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Assuming the quantum mechanical “tight binding” of an electron to a nonlinear lattice with
Morse potential interactions we show how electric conduction can be mediated by solitons. For
relatively high values of an applied electric field the current follows Ohm’s law. As the field
strength is lowered the current takes a finite, constant, field-independent value.
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In a previous letter [Velarde et al., 2005] a new
form of electric conduction mediated by solitons was
shown to be possible in an anharmonic Toda lat-
tice. In the presence of an external electric field this
current can be much higher than the Drude-Ohm
linear current and, as the field is lowered, the cur-
rent achieves a finite, constant, field-independent
value. The model studied therein is strictly classical.
The electron-ion (lattice) interaction is Coulombic,
albeit with an appropriate pseudopotential. The
lattice interactions are of Toda type [Toda, 1989],
hence allowing for phonon — and soliton — longitu-
dinal vibrations with compressions governed by the
repulsive part of the potential [Chetverikov et al.,
2005a, 2005b]. These compressions were shown to
be responsible for electron trapping (or electrostatic
“localization”) by the lattice ions, and the forma-
tion of dynamic bound states (solectrons) of the
electron with the soliton (the cnoidal wave moving
through the lattice). The phenomenon discovered
is similar to surfing on a bore as it travels along a
river. The surfer ought at an appropriate time to

be ready to go on top of the bore and, on the other
hand, the bore (call it “topological” soliton) travels
rapidly upstream, at a constant speed relative to
the downstream flow.

In the present letter we pursue the same idea
in view of applying the results to a more realistic
situation. We improve upon the previous model by
replacing the classical electrostatic trapping with
the quantum mechanical “tight binding” approx-
imation, currently in use in solid state physics
[Ashcroft & Mermin, 1976; Heeger et al., 1988;
Yu, 1988]. Furthermore, we replace the Toda inter-
action, which has unphysical aspects (particularly
its attraction), with the Morse interaction, akin
to the Lennard–Jones interaction [Choquard, 1967;
Chetverikov et al., 2005c]. Figure 1 compares these
two interaction potentials, as well as the Toda
potential. Figure 2 shows how the Morse interac-
tion approaches the Toda interaction felt by an ion
from its nearest neighbors, when repulsion domi-
nates the dynamics, a feature we shall make use
of later on (the harmonic case is also depicted for
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Fig. 1. Lennard–Jones potential (U = UL−J = U0[(1/r12)
− (1/r6) − 1]), Morse potential (U = UM = (a/2b)

[(e−bσ(r−1) −1)2 −1]), and Toda potential (U = UT = (a/b)

[e−bσ(r−1) − 1 + bσ(r − 1)]). In order to have all the three
minima of the potential functions at the same location (1,−1)
we have suitably adjusted the free parameters with the basic
frequency the same; r = R/σ. It clearly appears that Toda’s
interaction captures well the repulsive core whereas its attrac-
tive part becomes unphysical for large values of the displace-
ment. Due to the use of exponentials both the Toda and
the Morse potentials are easily implemented with present-
day electronics.

reference). Finally, in contrast to earlier work
[Velarde et al., 2005], we do not make use here of
Rayleigh’s active (negative) friction to pump energy
out of a thermal bath. Noise is introduced merely to
test the robustness of the dynamics, and hence the

domain of validity of our results. We do not consider
here the role of temperature on the soliton-mediated
conduction process.

In view of the above, we consider a one-
dimensional (1D) anharmonic lattice with dynam-
ics dictated by the following Hamiltonian describing
nearest-neighbor Morse interactions:

Hlattice

=
∑

n

{
1
2

p2
n

M
+ D(1 − exp[−b(qn − qn−1)])2

}
.

(1)

Here M denotes the mass of a lattice particle,
(qn, pn) describe their respective displacements
from equilibrium positions and momenta, and b
characterizes the stiffness of the spring constant in
the Morse potential.

Considering the lattice particles to be positive
ions (in a broad sense), we add electrons to the
system, and take for their dynamics the following
“tight binding” Hamiltonian [Ashcroft & Mermin,
1976]:

Hel = −
∑
n

Vnn−1(c∗ncn−1 + cnc∗n−1), (2)

where n denotes here the site where an electron
is “placed” and |cn|2 gives the probability of find-
ing the charge residing at that site. The quantity
Vnn−1 defines the transfer matrix element responsi-
ble for the transport of the electron along the chain
(considering only nearest neighbors). This matrix is
the key ingredient, allowing for the coupling of the
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Fig. 2. Morse, Toda and harmonic (lattice) inter-ionic potentials felt, from its nearest neighbors, by a ion placed at the origin.
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electron to the lattice displacements, and hence the
lattice vibrations, phonons or solitons. A reasonable
choice for Vnn−1 is

Vnn−1 = V0 exp[−α(qn − qn−1)], (3)

where the parameter α accounts for the strength
of the coupling. Thus, Eq. (3) describes the local
impact of the actual charge “trapping” on the lon-
gitudinal motions (and hence distortions) of the
lattice.

For the sake of universality, it is best to rescale
quantities and consider a dimensionless problem.
We take as unit of time Ω−1

Morse, where ΩMorse =
(2Db2/M)1/2 denotes the frequency of harmonic
oscillations (linear, first-order approximation to the
Morse exponential). As unit of energy we take
(2D), for displacements we take b−1 as the unit, for
momenta we take (2MD)−1/2, hence for the inter-
action force we have αV0/2bD, and α is measured
in (b−1) units. Then, expecting no confusion in the
reader, denoting the new dimensionless quantities
with the same symbols as the old ones, the dynam-
ics of the Hamiltonian system (1)–(3) is given by the
following equations for the electron, cn, and lattice
vibrations, qn,

i
dcn

dt
= −τ(exp[−α(qn+1 − qn)]cn+1

+ exp[−α(qn − qn−1)]cn−1) (4a)

d2qn

dt2
= [1 − exp{−(qn+1 − qn)}] exp[−(qn+1 − qn)]

− [1 − exp{−(qn − qn−1)}]
× exp[−(qn − qn−1)]
−αV ((c∗n+1cn + cn+1c

∗
n)

× exp[−α(qn+1 − qn)]
− (c∗ncn−1 + cnc∗n−1) exp[−α(qn − qn−1)]),

(4b)

where τ = V/ΩMorse�. Needless to say, in general
the two time scales in (4a) and (4b) are not the
same (which in frequency terms refer to ultraviolet/
electronic versus infrared/acoustic), for most cases
with electrons and phonons. For purposes of illus-
tration we shall use the following parameter val-
ues: b = 4.45 Å−1, α = 1.75 b, D = V0 = 0.1 eV,
ΩMorse = 3.04 · 1012 s−1, Ωelectron = V0/� = 0.608 ·
1014 s−1, and τ = 20.00. These numerical values are
relevant, e.g. for electron transport along hydro-
gen bonded polypeptide chains such as α-helices
[Davydov, 1973, 1991; Davydov & Kislukha, 1977;
Christiansen & Scott, 1983; Scott, 1992].

Now, we take advantage of the similarity
between the Morse and the Toda interactions in the
repulsive range (see Fig. 2) where phonons as well as
solitons can be excited in the lattice [Toda & Saitoh,
1983; Ebeling et al., 2000; Chetverikov et al.,
2005a]. Accordingly, for the lattice vibrations we
make the ansatz [Toda, 1989]

exp[−(qn − qn−1)] = 1 + β cosh−2(κn − βt), (5)

where β = sinhκ, and κ is a parameter with dimen-
sions of inverse length (related to the width of the
soliton). The ansatz (5) is a valid approximation
leading to localized solectronic pulses traveling with
Toda solitons [Hennig, 2000]. Using (5), the cou-
pling between Eqs. (4a) and (4b) yields

cn(t) = β cosh−1[κn − βt] exp[−i(ωt − δn + σ)],
(6)

where ω ≡ −2 cos δ cosh β and δ ∈ [−π, π]. Note
that

∑
n |cn|2 = 1 (conservation of norm, i.e. prob-

ability density) for κ = 0.465, which is therefore
what we use.

The evolution problem (4) has been solved
for 99 particles on a lattice with periodic bound-
ary conditions using a fourth-order Runge–Kutta
algorithm. The norm conservation as well as the
conservation of the total energy was monitored
throughout the integration procedure to ensure con-
sistency. Figure 3 depicts the results found for soli-
tons and Fig. 4 for electrons. The soliton binding
energy here is 0.0281 eV. Both the electron and
lattice excitation (soliton) move along the lattice
retaining their respective localized structure save
the emission of negligible radiation. The soliton is
supersonic with velocity vsol = 1.036vsound, where
vsound is the (linear) sound velocity in the Morse
lattice.

To test the robustness of the dynamics and
hence the stability of the soliton motion, we con-
sidered Eq. (4b) in the presence of noise, leading to
the corresponding Langevin equation

d2qn

dt2
= [1 − exp{−(qn+1 − qn)}] exp[−(qn+1 − qn)]

− [1 − exp{−(qn − qn−1)}]
× exp[−(qn − qn−1)]
−αV ((c∗n+1cn + cn+1c

∗
n)

× exp[−α(qn+1 − qn)]
− (c∗ncn−1 + cnc∗n−1)
× exp[−α(qn − qn−1)]) − γpn +

√
2Dbξ,

(7)
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Fig. 3. Morse lattice. Spatiotemporal evolution of the lattice deformations {exp[−(qn(t) − qn−1(t))] − 1} illustrating the
robustness of (pulse) soliton propagation apart from small-amplitude radiation.
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Fig. 4. Morse lattice. Spatiotemporal soliton-driven evolution of the electronic occupation probability distribution |cn(t)|2
illustrating the maintenance of localization. Electric conduction is a consequence of the companion soliton travel in Fig. 3.

where ξ(t) denotes Gaussian white noise with zero
mean, and delta function-correlated. The damping
constant obeys Einstein’s relation (the fluctuation-
dissipation theorem) Db = κBTγ/M , where γ, κB

and T denote the (passive) friction with the bath,
Boltzmann’s constant and absolute temperature,
respectively. For illustration, we take γ ≤ 0.02 cor-
responding to “life times” of at least 10 ps char-
acteristic of charge transport in biomolecules. No
significant deviations from the deterministic trajec-
tories have been observed, even at temperatures of
the order T = 300K.

Finally, we have considered the response of
the system to an external electric field, E. Then,

Eq. (4a) becomes

i
dcn

dt
= −τ(exp[−α(qn+1 − qn)]cn+1

+ exp[−α(qn − qn−1)]cn−1) − nẼcn, (8)

where Ẽ = e/(�ΩMorse)E. The results found do
not differ qualitatively from the predictions made
using the purely classical model [Velarde et al.,
2005]. There is a critical field strength, Ec, below
which the (supersonic) current, hence the solec-
tron current, is finite, constant and independent
of Ẽ. For the above given parameter values it is
Ec ≈ 0.042 · 105 V/cm. Upon further increasing
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the field strength, the current follows Ohm’s law
until E reaches a certain value, here Ediss ≈ 0.484 ·
105 V/cm, past which dissociation occurs and the
electron breaks loose from the lattice vibrations.

In conclusion, we have shown that soliton-
mediated electric conduction is possible in a non-
linear lattice when (i) the stiffness constant of
the “ion-ion” (Morse) lattice interactions allows
strong enough compression, and (ii) the electron-
lattice “ion” interaction is treated in the quan-
tum mechanical “tight binding” approximation.
The latter leads to the electron “localization” on
the lattice while the soliton provides the car-
rier. A salient feature of soliton-mediated trans-
port is that, over a wide range of electric field
values, the current assumes a finite, constant,
field-independent value. Upon increasing the field
strength further this gives way to a linear response,
i.e. to a current following Ohm’s law. Further details
and alternative approach can be found elsewhere
[Hennig et al., 2006].
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