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1 Faculty of Physics, Chernychevsky State University, Astrakhanskaya 83, 410012 Saratov, Russia
2 Institut für Physik, Humboldt-Universität Berlin, Newtonstr. 15, 12489 Berlin, Germany
3 Institut für Physik, Universität Rostock, Universitätsplatz 3, 18051 Rostock, Germany
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1 Introduction

In a recent letter [1] a soliton-mediated new form of non-Ohmic, relatively fast electric conduction has been
proposed. Further details about the dynamics and statistical mechanics of the lattice system and the proposed
transport process have been provided in several other publications [2–8]. Besides the general theory [1, 4, 5, 7]
we developed the theory in two different lines: (i) applications to the conductivity of gaseous and solid state
plasmas [2], (ii) applications to biomolecules [3, 6].

Here we will follow only the first line, having our main attention to quantum effects. The central idea of our
model is that the electron carrier is a supersonic solitary wave or (periodic) wave train that builds upon the anhar-
monicity of (positive) ion interactions. In Ref. [1], where a transition from Ohmic to non-Ohmic conductions is
predicted, the carrier is a dissipative soliton that dynamically binds the electron. The concept of dissipative soli-
ton has been shown of utility in fluid dynamics, in active lattices, nonlinear optics and lasers [9–13]. Although
the proposed soliton-mediated transport seems to offer universal features yet the theory above referred suffers
from various limitations. On the one hand it comes from the study of one-dimensional (1D) anharmonic lattices.
It follows closely the phenomenological Drude - Lorentz approach to electric conduction [14–16]. Further, the
original analysis [1] was based on classical mechanics and electromagnetism with no use of quantum mechanics.
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This was overcome in subsequent publications [3,6] without affecting the essence and hence the apparent univer-
sality of the finding: solitons in a nonlinear (anharmonic) lattice can be carriers of electricity. To a certain extent
this finding should be of no surprise in view of the soliton-mediated Ohmic electric conduction found in polymers
like polyacetylene [17, 18]. The supersonic soliton carrier proposed in Ref. [1] comes from anharmonicity in the
lattice dynamics before the electron-lattice interaction is introduced. When the latter is added we can foresee
a redefinition of the evolution with a new effective anharmonic Hamiltonian incorporating the Toda-Morse like
exponential interaction [3, 6].
Fig. 1 taken from Refs. [5, 8] illustrates a snapshot of a portion of the periodic potential landscape (mostly har-
monic plus a soliton-induced deeper minimum) offered by positive ions to an electron when compressions in the
lattice are strong enough and there is Coulomb interaction between the electron and ion charges (note that each
peak of a periodic cnoidal wave found in anharmonic lattices [8] behaves solitonically like an isolated soliton).
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Fig. 1 Snapshot of the typical periodic landscape of the
local electric potential created by the solitonic excitation
along an ion lattice. The minimum corresponds to a local
compression of ions which means an enhanced charge
density.

In view of the above in the present work we have taken a more general perspective by looking at the problem
from the general approach provided by the linear response transport theory [14,19,20], thus connecting transport
coefficients like electric conductivity with equilibrium correlation functions. One advantage of this method is that
the formulation is independent of the dimension of the sample. From such a perspective we have a theory valid
also in two-dimensional or quasi-twodimensional materials in a heat bath without assuming external driving of
the excitations, thus overcoming one of the mentioned shortcomings of earlier work [1–6, 8]. Before embarking
in such an approach it is worth recalling a few features about electric transport in electron-ion systems.
Present-day theories of thermal and electric transport processes in electron-ion systems like solids or plasmas do
take into account different elementary excitations like phonons, polarons, plasmons, and excitons [15,16,21,22].
For a survey of transport theory of dense Coulombic systems including solids and dense plasmas we refer to
[23–26].
Here we concentrate on the effects of anharmonicity leading to soliton excitations on electrical transport. As the
interference of electron modes with phonon modes is well understood it is thus clear why we shall explore the
possibility of interference of electrons with soliton modes. We cannot expect that this will occur under standard
conditions. However it seems to be possible in cases where anharmonic excitations play a key role i.e. when we
have strong local compressions in the lattice as needed for the prediction made in Ref. [1].
As side remarks let us mention that there are several experimental observations which suggest that in some
conducting systems anharmonic effects and solitons may play a key role. For instance, the resistivity anomalies
and non-Ohmic behavior observed already in early studies on TTF-TCNQ and NbSe3-samples [27] or in order to
explain the observed non-Ohmic effects as well as phenomena found in some high-temperature superconductors,
soliton excitation has been proposed [28–30].
Long ago Müller [31] underlined the possible role of “strongly anharmonic phonons due to spin excitations”. He
proposed a model of anharmonic vibrations of apical oxygen interacting with carriers in CuO2 planes. Later,
Zhao et al [32] reported results of magnetization and thermal expansion measurements on samples of copper
oxide superconductors advocating “that polaronic charge carriers exist and condensate into Cooper pairs ...”.
More recently, Gweon et al [33] have suggested a dynamical spin-Peierls picture, where the pairing of electrons
mutually enhance each other. Further, these authors have proposed to use the term “phonon” loosely to denote
quanta of lattice vibrations including spatially localized ones. Clearly, such excitations like so-called anharmonic
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phonons or highly deformed phonons are nothing more than solitons in the currently used nonlinear nomenclature
[9, 11, 34, 35].
The above comments justify to some extent the interest of our earlier work [1, 2, 4, 5, 8] where we have shown
that the dynamics of ion rings with Toda or Morse interactions leads to soliton-like excitations and the already
mentioned electron-soliton dynamic bound states (for simplicity denoted by solectrons). The rather deep potential
well (Fig. 1) moving (right to left or left to right) along the ion lattice can indeed capture a light electron. Note
that when the electron is bound to follow the soliton travel it changes ion partner as the wave moves.

2 Time-correlations and conductivity in simple models

2.1 The Drude-Lorentz model

Since e2 is a universal constant which is fixed, this corresponds to rather stiff lattices, i.e. large values of ω0,
which, in general, may be reached only in strongly compressed lattices. The dimensionless lattice stiffness
constant is B = b0r0 = 1. Note that the equivalent stiffness in the Toda lattice would be b0 ≈ 2 − 3 [5, 8]. For
the friction parameters we took γi = 0.02 and γe = 0.002. The ion lattice temperature is given in mω2

0r
2
0 units.

Let us first consider the results for a relatively low temperature T = 0.005. Fig. 2 (left part) illustrates the
time-dependence of the electron velocities. There is random behavior with spectrum decaying like ω−2. To place
later developments in context let us recall the early (classical) theories of conductivity in electron-ion systems
taking into account scattering and dissipation [14]. The Drude (1900)-Lorentz (1904) “ansatz” is based on the
asumption that the electrons are accelerated in the electric field, thus gaining energy, while in balance they loose it
by collisions with the ions thus exciting dissipative modes in the lattice. The final outcome is a stationary current
in the external field. In the simplest approximation we may assume that the dissipative dynamics of the electrons
is characterized by an effective collision frequency. Then we can write

v(t) = v(t0) exp[−ν(t − t0)], (1)

where v denotes electron velocity and ν is a collision frequency. The relaxation time is τ = 1
ν . This simple

model yields a velocity correlation function of exponential type. Defining the velocity autocorrelation function
by

Av(τ) = lim
1
T

∫ T−τ

0

dt0v(t0 + τ)v(t0), (2)

using (1) we get

Av(τ) = 〈v(τ)v(0)〉 =
〈
v2

〉
exp(−ν|τ |). (3)

The corresponding Fourier transform (power spectrum) reads

Sv(ω) = 〈vv〉ω =
∫ ∞

−∞
dτA(τ) exp(iωτ), (4)

which for the simple model (1) yields

Sv(ω) = 〈vv〉ω =
2

〈
v2

〉
ν

ω2 + ν2
. (5)

Noteworthy is the characteristic ω−2 decay of the spectrum. Then the linear response theory for the static con-
ductivity leads to Drude’s formula:

σ = ne2 Sv(ω = 0)
2me 〈v2〉 =

ne2

meν
, (6)

where e denotes electric charge (of negative value for electrons), n is the number density (n = N/L with N
denoting the number of electrons and L the system length) and me electron mass.
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2.2 Model conducting nonlinear lattice

Before proceeding to the more general case let us still continue analyzing the problem in 1D in order to assess the
influence of nonlinear excitations on the conductivity. We take a quasi-classical electron dynamics and consider
a 1D-system consisting of N classical ions and N electrons with periodic boundary conditions (ions are placed
on a lattice of length L). For the light electrons we assume following Drude’s model that they obey classical
dynamics. However, instead of a phenomenological damping we include coupling of the electron motion to the
nonlinear lattice dynamics with ten heavier ions. In the numerical simulations we consider the lattice units with
mass m. The ion particles are described by coordinates xj(t) and velocities vj(t), j = 1, . . . , N (N = 10),

xj+N = xj + L. (7)

The ions repel each other by Coulomb law and in addition by still stronger repulsive forces induced by the
(screened) ion cores Vii(r) with r = xj+1 − xj . The subscript “i” denotes ion. Let us assume that the average
distance between the ions in the lattice is r0 (r0 = L/N ). We approximate the interaction of ions locally around
r0 by a Toda-like exponential using the Taylor expansion

Vii(r − r0) � Vii(r0) + V ′
ii(r0)(r − r0) +

mω2
0

b2
0

{exp [−b0(r − r0)] − 1 + b0(r − r0)} , (8)

with

mω2
0 = V ′′

ii (r0); b0 = −V ′′′
ii (r0)

V ′′
ii (r0)

. (9)

Note that here ω0 refers to the lattice dynamics while ω in Eq. (6) refers to Fourier frequency. This local
approximation is correct up to the third order and higher orders are approximated by an exponential series. This
approximation works if the lattice forces are strongly repulsive. The great advantage of this method (as shown
in [5]) is that the forces have a Toda-like shape which allows some analytical estimates for the excitations.
In fact, the constant and the linear contributions to the expansion in Eq. (8) are irrelevant in a system with
periodic continuation and what remains is a Toda chain, which allows in part analytical treatment. Cutting the
Taylor series after the third or fourth power leads to a Fermi-Pasta-Ulam-type potential. Several authors seem
to believe, that a Fermi-Pasta-Ulam-type potential is “better“ suited for modelling physical properties than an
exponential-type potential. The argument is, that exponential potentials belong to the class of integrable systems
and that integrability is a highly nongeneric feature. Our counterargument is that there is no proof that integrable
potentials and nonintegrable potentials in their immediate neighbourhood lead to different physical properties. In
the opposite, all our simulations have shown that potentials which are close to each other (in functional respect)
lead to very similar physical properties.
Let us consider now the “electrons”. These are interacting with the lattice units or ions by a potential Ue and, as
earlier indicated, obey classical equations of motion as a kind of “Drude-Lorentz-Debye dynamics”, with “noise”
generated by the collisions with the ions in the lattice,

dve

dt
+

1
me

∂Ue

∂ye
= −γeve. (10)

The quantity γe is the relaxation time due to the electron dissipation γe ∝ 1/τe, with τe accounting for the decay
time scale. Assumption (10) with respect to the electron dynamics is not very realistic. It provides, however,
a model which can be easily treated by numerical simulations. It suffices to show, how the dynamical clusters
created by soliton excitations act on the electrons. Recall that as earlier noted, a quantum-mechanical treatment
of the electron dynamics within the tight-binding approximation has been given elsewhere [3, 6].
In regions where anharmonic, supersonic soliton waves play significant dynamical role as e.g. solectrons, we ex-
pect long lasting correlations extending over the solectron lifetime, before the exponential decay starts. Possibly,
there might be even maxima at finite times, due to nonlinear effects.
In the numerical simulations we have used a Langevin dynamics for the ions. The electron-ion interaction was
modelled by a Coulomb force with appropriate cut-off, h, at small distance. In general, this interaction consists
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of a Coulombic tail and short-range pseudopotential modelling the interaction of the electron with the screened
hence inpenetrable ion cores. This leads to a finite value of the pseudopotential at zero distance [37,38]. We take

Vi(x − xi) = − eei√
(x − xi)2 + h2

. (11)

The potential (11) has a minimum value Vmin = −(eei/h), where h � r0/2 is a free parameter which determines
the value of the short-range cut-off. In the presence of random forces (hence non zero temperature) and also
external forces the dynamics of lattice units with mass m is described by the Langevin equations (j = 1, 2, .., N )

dvj

dt
+

1
m

∂(U + Ue)
∂xj

= −γivj +
√

2Dv ξj(t), (12)

governing the stochastic motion of the jth particle on the lattice (recall that here for illustration, j = 1, .., 10).
The stochastic forces (with diffusion coefficient Dv)

√
2Dv ξj(t) model a surrounding heat bath (Gaussian white

noise). The term with γi describes the standard friction frequency acting on the ions in the lattice from the side
of the surrounding heat bath. The validity of an Einstein relation is assumed

Dv = kBTγi/m, (13)

where T is the temperature of the heat bath and kB is Boltzmann’s constant. Note that due to mass differences
meγe � mγi. The potential energy stored in the lattice reads

U =
N∑

j=1

U(rj). (14)

In the numerical simulations r0 is the length unit and ω−1
0 is the time unit. The ratio between Coulomb and short

range forces on the mean distance r0 is assumed to be rather small

η =
e2/r2

0

mω2
0r0

� 0.001. (15)

Since e2 is a universal constant which is fixed, this corresponds to rather stiff lattices, i.e. large values of ω0,
which, in general, may be reached only in strongly compressed lattices. The dimensionless lattice stiffness
constant is B = b0r0 = 1. Note that the equivalent stiffness in the Toda lattice would be b0 ≈ 2 − 3 [5, 8]. For
the friction parameters we took γi = 0.02 and γe = 0.002. The ion lattice temperature is given in mω2

0r
2
0 units.

Let us first consider the results for a relatively low temperature T = 0.005.
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Fig. 2 Typical shapes of the (clsasical) electronic velocity as a function of time. Left figure: trajectory of the electron velocity
for a time interval at a low temperature T = 0.005; Right figure: electron velocity for a time interval when the temperature is
much higher T = 0.075 (for the corresponding spectrum see Fig. 4).
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Fig. 2 (left part) illustrates the time-dependence of the electron velocities. There is random behavior with
spectrum decaying like ω−2. In Fig. 2 (right part) we also show a result for the higher temperature T �
0.075, thus allowing further nonlinear excitations. The electron velocities exhibit long lasting coherence with
corresponding signature in the low-frequency part of the spectrum. A comparison of the shape of the velocity-
velocity correlation function for the two temperatures indicated above is shown in Fig. 3. We clearly see that
with increasing temperature also the range of the velocity-velocity correlations increases. However, above T =
0.075 the long correlations are destroyed again. Hence such long lasting correlations are specific for a particular
temperature range.
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Fig. 3 Velocity-velocity correlation function (3) of the electrons. Left panel: Simulations at T = 0.005 (lower curves) and
T = 0.075 (upper curves). The correlations were calculated by averaging over the ensemble of the ten electrons. Right panel:
Comparison of simulations for N = 10, 20, 30 ions which show that the stability with respect to N is sufficient.
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Fig. 4 Spectral power distributions as a function of the frequency (f = ω/2π). Upper panels: Simulations at relatively low
temperatures of the ion lattice (left: T = 0.015; righ:t T = 0.025. Lower panels: Simulatons near the critical temperature
(left: T = 0.075); and at an overcritical temperature (right: T = 0.100).
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In Fig. 4 where we compare the spectral power densities for several temperatures including the transition temper-
ature T � 0.075. These results indicate that T � 0.075 is the optimal temperature for the formation of coherent
long-range velocity structures. But this same temperature corresponds to the value where the specific heat per
unit length of the lattice (cv � 3/4) shows the transition between the ordered (solid-like) and the disordered
(gas-like) lattice. Recall that for the Toda lattice [8, 39]

kBTtr � 0.15
mω2

0r0

b0
, (16)

that for b0 ≈ 2/r0, ω0 = 1 and r0 = 1, yields Ttr ≈ 0.075.
Let us estimate now the influence of soliton modes on electron transport. Our earlier studies of the current-
voltage characteristics, indicate that the low-field conductivity strongly increases [1,2,5,8]. In order to study the
influence of long lasting correlations on transport we have to consider long trajectories of the electrons. According
to the linear response transport theory the equilibrium velocity-velocity correlations are directly connected to the
conductivity [14, 20]. Here the conductivity of the electron system is

σ = ne2
(〈

v2
〉
/kBT

) ∫ ∞

0

Av(τ)dτ, (17)

with

Av(τ) = 〈v(τ)v(0)〉 /
〈
v2(0)

〉
. (18)

The averaging refers to a “low-energetic” fraction of the electrons due to the limited length of the computer runs
and the rather small number of particles used (N = 10). The resistivity is ρ = 1

σ .
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Fig. 5 The integral over the correlation function in eq.
(17) as a function of the temperature. This expres-
sion corresponds to the static conductivity σ in units
ne2

(〈
v2

〉
/kBT

)
.

At the start of a run the electrons were located in the minima of the ion potential landscape (Fig. 1). As time pro-
ceeds the electron temperature rises during the run and finally reaches values where the losses are compensated
by the energy flow from the ions. However in the numerical simulations the final state corresponds still to rather
cold electrons (having about 10 percent of the ion temperature). In order to get complete equilibrium, very long
runs are needed.
Let us look at the power spectrum and the time-dependence of the velocity-velocity correlations. One sees from
Figs. 2-4 that the time correlation is rather complex and significantly depends on the ion temperature. The char-
acter of the power spectrum and the time correlation function Av(τ) change with increasing temperature (see the
spectra in Fig. 4). At the lowest temperatures (upper parts of Fig. 4) we observe a fast near-exponential decay
including a contribution (around f = 1) caused by the oscillations around the minima. These oscillations yield a
peak in the power spectrum near f = 0.9.
With increasing temperature (lower parts of Fig. 4) a non-exponential decay appears. At T = 0.075 we are near
to the “critical point” where we expect that solitons should play the dominant role. We see small peaks at low
frequencies due to the solectronic states. These peaks are located at frequencies which are proportional to 1/N .
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This is remarkable and leads us to foresee that the corresponding conductivity peaks will move with increasing
N to lower frequencies. At still higher temperatures we see again exponential decay, which corresponds to the
destructions of solectrons, i.e., the electron-soliton bound states dissappear.
So far the results from numerical simulations are still preliminary, since the electrons are not quite fully thermal-
ized, they are too cold. Still we need cold electrons to fulfil the condition that the velocity of the solitons vsol

has the same order of magnitude as the thermal electron velocity. In order to overcome this difficulty we have
to increase the electron temperature and the soliton velocity at the same time. The latter can be done only by
increasing the stiffness of the lattice. In order to estimate the influence of soliton excitations on the conductivity
we calculated the integral over the velocity correlations at different temperatures. As shown in Fig. 5, the con-
ductivity shows indeed a peak at the transition temperature, where most (thermally excited) solitons appear in the
system. Thus the numerical simulations confirm our expectations: solitons are able to trap electrons, which leads
to an enhancement of the conductivity in a narrow temperature region around the soliton transition temperature.
In conclusion of this paragraph let us mention that the numerical simulations carried out for our 1D electron-ion
model have met several serious numerical difficulties. These problems are connected with the existence of quite
significant differences in the characteristic relaxation times of the system. Much longer runs will be required to
reach better quantitative results.

3 Quantum transport theory including nonlinear lattice excitations

3.1 General correlation function approach

The model discussed in the previous Section is oversimplified, yet it demonstrates that the expected increase of
conductivity by interactions with nonlinear excitations, may exist. In order to switch to more realistic systems we
we will study now the electric transport of N electrons interacting with a classical ion system obeying nonlinear
dynamics in a rather general framework. We start from the (wind-tree) Lorentz model [14] which assumes that
the electrons move in a field of fixed scatterers. However at variance with the standard Lorentz model we admit
here that the ions move and experience anharmonic oscillations. The ions are at time t located at the positions Ri

(i = 1, 2, ...N ). There the energy of interaction between an electron at position r and the ion number i is given
by

Vi(r − Ri). (19)

As in earlier discussion, in general, the interactions consists of a Coulomb tail and a short-range pseudopotential
modelling the interaction of the electron with the screened ion core (11). For the discussion that follows we do
not need a concrete form of the pseudopotential. We have to assume only that its Fourier transform exists

Vq =
∫

dr′Vi(r′) exp(iqr′). (20)

Further we assume in the spirit of the Lorentz model, that the electron-electron interaction energy may be ne-
glected. Let us denote the Hamiltonian of the electrons by H , which reads in second quantization

H =
∑

p

p2

2m
a+

p ap +
N∑

i=1

∑
p,q

Vi(q)a+
p+qap, (21)

with

Vi(q) =
∫

dr exp(iqr)V [r − Ri(t)] = exp[iqRi(t)]Vq , (22)

where Vq is the above defined Fourier transform. In the special case of (11) albeit in 3D, we may approximate
the potential by a horizontal part at small r and a Coulombic part at larger r. This way we get the following
approximation of the Fourier transform

Vq ≈ −4π
eei

q2

[
cos(qh) − 1

qh
sin(qh)

]
. (23)
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We assume that the ions are randomly distributed and obey Newton’s classical dynamics. Then the dynamic
structure factor of the system is

S(q, t) =
∑

i

∑
j

exp {iq [Ri(t) − Rj(0)]} , (24)

and its Fourier transform is

S(q, ω) =
∫

dt exp(iωt)S(q, t). (25)

Let us now, still in a first approach, assume that the electrons are also randomly distributed and follow a classical
or quasiclassical dynamics. Then the linear transport theory [14] given in the previous Section may be applied.
In the quantum-mechanical version we have [24]

σ =
e2

kBT
〈v; v〉0 , (26)

where the average is defined by (η → +0)

〈A; B〉ω =
∫ 0

−∞
dτ exp[(η + iω)τ ]

1
β

∫ β

0

Tr [ρ0B(τ − i�λ)A] . (27)

In the next Section we will discuss some consequences of (26) in more detail.
There exists a different approach originally due to Zubarev [20] which is useful in our context. If the force acting
on electrons is defined as

F =
i

�
[H, P ] =

∑
p,q

∑
i

exp [iqRi(t)] qVqa
+
p+qap. (28)

Then the force-force correlation function can be expressed as

〈F ; F 〉ω =
∫ 0

−∞
dτ exp[(η + iω)τ ]

1
β

∫ β

0

dλ 〈F (τ − i�λ)F 〉 . (29)

Hence the resistivity of the electron system is [20, 24]

ρ =
1
σ

=
Ω

3N2e2
〈F (η); F 〉 . (30)

A higher order approximation reads [24]

ρ =
1
σ

=
Ω

3N2e2

〈F (η); F 〉
1 + 1

3Nm 〈P (η)F 〉 . (31)

The second term in the denominator (relaxation function) is a correction which takes into account the influence of
the Debye relaxation effect on the conductivity [24,40,41]. We note that such relaxation effect is relevant only in
the region of strongly nonideal plasmas. However, this term includes bound state effects. Since dynamics bound
states play an important role in nonlinear conducting systems [1, 2] we have to check carefully the effect of this
term. We note that positive relaxation contributions decrease the resistivity.

3.2 Frequency effects in the relaxation time approach

For the elementary Drude-Lorentz theory summarized in Section 2.1 we obtained (5) thus leading to the Drude
formula for the static conductivity (6). In the same approximation the force-force correlation function reduces to

〈F (τ)F (0)〉 = m2ν2
〈
v2

〉
exp(−ντ). (32)
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This leads to the (static) resistivity

ρ =
mν

ne2
, (33)

in accordance with the Drude formula (6).
The frequency-dependent conductivity for the Drude theory reads

σ(ω) =
ne2ν

m(ν2 + ω2)
. (34)

This corresponds to the fluctuation-dissipation relation

σ(ω) � Sv(ω). (35)

Let us consider now the frequency dependendence going beyond the Drude theory. In the general case the
frequency-dependent conductivity is the real part of the complex conductivity σ̃ which is connected with the
complex dielectic function ε̃ by

ε̃ = 1 +
i

ω
σ̃; σ(ω) = Reσ̃. (36)

We define in the general case the collision frequency ν(ω), which is then also a function depending on ω by

σ(ω) =
ne2ν(ω)

m[ν(ω)2 + ω2]
. (37)

So far the discussion is completely general, the quantity ν(ω) plays the role of an effective collision frequency
which models the collisions affecting the electrons. The function ν(ω) plays a central role in the relaxation time
approach.
Within a perturbation-theoretical approach we get in the static case (ω = 0) [24, 42]

ν(0) =
π2nee

2

me

∑
p

∑
q

q2V 2
q Si(q)δ [Ep − E(p + q)] fe(p)[1 − fe(p + q)]. (38)

Here fe(p) is the electron Fermi distribution. Furthermore Si(q) is the static structure factor of the ion subsystem

Si(q) =
∫

dωS(q, ω). (39)

By carrying out the integration over the momenta we get

ν(0) =
π2nee

2

me

∑
q

q2V 2
q Si(q)fe(q/2). (40)

In a higher approximation we may take into account screening and replace the transform of the potential by
an expression which is screened through the dielectric function taken in the static random phase approximation
(RPA) [24]

V 2
q → V 2

q

|ε(q, 0)|2 . (41)

In most applications, dynamical effects contained in the frequency-dependence of S(q, ω) and ε(q, ω) are small
and, consequently, give only small corrections. Phonon effects were discussed e.g. by Mahan [22]. Several
other dynamical effects including optical response were studied by Reinholz [42]. Building upon these studies
we focus on dynamical effects. The reason for this is our assumption that anharmonic dynamic effects may
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play a significant role on electric transport. In order to study this we start again from Eq. (16), make the Born
approximation and neglect the dynamic structure effects. This gives [23, 42]

ν(ω) =
πnee

2

me

∑
q

q2
V 2

q

|εRPA(q, ω)|2 fe(p+q) [1 − fe(p)] S(q, 0)δ
[
ω − 1

�
(Ep+q − Ep)

]
exp(β�ω) − 1

β�ω
, (42)

that for ω → 0 gives (40). Taking into account now the dynamic effects in the structure factor we find for the
frequency-dependent collision frequency

ν(ω) =
πnee

2

me

∑
q

q2
V 2

q

|εRPA(q, ω)|2 fe(p + q) [1 − fe(p)] S
[
q, ω +

1
�
(Ep+q − Ep)

]
exp [β(Ep+q − Ep)]

β(Ep+q − Ep)
.

(43)

This is a rather general formula which takes into account (in the Born approximation) the quantum effects
(Heisenberg and Pauli effects) as well as all dynamical effects connected with the motion of the ions through the
classical dynamic structure factor of the ionic subsystem. The frequency-dependent conductivity of the plasma
follows from eq. (37).

3.3 The dynamic structure factor of nonlinear lattices and an estimate of its influence on conduc-
tivity

The function S(q, ω) for classical systems of particles is known from theoretical estimates [43, 44] and from
experimental studies based on investigations of neutron scattering. However at present no experimental data
seem to be available which are precise enough, to be used for conductivity calculations including the full q, ω-
spectrum.
For 1D systems, features of the dynamic structure factor are available for several models of intermolecular forces
[45]. In order to give an example illustrating the general structure we have computed the dynamic structure
factor for our Toda lattice with N = 10 units imposing periodic boundary conditions [46]. The result is shown
in Fig. 6 (see also [8] for a detailed discussion of this problem). The effective temperature was chosen such
that it corresponds to the transition region from the ordered (solid-like) lattice to (gas-like) disorder. We see a
pronounced soliton peak at ωsol near to the frequency corresponding to twice the velocity of the first (longest)
phonon and further peaks at several (lower) combination frequencies. Note, however, that the knowledge about
dynamic structure factors for two- and three-dimensional conductors is quite limited [44, 47, 48].

0.001

0.01

0.1

0.01 0.1 1 ω

soliton
S

Fig. 6 Dynamic structure factor S(k, ω) of an anharmonic lat-
tice with exponential repulsion, calculated for N = 10 with pe-
riodic boundary conditions as a function of ω. The temperature
range embraces the transition region from periodic (solid-like)
order to (gas-like) disorder. We see a pronounced soliton peak
denoted by (soliton) near to the frequency ωsol corresponding
to twice the velocity of the first (longest) phonon and further
several peaks corresponding to (lower) combination frequen-
cies. For a detailed discussion of the method see Ref. [7,8,46].

The functional form of the dynamic structure factor is so difficult that a quantitative integration of the conductivity
formula eq. (43) including the full ω−dependence is hopeless with the low accuracy of the available structure
factors. We may however estimate at least the direction of the changes due to solitonic effects. As to be seen
from the existing investigations (see e.g. [7,8,45,46,49]), as well as from our Fig. 6, the solitonic contribution to
the dynamical structure factor is in some approximation expressed by a δ-like peak at higher frequencies.

S(q, ω) = (1 − Θ((T ))S(q)δ(ω) + Θ(T )S(q)δ(ω − ωsol) (44)
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As to be seen from eq. (43), the corresponding contributions to the collision frequency yields - beside the normal
term - a contribution to the integral at relatively high energy transfer in scattering events. Scattering events which
excite or destroy a relative energy-rich soliton are rather seldom, we may omit in a first approximation their
contribution to the integral in (43). This way, the solitonic effects may be estimated by a temperature-dependent
change of the static structure factor similar as found by Mertens and Büttner [49]. This leads to the following
estimate of the quantum-mechanical static collision frequency and the corresponding conductivity

ν(0) = ν0(0)(1 − Θ(T )); σ(0) =
σ0(0)

1 − Θ(T )
(45)

where Θ(T ) is the fraction of soliton contributions to the static structure factor in dependence on the temperature.
This dependence was discussed in [7] and [46] and several values of this function were estimated by Mertens and
Büttner [49]. In [7] and [46] was pointed out that the solitonic contribution behaves approximately as the derivat-
ice of the specific heat. The available information on the temperature dependence of the solitonic contributions
was used in the estimates presented in Fig. 7a. It should be underlined that this procedure to estimate the con-
ductivity after eq. (43) may give only a rough approximation. It is encouraging however to see the qualitative
agreement between the classical calculation of the conductivity given in Fig. 3 and the the quantum-mecahnical
estimate presented in Fig. 7b.

a) b)

Fig. 7 Left panel: The fraction of solitonic contributions to the static structure factor S(k) in dependence of temperature
for a 1D- lattice with exponential repulsion based on the estimates of the relative soliton contributions given in [7, 46, 49].
Right panel: The corresponding estimate of the quantum-mechanical conductivity after eq. (43) in relation to the case without
taking into account the dynamic effects.

4 Discussion

We have shown by using time correlations and dynamical structure factors, that the role of nonlinear anharmonic
excitations may be significant in conducting lattices. First we have discussed the general dependence of the trans-
port coefficient on the power spectrum of equilibrium correlations and, in particular, on the dynamic structure
factor. In principle this connection is known, but so far it has been stated mostly that dynamic effects on conduc-
tivity are very small. In spite of the fact that the structure of the ion lattice has a big effect on transport through
the static structure factor S(q), the effect of the frequency-dependence gives in general only a small correction.
In this respect a remarkable exclusion is the low-temperature superconductivity (BCS) which depends essentially
on dynamical effects based on (linear) phonon excitations.
Solitons are hard excitations of the lattice which have a long lasting time correlation and influence a characteris-
tic part of the spectrum. They are local deformations propagating with a supersonic soliton velocity vsol which
strongly increases with the increase in the stiffness of the lattice. As the soliton velocity is much smaller than the
thermal velocity of the electrons, the interaction between soliton-like waves and electrons is weak, since an effec-
tive interplay requires that the concentration of electron in the region of the soliton velocity is sufficiently high.
In fact electrons captured certain time by solitonic excitations are only weakly affected by scattering processes.
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We have used this property for estimating the contribution of solitonic excitations to the collision frequency in
Born approximation.
An example of how the interplay between electrons and waves works, is the Landau damping; here wave velocity
and thermal velocity should be of same order. In our case we need that the thermal velocity of the electrons be
such that vth � vsol. This condition is difficult to fulfill and demands strong anharmonic effects.
We have demonstrated here for a simple 1D model with exponential repulsion that an interplay between electron
motion and soliton excitations exists which may lead to special electron capturing effects and relatively long cor-
relations. Further we have shown (see in particular Figs. 5 and 7) the existence of a temperature region (near to
a characteristic lattice transition temperature Ttr which is around 102K for typical nonlinear 1D lattices) where
relatively many solitons are excited and in which certain increase of the conductivity due to dynamic effects of at
least 10-20 percent may be expected.
A study of more realistic 2D and 3D models including quantum effects is possible on the basis of the formulae
given in Section 3. However this requires precise data about the dynamic structure factor including the soliton
peaks, which are not yet available with the needed accuracy. This remains as a task for future work.
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