmonic interaction considered in ear-
lier studies [3,5,15-17,24-33].
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For universality in the arguments we pass to a dimension-
less representation by introducing suitable scales. Time is
scaled as 7=Q,,4e 1, With Q,,,.,=\2D B*/M being the fre-
quency of harmonic oscillations around the minimum of the
Morse potential. The energy of the system is measured in
units of the depth of the Morse potential, i.e., H— H/(2D).
The dimensionless representation of the remaining variables
and parameters of the system follows from the relations:

Pa V

~I‘I=B n» ~l’l= b ‘7=_7 (5)
q q p \/ﬁ 5
a
a=—. 6
b=z (6)

In what follows we drop the tildes.
The equations of motion derived from the Hamiltonian
given in Egs. (2) and (3) read as

lf == T{exp[_ a(qn+l - qn)]cn+1
+ exp[— a(LIn - qn—l)]cn—l}v (7)
&g,
2 = = expl= (gn = gHexpl= (g1 = 4,)]

- [1 - exp{_ (qn - Qn—l)}]exp[_ (qn - QI‘l—l)]
- av{(C:HCn + Cn+1C::)eXP[— a’(‘]n+1 - Qn)]
— (Cpmt + Cup)expl- alg, =g, (8)

The adiabaticity parameter 7=V/(AQ,,s), appearing in the
right-hand side of Eq. (7) determines the degree of time scale
separation between the (fast) electronic and (slow) acoustic
phonon processes. For illustration we use (unless stated oth-
erwise) the following values: 7=10, V=0.1, and a=1.75
which are relevant for electron transport in hydrogen bonded
chains of biomolecules [5,6,22].

Being interested in the simulation of a nonlinear charge
transport mechanism we construct as a first step localized
stationary solutions of the coupled system [Egs. (7) and (8)]
where we use an adiabatic approach [22]. To this end we
note that due to the fact that the lattice motion is slow com-
pared to the electron motion (large adiabaticity parameter 7)
the inertia in Eq. (8) are negligible. Moreover, solutions of
the stationary Schrodinger equation, associated with a stand-
ing electron, are obtained from Eq. (7) with the substitution
c,(t)=¢, exp(—iw) with real-valued amplitudes ¢, and
where w is the corresponding spectral parameter. The energy
of the system is then given by

E= 2 {%{1 - eXP[_ (qn - qn—l)]}2

- Vexp[— a(qn - qn—l)](¢:¢n—l + ¢n¢:—1)} > (9)

and the stationary equations are derived according to
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FIG. 1. (Color online) Initial profile of the localized electron
state and lattice deformation realizing a minimum of the variational
energy. Also shown is the pattern of the momenta used to activate
lattice soliton motion. The parameter values are V=0.1 and «
=1.75.
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Solutions of the Morse chain are supposed to be of the form
of the Toda-soliton

oF J (E+w2 ¢5)=0. (10)

n

exp[— (g, — q,-1)] =1 +sinh? k cosh™>(kn),  (11)

where « is treated as a variational parameter. For the local-
ized electronic solution we use a simple trial function

¢, =An", (12)

where the variational parameter 0 < 7<<1 gives the width of
the solution. The closer 7 is to the value »— 1 the more
delocalized the state becomes. Correspondingly, for 7—0
the state gets more localized. The coefficient A follows from
the normalization condition and is evaluated as

A=\/i;222. (13)

The total variational energy is then expressed as

1 sinh* k

) —~ cosh*(kn)

—2V%§(1+

sinh? )“
iy VP S | 14
cosh?(kn) 7 (14)

For a given set of system parameters a and V the global
minimum of I', giving the lowest energy configuration, is
searched for in the two-parameter space (k,7). A typical
initial electronic state and profile of displacements of the
molecules are depicted in Fig. 1. The corresponding local-
ized compound is comprised of an exponentially localized
electron state and the associated kink-shape topological lat-
tice deformation. The latter is in the forthcoming referred to
as the lattice soliton. Motion of the lattice soliton is achieved
with the excitation of the momenta according to the gradient
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FIG. 2. (Color online) Spatiotemporal pattern of a lattice soliton
(top panel) and an initially localized electron state (bottom panel).
The parameter values are V=0.1 and a=0.

method [23] yielding the soliton momentum profile shown in
Fig. 1.

III. NUMERICAL RESULTS

Before we embark on a study of the coupled electron
lattice dynamics it is illustrative to consider first the limiting
case of zero coupling (a=0) for which the initially localized
electron state and a lattice soliton evolve independently as
displayed in Fig. 2. To activate soliton motion an initial pat-
tern of the momenta of appropriate shape is imposed (cf. Fig.
1). We integrated the system [Egs. (7) and (8)] using a
fourth-order Runge-Kutta scheme where we imposed peri-
odic boundary conditions. Accuracy of our computations was
guaranteed by monitoring the conservation of the norm
S, le.(H))?=1 as well as the conservation of the total energy.
Obviously, the electron’s occupation probability, being
peaked initially at the central lattice site, decays in the course
of time. Eventually, the electron, whose temporal evolution
is described by a tight-binding equation alone, is spread all
over the lattice. In clear contrast is the behavior of the lattice
soliton, represented as exp[—(q,—¢,_;)], which moves, apart
from the emission of a tiny amplitude linear wave (phononic
radiation), form-invariant and with constant velocity over the
lattice chain. This shows that the pure lattice deformation can
be coherently moved along the lattice in a solitonlike fashion
by appropriately exciting the momenta.

Further illustration of the spatial spreading of the elec-
tronic wave function is given in Fig. 3 where the temporal
behavior of the electronic partition number is drawn. The
latter is defined as
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FIG. 3. (Color online) Time evolution of the electronic partition
number with initial conditions and parameter values as in Fig. 2.

N 4
P(l) — E |Cn(0)|

n=1 Cn(t)|4 .

(15)

Due to the normalization of =", |c,|[>=1 complete localiza-
tion at a single site is given for P=1 whereas the electron is
uniformly extended over the lattice for P=N, that is, P mea-
sures the number of lattice sites that are occupied by the
electron. For times up to t~40 there is a linear growth of
P(r) and afterwards oscillations with rising amplitudes result.
Clearly, at the end of our simulation time the electron is
almost completely delocalized.

Now we consider interactions between the electron and
the lattice system. Let us first display the electron transport
mediated by lattice solitons for the situation when the local-
ized electron state and the lattice soliton are centered at the
same lattice site [21,22]. The electron and the lattice soliton,
after having emitted linear waves of small amplitude (the
above-mentioned radiation), travel together with constant ve-
locity along the lattice maintaining both their localized shape
(cf. Fig. 4). Note the reduction of the velocity of the bound
state compared with the velocity of sound sy=1 in the bare
lattice. In this manner stable soliton mediated coherent elec-
tron transport is realized. That the electron and lattice soliton
move in unison is also seen in Fig. 5 showing the first mo-
mentum of the electronic occupation probability and the cen-
ter of the lattice soliton. Thus we can infer (see also Ref.
[22]) that the coupling interaction between the electron and
the lattice soliton is not only crucial for the preservation of
the electron localization but it is also responsible for the
dragging of the electron by the lattice soliton.

We stress the local character of the electron-lattice inter-
action in the previous case, viz. initially the peak of the
electronic occupation probability and the center of the lattice
soliton coincide so that most efficient electron-lattice cou-
pling from the start is guaranteed. However, one can imagine
situations for which the injected excess electron is a distance
apart from the region where a solitonic lattice deformation
has been launched (e.g., by an imposed local pressure, a
defect, or a thermally induced hot spot). We consider now
such cases when the centers of the localized electron state
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FIG. 4. (Color online) Spatiotemporal pattern of a lattice soliton
(top panel) coupled with a localized electron state (bottom panel).
Both excitations are launched at the center of the lattice. The pa-
rameter values are V=0.1 and a=1.75.

and the lattice soliton do not coincide initially. The question
is then: Is coherent electron transport achievable at all under
such a seemingly disadvantageous circumstance, especially
when the degree of interaction between the electron and the
soliton lattice deformation seems to be lessened due to the
rather large initial distance between their excitation peaks. In
Fig. 6 we illustrate the spatiotemporal patterns of the occu-
pation probability of the electron and the amplitude of the
lattice soliton, respectively. In the beginning the electron and

400

350+ ——electron

- = =-lattice

300

2501

200

position

1501
1001 =%

501 =

0 . . . .
0 100 200 300 400 500

time

FIG. 5. (Color online) Time evolution of the first momentum of
the electronic occupation probability and the center of the lattice
soliton. Parameter values as in Fig. 4.
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FIG. 6. (Color online) Spatiotemporal pattern of a lattice soliton
(top panel) and an initially localized electron state (bottom panel).
The center of the lattice soliton is initially placed at site n=300
while the electron is centered at site n=200. The parameter values
are V=0.1 and a=1.75.

lattice soliton have an initial distance of An=100. Note that
this is in fact a huge distance compared with the spatial ex-
tensions of the localized electronic and solitonic lattice exci-
tation being of the order of ten lattice sites (cf. Fig. 1). Sur-
prisingly, the electronic occupation probability shows no sign
of significant spread despite being placed in an undistorted
region of the lattice. The electron preserves its localization
and stays at its initial position until the traveling lattice soli-
ton, approaching from the right, encounters the region of the
lattice that is occupied by the electron. After “hitting” the
electron the lattice soliton carries the electron along with it
very much in the same way as described above. Crucial for
the maintenance of the electronic localization is the local
nonlinear interaction of the electron with the lattice vibra-
tions due to the distance-dependence of the transfer matrix
element V,,_; =V, exp[-a(g,—q,-;)]. To illustrate this fea-
ture Fig. 7 displays the spatiotemporal evolution of the elec-
tron and the lattice in a close neighborhood of the initial
electron position. On this scale one can observe that indeed
the initially strongly localized electron tends to decay. How-
ever, one recognizes that at the same time the electron in-
duces a fairly strong local lattice compression, with ¢,
—¢,-1<0, which in turn is responsible for a considerable
increase of V,,,_; in a confined region around the electron’s
position. In essence the electron gets trapped by this nonlin-
ear lattice “impurity” [34]. Note the static character of the
electron-induced lattice compression. As already noted this is
akin to the polaron mechanism [35] albeit that the lattice
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FIG. 7. (Color online) Spatiotemporal evolution of the lattice
vibration (top panel) and the electronic occupation probability (bot-
tom panel) on a segment of the lattice involving the initial position
of the electron in the time interval 0 =¢=50. Parameter values as in
Fig. 6.

excitation is solitonic (nonlinear) while the genuine lattice
excitation is a moving soliton. Moreover, compared with its
initial state the adopted pattern of the electronic occupation
probability is of even stronger degree of localization. Such a
response of the lattice to the initial state of a localized elec-
tron was observed also in linear conjugated polymer chains
[36].

The formation of the polaronlike state and its carriage by
the traveling lattice soliton is also reflected in the time evo-
lution of the first momentum of the electronic occupation
probability and the soliton center as seen in Fig. 8. In an
early phase the lattice soliton advances with comparatively
high velocity towards the electron which stands still at its
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FIG. 8. (Color online) Time evolution of the electron and lattice
soliton center, respectively. Parameter values as in Fig. 6.
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FIG. 9. (Color online) The same as in Fig. 6 except for increased
initial distance between the electron and the lattice soliton of An
=200.

initial position. Subsequently to the formation of the standing
localized lattice deformation in the proximity of the electron
the velocity of the original traveling soliton lattice deforma-
tion is effectively reduced. As soon as the lattice soliton has
reached the electron the two travel together with soliton ve-
locity along the lattice.

For the case when initially the electron and the lattice
soliton are 200 lattice sites apart from each other, Fig. 9
reveals that the lattice soliton travels straightforwardly to-
wards the electron position. Again the electron manages to
retain its localized shape due to the local (nonlinear) interac-
tion with the molecules in its neighborhood. Clearly, the
electron is carried away from its initial position by the pass-
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FIG. 10. (Color online) Time evolution of the electron and lat-
tice soliton center, respectively. Parameter values as in Fig. 9.
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FIG. 11. (Color online) The average velocity s of the bound
state in dependence of the initial distance An. For comparison we
note that the velocity of sound in the lattice is s=1.

ing soliton as is also reflected in the time evolution of the
center of the electron’s occupation probability and the lattice
soliton shown in Fig. 10.

In conclusion we have seen that even when the lattice
soliton is initiated in a region far away from those sites
where the electron is embedded long-range coherent electron
transport is nevertheless achieved. In Fig. 11 the average
velocity of the bound state, s, as a function of the initial
distance An is depicted. Interestingly, the maximal average
velocity is attained for An=25 and increasing the initial dis-
tance beyond this value leads to a reduction of s. For a large
distance An=200 the bound state travels with only 20% of
the velocity of sound in the bare lattice. With concern to the
degree of localization and the energy exchange between the
electronic and lattice degree of freedom we display in Figs.
12 and 13 the temporal behavior of the partition number P(z)
for different initial distances between the electron and lattice
soliton and the time evolution of the partial energies, respec-
tively. For coinciding electron and lattice soliton centers
(An=0) P(r) does not alter in long intervals apart from the
early short burst where the electron and the lattice deforma-

50

partition number

0 100 200 300 400 500
time

FIG. 12. (Color online) Time evolution of the electronic parti-
tion number with initial conditions and parameter values associated
to Figs. 4, 6, and 9 as indicated by the value of An in the plot.
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FIG. 13. (Color online) Time evolution of the partial energies
for different initial distances as indicated in the plot. Top panel: H,,
and bottom panel: H,,,;... Parameter values and initial condition as
in Fig. 12.

tion adopt quickly to their mutual influence. More specifi-
cally, the electron’s energy H,; [cf. Eq. (2)] is lowered while
the lattice energy H,,,;. [cf. Eq. (3)] is raised meaning that
for the motion of the localized electron-lattice compound
additional deformation of the lattice is needed that has to be
induced by the impact of the electron. This is a kind of
polaron-soliton interaction. Apparently, the initial states are
modified such that coherent motion of the localized electron-
lattice deformation compound is better promoted. This goes
also along with the emission of a tiny amplitude wave (the
earlier mentioned phononic radiation) from the main lattice
deformation soliton (cf. Fig. 4). Afterwards the correspond-
ing separate energies stay almost constant. Around =280
due to the periodic boundary conditions the emitted phonons
encounter the lattice soliton leading to a brief period of en-
ergy exchange. Both the lattice soliton as well as the electron
sustain this exchange period unscathed. Note that for An=0
the electron energy lies from the beginning below the lower
edge of the linear band, —-2V,;=-0.2, whereas for An=100
and 200 initially H,; lies within the linear band. For initial
distances, An=100 and 200, the immediate rise of the parti-
tion number is more pronounced than in the case of An=0.
This is due to the fact that the electron, residing at the start
on an undistorted lattice segment (no polaronic effect is ini-
tially assumed), has the quantum mechanical tendency to
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spread probability. However, soon the effect of the interac-
tion with the lattice stops the spread of the electron because
the lattice experiences a local (polaronic) deformation that
retains to a high degree the localized shape of the wave func-
tion of the electron. Correspondingly the lattice energy in-
creases at the expense of the electron energy (cf. Fig. 13).
The latter shifts below the lower edge of the linear band.
Interestingly, the amount of energy that is transferred from
the electron to the lattice and the fluctuations of the partial
energies are higher for the distance An=100 compared to
An=200. Hence launching the lattice soliton far away from
the electron’s position (as in the case of An=200) there re-
mains such a long time before the original soliton reaches the
electron that the latter is able to create in its surrounding an
appropriate lattice deformation (the polaronlike effect) so
that, after the early decay, the electron restores its localiza-
tion solely by itself. (Distinct to this for An=100 the travel-
ing soliton lattice deformation arrives already before the for-
mation of the polaronlike state at the electron’s position
could be completely finished.) Naturally, to this aim the elec-
tron has to “sacrifice” a portion of its energy to the lattice. In
more detail, the time it takes for the original soliton lattice
deformation to hit the standing deformation that has been
built around the electron is nearly twice as long in the case of
An=200 compared to the case An=100, and thus leaving in
the former case more time for the formation of the localized
electron-lattice compound. In particular the compression of
the lattice attains for An=200 the form of a static kink
whereas for An=100 the formation process proceeds not as
efficient and still linear waves are being emitted from the
forming localized pattern. That is the reason why for An
=100 the interaction between the traveling soliton and the
polaronlike state that is being formed around the electron’s
position is characterized by fairly large fluctuations of the
partial energies for times #>100. In contrast for An=200 the
traveling lattice soliton encounters the pinned polaron (al-
ready having radiated dispensable linear waves) and their
interference with energy exchange is virtually suppressed.
Finally, we present the spatiotemporal patterns for the
case when the electron is in the beginning completely delo-
calized, viz. P(0) ~ N, and a lattice soliton is launched which
moves along the lattice in Fig. 14. As far as the launching of
the localized lattice deformation is concerned it can be gen-
erated, e.g., by an input pulselike excitation of mechanical,
thermal, or optical origin in a lattice region [38]. Remark-
ably, along the path of the soliton the electron occupation
probability gets increasingly concentrated in the course of
time as though the traveling lattice deformation acts like a
“vacuum cleaner” sweeping across the lattice to gather the
electronic amplitude [reflected in the temporal behavior of
the occupation number P(z), cf. Fig. 15]. Eventually a fairly
strongly localized -electron-lattice soliton compound is
formed which moves directionally along the lattice. In this
sense the decay process exhibited by the independent elec-
tron on the undistorted lattice (cf. Figs. 2 and 3) has been
reversed by the coupling of the electron to the traveling soli-
ton lattice deformation. This effect of collecting the electron
wave function can be (heuristically) explained as follows: In
the region of the compression of the lattice it holds that g,
—q,-1<<0. Therefore the transfer matrix element V,,_;

046602-7



HENNIG et al.

lattice

0.035
0.03
0.025
0.02
0.015
0.01
0.005 |
0 250
-0.005
-0.01

electron I

0.07
0.06
0.05
0.04
0.03
0.02

FIG. 14. (Color online) Spatiotemporal evolution of the lattice
soliton (top panel) and the electronic occupation probability (bot-
tom panel). The parameter values are V=0.1, @=1.75, and 7=10. At
the beginning the electron is uniformly spread over the lattice and
the lattice soliton is launched at site n=400.

=V, exp[-a(q,—q,_;)] is increased with respect to the value
V, attained when the lattice is undistorted hence at its equi-
librium configuration. In turn the local increase of the trans-
fer matrix element is connected with local lowering of the
electronic energy [see Eq. (2)]. Consequently, the electron is
trapped by the traveling soliton lattice deformation (consti-
tuting a potential well) and follows the path of the latter. The
classical counterpart of this picture has been thoroughly
studied in Ref. [37].

IV. CONCLUDING REMARKS

In this paper we have investigated the electron transport
in a one-dimensional lattice chain where the units are
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400
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FIG. 15. (Color online) Time evolution of the electronic
partition number with initial conditions and parameter values as in
Fig. 14.

coupled via Morse potentials. The motion of an excess elec-
tron is described by a tight-binding Hamiltonian. The elec-
tronic transfer matrix element obeys an exponential depen-
dence on the distance between two units. First we
demonstrated that when the electron is injected into a con-
fined region of the undistorted lattice the latter is locally such
appropriately deformed in the form of a kinklike excitation
that the electron is trapped forming together with the lattice
deformation a (static) polaronlike state. Furthermore, we
showed that the polaronlike state gets captured and subse-
quently dragged by a passing soliton lattice deformation. In
this way coherent soliton-mediated electron transport is ac-
complished. Remarkably, if the electron’s occupation prob-
ability is initially uniformly spread among the lattice we
showed that a traveling soliton lattice deformation gathers
more and more of the electronic amplitude in the course of
time. Eventually the lattice soliton carries a strongly local-
ized electron.
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