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We provide here a thorough analysis of the interplay between anharmonic lattice dynamics �with exponen-
tial repulsion between units� and electric conduction in a driven-dissipative electrically charged one-
dimensional system. First, we delineate the ranges of parameter values where, respectively, subsonic and
supersonic wave solitons are possible along the lattice. Then, we study the consequences of the soliton-
mediated coupling of light negative to heavy positive charges �lattice units�. In the presence of an external
electric field we obtain the current-field characteristics for a wide range of values of all parameters defining the
system. Finally, we discuss the conditions for an Ohmic–non-Ohmic transition of the electric current as the
electric field strength is varied.
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I. INTRODUCTION

The experimental evidence that a polypeptide chain can
form an effectively one-dimensional �1D� molecular wire ap-
pears to be highly promising for electronics at the nanoscale.
For a successful approach we need a theoretical understand-
ing of all possible electron transfer �ET� mechanisms. For
instance, it has been shown that the H bridges contained in
the protein structure play a crucial role for mediating ET. In
fact the dynamics of the bonds of proteins may serve as the
driving force of ET �1–7�.

Some attempts to theoretically describe the charge trans-
port in biomolecules invoked polaron and soliton models uti-
lizing the idea that the interaction between the charge carrier
and vibrational degrees of freedom of the molecular system
couple together forming local compounds �8–15�. Assuming
large width of the corresponding localized pulse compared to
the spacing of the underlying lattice system the continuum
approximation was used by Davydov and co-workers �8� to
show that a mobile self-trapped state can travel as a solitary
wave �soliton� along the molecular structure. In particular,
charge transport in proteins was considered �9�. The soliton’s
stability is the result of the attained balance between two
competing mechanisms, namely the interaction between an
excitonic degree of freedom and the lattice vibrations of a
polypeptide chain and, on the other hand, the lattice disper-
sion. The lattice vibrations are represented by acoustic pho-
non modes of not too large amplitude allowing for their de-
scription in the harmonic approximation. However, if larger
displacements are to play a significant role, we ought to in-
clude higher-order terms in the amplitude of the lattice vi-
brations. Indeed, to obtain higher electron transport veloci-
ties necessitates so large lattice deformations that the

validility of the harmonic approximations does not hold any-
more. Thus anharmonicity has to be included in the descrip-
tion of the lattice vibrations either by adding higher-order
terms to the harmonic potential or considering from the be-
ginning potentials with strong repulsive parts, represented by
e.g. Lennard-Jones, Toda or Morse potentials. In the latter
case, the lattice dynamics can itself support solitons which
can accommodate charge with fast transfer. Noteworthy, is
the much interesting recent work done on soliton-mediated
electric conduction in conducting polymers �8–17�.

Recently, the coupling between a quasiclassical electron
dynamics and supersonic solitonic excitations in lattices with
exponential repulsion has been studied. It has been shown
that under special conditions the electrons might be trapped
by the solitonic excitations due to the anharmonic motions of
positive ions and consequent lattice deformations �18–20�.
Further, a nonlinear current-voltage characteristics was de-
rived and conditions for a transition from Ohm’s linear con-
duction to a non-Ohmic form of conduction was predicted
for a few particular values of the parameters of the system. It
seems worth exploring in depth the role of anharmonic vi-
brations for a model problem mimicking a 1D electric lattice
wire. The in-depth understanding of a 1D ET lattice model
could give clues for the synthetic production of, e.g., a
polypeptide chain built up from hydrogen-bridged peptides
which may form the constituents, i.e., molecular wires of a
nanoscale electronic device.

In view of the above, we provide here a thorough analysis
of the dynamical system fragmentarily studied in Refs.
�18–20�. A detailed discussion is given of the panoply of
possibilities derived from the anharmonic character of the
lattice vibrations, the variability of the stiffness of the lattice
“springs,” and the variable level in the input-output energy
balance in the system. The present work is also a follow-up
of earlier research on dynamic clustering in driven-
dissipative anharmonic lattices �21–24� building upon earlier
results on dissipative solitons �25–27�.

In Sec. II we present the model considered with the cor-
responding evolution equations. Section III deals with lattice
vibrations and soliton waves allowed by the anharmonic dy-
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namics of the model system. We show that both subsonic and
supersonic wave motions are possible. In Sec. IV we study
the consequences of adding an external electric field, thus
illustrating the possibilities of Ohmic linear conduction and
non-Ohmic electric conduction for both subsonic and super-
sonic solitons. In the final section we highlight the results
found.

II. DYNAMICAL SYSTEM

A. Geometry, forces, and evolution equations

Let us consider a 1D lattice of length L with periodic
boundary conditions �Fig. 1�A��. This system admits two in-
terpretations: �i� motion of particles on a ring lattice, and �ii�
motion of particles on an infinite lattice with the basic cell of
length L, which is periodically repeated. Further, we shall
refer to the system simply as the ring. The ring consists of
charged particles, e.g., positive ions or “dressed” ion cores.
Free electrons are also added to the lattice and the action of
an external, constant, homogeneous electric field E is also
considered. Along the ring we denote the positions of the
ions by xk, and the positions of the electrons by yj. The ions

�subscript i� are assumed to be much heavier than the elec-
trons �subscript e�,

me

mi
�10−3. To satisfy electroneutrality the

number of ions and electrons on the ring is equal, Ni=Ne
�N.

In equilibrium the ions initially are placed in a periodic
distribution, they can oscillate around equidistant positions
�spacing given by ��, but neither overlaps nor “crossings”
are possible as we assume strongly repulsive forces for short
distances. Recall that the repulsion between two spherically
symmetric atoms arises when they are sufficiently close to-
gether that their electron shells �electron clouds� overlap.
This is because the clouds no longer completely shield elec-
trostatically the two nuclei from each other. A detailed
quantum-mechanical calculation of such interaction is com-
plicated and its consideration is beyond the scope of the
present work. It suffices to say that, qualitatively, it is known
that the charge density associated with the electrons falls off
exponentially at distances comparable with the atomic ra-
dius.

The force between a pair of neighboring ions is taking
from a potential U that depends on the interion distance r
�Fig. 1�B��. Then the complete potential of the system de-
scribing the interionic interactions is

Utotal = �
k=1

N

U�rk�, rk = xk+1 − xk. �1�

Particular cases are the Toda and the Morse potentials with
exponentially increasing repulsive forces at small distances
or the Lennard-Jones �LJ� and modified Buckingham poten-
tials. The latter combines hard-sphere and exponential repul-
sion with attractive power law �28–32�. In their repulsive
part �r−��0� these potentials exhibit similar fast growth
�Fig. 1�B��. A difference appears only in the limit of vanish-
ing interion distance where the LJ and modified Buckingham
potentials go to infinity preventing ions from overlapping,
while the Toda and Morse potentials grow exponentially, re-
main bounded, and hence special attention should be given
in numerical simulations to avoid particle overlapping or
crossing when using such potentials. In the attractive part
�r−��0� the Toda potential is unphysical and, indeed, dif-
fers from both the Morse and LJ potentials. It is the attractive
part of the Morse and LJ potentials that allows the formation
of clusters of particles �condensationlike transition albeit
with no true crystal ordering� in rings with low particle den-
sities �23�. We shall not consider this case here, but rather
focus attention to the region of higher densities �in equilib-
rium the ions are either located in the potential minimum or
to the left of the minimum�, where both the Morse and the LJ
potentials can be well approximated by the repulsive part of
the Toda potential �24�. The �infinite� lattice with Toda an-
harmonic “springs” is known to be able to allow different
kinds of nonlinear waves including solitons �33�. We shall
make use here of this possibility even though we shall be
considering dissipation playing a significant role in the evo-
lution of the dynamical system.

The Toda potential is

FIG. 1. Lattice dynamical system and interactions. Qualitative
figures using arbitrary units: �A� Two types of charged particles of
opposite sign and largely different masses, say “heavy” ions �+� and
“light” electrons �−�, are located on a 1D lattice, chain, with peri-
odic boundary conditions. The particles interact among themselves
and may be driven by an external, constant, homogeneous electric
field E. An ordered motion of the particles yields an electric current.
�B� Nearest-neighbor positive ions interact through an anharmonic
potential U�r� that depends on the interion distance r. The potential
is strongly repulsive for ions placed below a critical distance �mean
interparticle lattice distance ��. The Toda, Morse, and Lennard-
Jones potentials are shown for comparison. �C� The ion-electron
interaction is described by an attractive Coulomb-like potential with
cutoff W���, hence electrons are allowed to transit from one to the
other side of the ions.
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UToda =
a

b
�e−b�r−�� + b�r − �� − 1� , �2�

where b defines the stiffness of the “springs” between ions in
the lattice. We shall assume that the mean interionic distance
L /N corresponds to the minimum position or less for a com-
pressed lattice. Under this condition the Toda potential gives
always a good approximation of the realistic potential �24�.
For this reason we shall concentrate here on Toda interac-
tions.

For the electron-ion interaction �Fig. 1�C�� we shall take
an attractive Coulomb-like potential with cutoff �19,34�:

Wi−e = q2�
j=1

N

�
k=1

N

W�� jk�, � jk = yj − xk, �3�

where q denotes charge �q= +e for ions and q=−e for elec-
trons�. To eliminate unnecessary complications, the electrons
are “free” to move in 3D space surrounding the 1D lattice
thus mathematically simplifying the picture. We shall also
require that this potential is bounded below at �=0, where it
has a minimum. Avoiding the singularity at vanishing dis-
tance allows electrons to transit from one to the other side of
an ion �generally free electrons are not able to penetrate
“dressed” ion cores�. There exist several forms of such a
�pseudo�potential, for example:

W = �− const, if 	�	 � h

−
1

	�	
, if 	�	 � h ,

�4�

where h is a scale parameter in the dynamics. Pseudopoten-
tials of this type are commonly used in plasma physics and in
solid state theory �34–36�. Here we shall take �Fig. 1�C��

WC = −
1


�2 + h2
. �5�

Note, however, that in the results to be discussed below the
specific form of the pseudopotential plays no significant role,
at least to a qualitative level.

For simplicity, we shall neglect the interaction between
electrons. Such an approximation is valid in dense systems,
where the electrons are subject to quantum effects �Heisen-
berg’s uncertainty and Pauli’s exclusion principle� that
weaken the interelectron forces and justify the neglect of
repulsion in a first approximation.

Finally, the Hamiltonian of the composite electron-lattice
dynamical system is

H = �
k=1

N
mi

2
vk

2 + �
j=1

N �me

2
uj

2 + U�rk��
+ �

j,k=1

N

�q2W�� jk� + qE�yj − xk�� , �6�

where v and u denote the ion and electron velocities, respec-
tively. We have also included the contribution from the ex-
ternal electric field.

Following, for simplicity, the classical approach taken by
Drude �35� we assume that the motion of the electrons expe-
riences friction with the constant �e, while for the ions we
shall consider a velocity-dependent friction law,

f�v� = �iv��i − v2� . �7�

This function �7� was first introduced by Lord Rayleigh to
maintain harmonic motions in the presence of dissipation
�37,38�. An alternative could be amplitude-square dependent
friction law later on introduced by Van der Pol �39�. The sign
of the bracketed quantity in Eq. �7� permits that f�v� be mere
friction or active friction according to the value taken by the
parameter �i. We shall make use here of the latter possibility
when considering the system immersed in a stochastic ther-
mal bath. The coefficient �i is also supposed to be control-
lable and taken positive like �e. By means of f�v� added to
the dynamics �6� the nonlinear system pumps energy from
the noise thus self-organizing and maintaining itself in an
oscillatory mode and corresponding soliton wave along the
lattice. Equation �7� or the Van der Pol alternative are not the
only possible energy pumping mechanisms. Other active-
friction-like dynamics are described in Ref. �40�. At the me-
soscopic level, Eq. �7� with the Gaussian white noise bears
similarity with a Nose-Hoover thermostat, save the specific-
ity of acting upon individual units �41–43�.

Then the equations of motion are

dxk

dt
= vk,

dvk

dt
= −

1

mi

�H

�xk
+ f�vk� , �8�

dyj

dt
= uj,

duj

dt
= −

1

me

�H

�yj
− �uj . �9�

The �mean� ordered motion of charged particles along the
lattice governed by Eqs. �8� and �9� yields a current com-
posed of ion and electron components:

J = Ji + Je = q�v� − u�� . �10�

A nonvanishing current requires different mean velocities of
ions v� and electrons u�, which is allowed due to the cutoff
in the ion-electron potential �Fig. 1�C��; w�� lim

T→�

1
T�0

Twdt, w

is u or v, for ions and electrons, respectively.
We expect two forms of electric transport in the ring: �i�

For �i�0, a Drude-like current, linearly increasing with the
increase of the electrical field strength �Ohm’s law�; and �ii�
for �i�0, a non-Ohmic, hence nonlinear current dominated
by the anharmonicity of the dynamical system, i.e., by the
repulsive �Toda, Morse or LJ� short range interaction to-
gether with the active friction in dense enough lattices.

B. Scales, dimensionless quantities, and approximations

Let us introduce new units leading to dimensionless
variables:

t =
1

q
��me

�
�1/2

t̂, �xk,yj� = ��x̂k, ŷ j� ,
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�vk,uj� = q���

me
�1/2

�v̂k, ûj� , �11�

where �=max �W
�� . For illustration we shall use the Toda �2�

and Coulomb �5� potentials. Dropping hats to simplify nota-
tion in dimensionless form Eqs. �8� and �9� become

dxk

dt
= vk,

dvk

dt
= S�rk−1� − S�rk� + G�vk� + 	��

j=1

N

F�� jk� + E� ,

dyj

dt
= uj ,

duj

dt
= − �

k=1

N

F�� jk� − E − 
uj , �12�

with

	 =
me

mi
� 10−3, � = ���3

me
�1/2

q�i, � =
��

me
q2�i,

� =
2
3

9h2 , S =
1

B
exp�− B�r − 1�� ,

F��� =
�

���2 + h2�3/2 , E =
E

�q
, 
 =

�e

q
��me

�
�1/2

,

G�vk� = �vk�� − vk
2� . �13�

Needless to say, F��� accounts for the attractive ion-electron
force, S�r� is the repulsive ion-ion force, E is the dimension-
less electric field strength, 
 is the damping constant for the
electrons, and G�v� is the velocity-dependent friction for the
ions.

Formally, 	 in Eqs. �12� can be treated as a smallness
parameter, provided we consider that both the external field
and the electron-ion interaction play a secondary role relative
to the ion-ion interaction. We are aware of the subtlety of the
transition 	→0 in the static case. However, when dealing
with dynamical regimes, we may consider the �nonlinear�
dynamics of the �heavy� ions as a suitable starting point for a
perturbation theory to treat dense enough lattices when the
repulsion forces are quite strong.

In the new scales the mean interion distance �L=N� is
unity and the ion dynamics plays a dominant role on the
evolution of the lattice and the electrons, F����1. This bi-
ases the system to exhibit a non-Ohmic, nonlinear electric
current rather than the linear Ohm-Drude current, Je� q


E.
To establish the laws of such non-Ohmic behavior, as first
predicted in Ref. �18�, is indeed the main object of the
present work.

III. LATTICE VIBRATIONS AND SOLITONS

Let us, to a first approximation, neglect in Eqs. �12� the
influence of the ion-electron and field-ion interactions on the
ion dynamics �	→0�. In fact let us first analyze the intrinsic
lattice dynamics alone. The lattice dynamics obeys the fol-
lowing simplified equations:

dxk

dt
= vk,

dvk

dt
= S�rk−1� − S�rk� + G�vk� . �14�

In an earlier work �22� it has been shown that the system
in the truly damped case ���0� has only one motionless
globally stable solution �xk+1−xk=1,vk=0�, where all ions
form an equidistant lattice.

Let us now study the role of the active friction in the ion
lattice ���0�. At �=0 the system undergoes a symmetric
Hopf bifurcation �22�. The 2N eigenvalues of the linearized
problem are given by

�m
1,2 =

1

2
��� ± 
�2�2 − 16 sin2��m/N�� , �15�

where m=0, ±1, . . . , ±N /2 �for illustration here we assume
N to be even�. One eigenvalue, for m=0, vanishes due to the
translation symmetry of the system. Another is real, �0

2=��,
and changes sign at �=0. The other 2�N−1� eigenvalues are
complex conjugate and cross, simultaneously, the imaginary
axis at �=0, obeying the Hopf theorem �44�.

For positive �, �N−1� different oscillatory modes appear
as shown in Fig. 2�A�. These modes correspond to stable
limit cycles coexisting in the 2N-dimensional phase space
�rk ,vk� of the system. They represent ion motions leading to
nonlinear waves �like acoustic modes� propagating along the
lattice and can be labeled by their wave number m or by their
wave length = 	N /m	; hence the single-peak soliton, m=1,
has =N. The sign in the mode number defines the direction
�clockwise or counterclockwise� of the wave propagation.
Two other modes, say m= ±0, correspond to the clockwise
and counterclockwise rotations of the ring as a whole �ions at
rest�. Note that since each mode corresponds to a stable limit
cycle, only one mode can be realized in the ring at a time
with no superposition admitted. The mode number m defines
the number of local compressions �wave humps, peaks, or
pulses� along the ring, e.g., m=1 corresponds to a single-
peak soliton wave; otherwise we have a multipeak or multi-
hump soliton wave �as described below�. The m=N /2 mode
is the optical mode �ions moving in antiphase� �Figs.
2�B�–2�D��.

To estimate electron transport which demands considering
dissipative effects that may alter the dynamics of the ion
lattice, we must know both wave and ion velocities. A hint
for a theoretical estimate can be obtained numerically fol-
lowing the evolution when varying B and � in a wide range.
In each run, Eqs. �14� were numerically integrated until a
stationary wave was formed and remained practically of per-
manent form albeit moving along the ring. Then an estimate
of the oscillation period is the time interval between two
successive passes of the wave through a given ion. From
bifurcation theory �44� one expects that the oscillation am-
plitude grows supercritically as the square root of �. Thus
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for convenience we rescale once more the variables:

t = T�, vk = �1/2pk, xk − xk−1 − 1 = �1/2Tzk, �16�

where T denotes the period yet to be determined. The peri-
odic boundary conditions, xk+N−xk=L=N, require that
�k=1

N zk=0. Accordingly, with the new coordinates the set of
variables �z��� , p����, �=k /+�, depict the passage along
the ring of a wave of period unity. Figure 3 shows a portion
of the normalized particle velocity p��� and the interparticle
distance z��� obtained by superposition of results corre-

sponding to several different values of B and �. In the coor-
dinates �16� the soliton wave �single-peak or periodic wave�
of permanent form, numerically found as a solution of our
dissipative Toda ring, deviates little from a cnoidal wave of
the conservative Toda system. Noteworthy is that it practi-
cally does not depend on the stiffness parameter B, nor on
the pumping or bifurcation parameter � �needless to say �
cannot be too large�. The characteristic ion velocity �Fig.
2�B�� is proportional to
�. Let us now estimate the wave
velocity.

The period of ion oscillation is �see the Appendix�:

T��,B,� =
�

sin��/��1 + �
�B�
, �17�

where =N /m is the wavelength and ��0.24 is a constant
estimated numerically.

During the oscillation period the wave travels the distance
L /m− c�T, where c�=
��−1/2

1/2 pd� is the mean ion velocity
here taken over a wave period. Finally, for a counterclock-
wise rotating wave, m�0 with cion�0 and cwave�0, we
obtain

cion � 
�, cwave � −


�
sin��


��1 + 
���B − ��� ,

�18�

where ��� is a constant. Thus for a given value of �, the
wave velocity linearly increases with the increase in the stiff-

FIG. 2. Lattice vibrations and soliton waves. �A� Qualitative bifurcation diagram �amplitude of oscillations Ax vs bifurcation parameter
�, Rayleigh’s active friction�. The sign of Ax is used to merely distinguish clockwise and negative from counterclockwise and positive
directions of wave motion. For negative � �truly damped case� only the motionless solution exists �with translation symmetry�. At �=0 a
symmetric Hopf bifurcation occurs and for ��0, the anharmonic ion vibrations lead to �N−1� soliton wave modes; here N�10 ions. There
are also two �clockwise and counterclockwise� rotatory regimes of the entire lattice as a whole. Note that the two values m= ±N /2 define the
same optical mode. �B�–�D� Unfolded ion trajectories for three different wave modes moving clockwise, “downstream.” In the case of a
single-peak solitonlike wave �m=1� most of the time ions move clockwise �hence positive slope of the trajectories� with velocity cion. From
time to time, sequentially one after another, ions transitorily move backwards, counterclockwise, showing the onset of the wave peak �zone
of local compression�. The wave moves counterclockwise, “upstream,” with velocity cwave. For m=2 two local compressions in a lattice
period �a two-hump wave� propagate over the ring. In the optical mode �m=N /2=5� we have a standing wave, when neighboring ions
oscillate in antiphase. Parameter values: B=6, �=0.4, �=0.4, and N=L=10. Dimensionless quantities are according to Eq. �11�.

FIG. 3. Soliton wave of permanent form �mode m=1� for a wide
range of parameter values �4�B�16,0.2���0.5�. Left and right
figures, corresponding, respectively, to ion velocity and interionic
distance come, for given values of the running coordinate �, from
the superposition of a large number of computer simulations. Di-
mensionless quantities are according to Eq. �16�.
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ness parameter B. For hard “springs” the wave velocity is
higher than the sound velocity; here csound=1. Thus we have
a dissipative wave traveling supersonically along the lattice.
On the other hand, for a given value of B, the wave velocity
can either increase or decrease as the square root of �, whose
value sets the level of input-output energy balance in the
system. For the critical value Bcr=� /� the wave always runs
with the velocity cwave�− 

� sin� �


�, which in the case of the
single-peak soliton mode �m=1�, is csoliton�1, which is
about the sound velocity in the lattice. Figure 4 shows an
example of numerically calculated wave velocities and the
theoretical estimates given by Eq. �18�, with the constant �
=0.85. This is at variance with the conservative case where
all �single-peak or periodic� soliton waves travel supersoni-
cally along the lattice �33�.

Note that not all values of the parameters B and � are
physically acceptable as, to overcome the earlier mentioned
difficulty with the exponential interaction here used, we must
require that ions do not penetrate each other, i.e., always
xk+1�t��xk�t�. This is equivalent to −
�T min�z�����1. Us-
ing the theoretical estimate �17� we obtain that a solution of
Eq. �14� has proper physical meaning only if

B �
�	min�z�	
� sin��/�

−
1

�
�
� 6.8 −

4.2

�

. �19�

IV. ELECTRON TRANSPORT INDUCED BY WAVES IN
THE ION LATTICE

In view of the earlier given assumptions and results, when
an electric field is added, we expect that the soliton wave of

FIG. 4. Wave velocity cwave of the single-peak soliton wave �m=1�, propagating along the lattice vs bifurcation parameter � �A� and vs
lattice stiffness B �B�. Solid rhombs, open squares, and open circles show numerical results. Solid, dashed, and dotted lines correspond to the
theoretical estimates given by Eq. �18�. Noteworthy is that there are three qualitatively different functional dependences of the velocity on
�: �i� for a stiffness higher than the critical value, Bcr�3.6, the velocity increases as 
� and it is supersonic �csound=1�, �ii� for the critical
B the velocity is constant cwave�csound, and �iii� for small stiffness, the velocity decreases as −
� and hence it is subsonic. The variation of
the wave velocity with B is linear with slope determined by the value of �. For the critical value of the stiffness Bcr�3.6 all straight lines
intersect at the sound velocity value. Parameter values: �=2 and L=N=10. Dimensionless quantities are according to Eqs. �11� and �13�.

FIG. 5. Anharmonic lattice vibrations �solid dots denote ion positions along the lattice-dotted line�, single-peak soliton compression wave
�dashed line�, and corresponding potential landscape �solid line� offered by the vibrating lattice ions to a “free” electron. �A� For a relatively
weak stiffness corresponding to soft yet nonlinear “springs” �B=1.1�, several ions �three� transitorily cluster, rather near to each other, thus
creating a deeper minimum �at y�7� in the electrostatic potential offered to a free electron. Far away from the local compression ions offer
a periodic landscape given by Eq. �5�. As the local compression, and hence the deepest minimum, the soliton wave �see Fig. 2�B��, moves
to the left, such minimum is defined by another local cluster of ions. This is clearly seen when one is placed in the ion-moving frame and
then one substracts the ion velocity cion from the wave velocity cwave. �B� For harder lattice springs �B=7� ions move little from their original
equilibrium positions yet the nonlinearity creates a soliton wave and a corresponding depression �at y�7� in the potential landscape.
However, locally, the depression zone offers two minima and a maximum to the free electron. y denotes ion position along the lattice.
Dimensionless velocities, according to Eqs. �13� and �18�.
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compression in the anharmonic lattice once excited rotates in
the ring independently on the electric field, provided the field
strength is moderate enough. Indeed, as the field strength
becomes high enough �of the order 1 /	� the wave originated
in the ion lattice vibrations would be altered and eventually
destroyed. Due to the ion-electron interaction we can say that
the lattice vibrations induce an additional “inner” field �in the
approximation 	→0� with a time-dependent potential for the
electrons. Figure 5 shows two snapshots of such potential
landscape due to a single-peak soliton �m=1� mode. The
deepest minimum, corresponding to a local compression in
the lattice, moves with the wave velocity, cwave, say, coun-
terclockwise �to the left�. Then the minima formed by the
other, nearby “isolated” ions, outside of the compression
area, move clockwise with the velocity, cion.

As earlier shown the velocity of the compression wave
increases with the increase of the stiffness of the lattice
springs, B �Fig. 5�. Upon increasing the stiffness the ions less
and less approach each other and the potential well induced
by the wave reduces its depth becoming shallower �Fig.
5�B��. For low enough values of the electric field strength the
electrons will interact with this potential and can be trapped
by the global, deepest minimum forming a dynamic bound
state �solectron�. Indeed, after a transient process, the elec-
tron moves with the wave �soliton� yielding an electric cur-
rent independent of the electric field strength and determined
solely by the soliton velocity �18�, hence by the intrinsic
anharmonic lattice dynamics. Note that as the single-peak
soliton wave moves the electron changes partners. The solec-
tron is a dynamic entity. It involves a moving soliton, the

same from the wave perspective albeit involving different
ion clusters along the lattice �18�. Figure 6 shows trajectories
of N�10 electrons and N�10 ions for different values of the
parameters of the lattice. All cases refer to a single-peak
soliton compression wave in the lattice. There is a regime
when all electrons are trapped by the soliton propagating
with supersonic velocity �Fig. 6�A��. The electrons move
counterclockwise �“upstream”� while ions do it clockwise
�“downstream”�. The relative velocity of the solectron is ob-
tained by subtracting the velocity of the electrons from that
of the ions. We have

�vsolectron = vions� − velectrons� = �L/T − cwave� − cwave,

�20�

where L is the ring length and T is the oscillation period
given by Eq. �17�. Note that according to Eq. �10�, here Eq.
�20� gives the current flowing along the ring. Substituting
Eqs. �17� and �18� in Eq. �20� we obtain

�vsolectron = 3
L

�
sin��

L
��1 + 
���B −

2

3
��� . �21�

Thus we have a net counterclockwise, fast upstream elec-
tric current, as predicted in Ref. �18�. As the parameters of
the system change values in a broad range, a variety of be-
haviors exists due to the diversity of soliton wave profiles
and hence due to the corresponding diversity of potential
landscapes offered by the ions with their lattice vibrations to
the free electrons. Yet for all these regimes, the qualitative
dynamics of the lattice is the same, i.e., a solitonlike local

FIG. 6. Solectrons and ion-electron bound states. Lattice ion trajectories �mostly progressing clockwise dotted lines� exhibiting soliton
waves �progressing counterclockwise motions along the negative slopes of the ion trajectories� and electron trajectories �thicker lines�. Most
of the time ions go clockwise �downstream� with positive velocity �positive slope of the trajectories�. Then one at a time, and subsequently
all one after another in periodic sequence move backwards for a short time interval, defining the portions of trajectories with negative slope.
The counterclockwise �upstream� wave motion along the negative slope delineates the path of the soliton wave in the ion lattice. Electrons
exhibit different behaviors: �A� soliton-trapping ��=0.6, B=7�; �B� ion-trapping ��=0.2, B=6�; �C� interion jumps ��=0.6, B=3.8�; �D�
saccadic motions with alternance of soliton- and ion-electron trappings ��=0.6, B=5.5�. Dimensionless quantities are according to Eq. �11�.
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compression wave propagates in the ring. Figures 6�B�–6�D�
show examples of different behaviors taken by the electrons.
First we found that electrons can be trapped by ions: an
electron stays with an ion and even when the wave passes
through this given electron-ion pair remains bound together.
We call this the ion-trap case �subscript: iontrp� �Fig. 6�B��.
In this case electrons and ions move in the same direction,
with the same mean velocity, and we have no net current:

�viontrp = vions� − velectrons� = 0. �22�

Figure 6�C� shows another behavior. Between two con-
secutive passes of the wave each electron is bound to an ion,
so we have the ion-trap behavior very much like that shown
in Fig. 6�B�. However, when the wave arrives the electron is
loose and energetic enough to jump to the next ion ahead in
the lattice. The jump occurs in the opposite direction of wave
propagation. Thus instead of following the wave, like in Fig.
6�A�, the electron lags behind it. The wave, although rotating
counterclockwise, at each period provokes clockwise jumps
of the electrons that move in the same direction �clockwise�
to that of the ions but faster. Hence we have a net clockwise
�negative�, downstream current:

�vionjmp = vions� − velectrons� = −
L

NT
, �23�

where N is the number of ions in the ring, and T is the
oscillation period given by Eq. �17�.

Figure 6�D� illustrates a regime where each electron stays
for a short time with the wave, then it is trapped by an ion
until the next arrival of the wave and then gets trapped by
another ion, then by the wave and so on. This sequence re-
peats albeit not necessarily in a periodic manner. Thus we
have a kind of saccadic sequence of soliton-trap and ion-trap

regimes shown in Figs. 6�A� and 6�B�. The net current �sub-
script saccadic� in this case depends on the fine tune of the
lattice parameters and can be expressed as

�vsaccadic = vions� − velectrons� � n
L

NT
, �24�

where n is a natural number describing the number of
electron-ions jumps over during the wave-trap phase �in Fig.
6�D� n=2�.

We have numerically delineated in the parameter space
�B ,�� of the lattice the regions with qualitatively similar
behavior �nonequilibrium phase diagram� of the electron-
wave interactions described above �Fig. 6�. Figure 7 summa-
rizes the results. We found three distinct “A” areas �A1, A2,
and A3� that correspond to the formation of a solectron �Fig.
6�A��. The difference between these areas is in the velocity
of the solectron and in the resulting current �21�. The solec-
tron is supersonic only in the A1 region.

In the approximation of a compression wave of permanent
form propagating along the lattice, we can express the mo-
tion of the ions by the wave solution �xk�t��. Then Eqs. �12�
reduce to

dy

dt
= u,

du

dt
= − ��y,t� − 
u − E, �25�

where ��y , t�=�k=1
N F(y−xk�t�) is an effective Coulomb force.

Equations �25� describe the evolution of free electrons driven
by the time-dependent field induced by the ion wave �see the
potential landscapes of Fig. 5�. For convenience we rewrite
Eq. �25� in the form

dy/dt = u ,

du/dt = −
���y,z�

�y
− 
u ,

dz/dt = cion − cwave, �26�

where z is an auxiliary variable linearly growing with time.
To analyze the dynamics of Eq. �26� we study qualitative
changes in a sequence of 2D sections �y ,u� of the phase
space taken at constant values of z.

Numerical results show that after a short transient process
all electrons are trapped by their nearest ions and tend to stay
with them, hence moving clockwise with the ions. Then the
soliton wave, continuously running counterclockwise, even-
tually reaches the region where an electron is located. As
earlier described, how the electron behaves depends on the
parameter values of the system. Three qualitatively different
behaviors have been depicted in Figs. 6�A�–6�C�. Take the
electron bound to the kth ion. Figure 8, column I �case z
=z0�, shows the positions of the three nearest ions to the
electron, together with the soliton compression wave �upper
part of the column�, a sketch of the potential landscape ��y�,
induced by the ion lattice vibrations, and the phase space �u,
y� of the electron. The electron is inside the basin of attrac-
tion of the kth ion �shaded area in Fig. 8�I��. Small perturba-
tions decay in time, hence the electron is trapped and
dragged by the ion.

FIG. 7. Nonequilibrium �B ,�� phase diagram of a driven-
dissipative anharmonic lattice. It provides the regions with qualita-
tively different behaviors of the electrons shown in Fig. 6. Areas
marked by “A” correspond to the soliton-trapping hence the solec-
tron regime, by “B” to the ion-trapping, and by “C” to interion
jumps. The unphysical region is an artifact due to the limitation of
the exponential interaction as mentioned in the main text. Dimen-
sionless quantities are according to Eqs. �11� and �13�.
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Assume now that the lattice springs are rather stiff, say
B=6.5. Then even in the compression region of the wave the
ions do not get very close together, as they hardly move from
their original positions �Fig. 5�B��. Yet their motion is truly
anharmonic. All the time there is a maximum in the potential
profile between two neighboring ions �Fig. 8�II�, AB�. Con-
sequently, the first bifurcation that occurs is the separatrix
loop going from the saddle between the k−1 and k ions to
the saddle between the k and k+1 ions �Fig. 8�II�, AB,
thicker line�. Further, the distance between the saddles de-
creases even more and a second bifurcation occurs. Now the
separatrix loop goes from the saddle between the k and k
+1 ions back to the saddle between the k−1 and k ions �Fig.
8�III�, A and B�. At this point the motion of the electron is
determined by the kinetic energy it had before, or in other
words, by the relative velocity of the soliton wave and the
ion velocity in the third equation of Eq. �26�. For a low
energy level, i.e., low values of � �domain B1 in Fig. 7�, the
electron does not have enough energy to leave the potential
well and oscillates there staying in the attraction area of the

kth ion �Fig. 8�III�, B�. When the wave leaves the area of the
electron location, the electron remains bound to the ion �Fig.
8�IV�, B�. Thus we have the dynamical regime called ion
trapping �Fig. 6�B��.

If � is increased enough �like in domain A1 in Fig. 7� the
electron goes out of the attraction area and ends below the
separatrix loop �Fig. 8�III�, A�. Then the electron follows the
trajectory towards the k−1 ion �Fig. 8�IV�, A�, hence follow-
ing the wave. In a certain range of parameter values �A1 in
Fig. 7� the dynamic balance between the energy obtained
from the wave and the energy dissipated by the electron
�controlled by �e� ensures that the electron experiences a
“free” ride while staying always between separatrices like in
the phase plane in Fig. 8�IV�, A, and is never trapped by an
ion. Accordingly, we have the solectron, i.e., the electron is
bound to the soliton �Fig. 6�A��.

Let us now consider the case of softer springs, say B
=3.8. With such stiffness, several ions will closely approach
each other and at some section z=z1 the maximum in the
potential profile between the ions k and k+1 disappears �Fig.

FIG. 8. Lattice dynamical system. Qualitative bifurcation picture and the panoply of behaviors offered by the interaction of an electron
�−� with a solitonic compression wave in an anharmonic lattice. Three qualitatively different cases: ion trapping, soliton trapping, and
forward interion jump �see also Fig. 6�. Depending on the parameter values one or another of these behaviors occurs �see also Fig. 7�. �I�
Column z=z0 shows the time instant just before the wave approaches the electron. The upper part of the column is a snapshot of the ion
configuration and the electron position �only the three nearest ions �+� to the electron are shown�. The center part of the column shows a
snapshot of the potential landscape corresponding to the ion configuration. The bottom part presents a section of the phase space of the
electron taken at z=z0. The shaded area delineates the basin of attraction of the steady state corresponding to the kth ion. �II� The column
z=z1 shows the time instant of the beginning of electron-soliton interaction. Depending on parameter values two qualitatively different
scenarios are possible �AB and C, respectively�. �III� The column z=z2�z1 corresponds to the time instant at which the wave passes over
the electron. At this time instant depending on the parameter values the scenario AB splits into two, A and B. �IV� The column z=z3�z2

depicts the configurations when the wave leaves the electron location. Finally we obtain three qualitatively different scenarios of the
electron-wave interaction.
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8�II�, C�. This corresponds to a pitchfork bifurcation, i.e.,
three steady states merge forming one. The electron follows
the trajectory, so when the wave passes further, a new in-
verse pitchfork bifurcation occurs and three steady states ap-
pear again. Now the electron ends in the basin of attraction
of the �k+1�th ion �Fig. 8�III�, C� and then follows it �Fig.
8�IV�, C�. Thus as the wave passes it carries the electron to
the next ion ahead, and so on; we get the interion jump
regime �Fig. 6�C��.

The different interaction scenarios of an electron with a
soliton will lead to qualitatively different current-voltage
characteristics. A weak field cannot destroy the bound states
described above �Figs. 6 and 8�. Thus the current induced by
the anharmonic wave in the ion lattice and consecutive inter-
action with free electrons will not depend on the value of E.
The exact value of the electric field independent current is
defined by either of Eqs. �21�–�23�. Figure 9 shows examples
of current-field characteristics for these three cases. Forma-
tion of a solectron �Fig. 9�A�� results in a high amplitude
constant current even for vanishing electric field strength.
Such a constant value is different for different parameter
regions, A1, A2, and A3 �Fig. 7�.

However, when the electric field is strong enough �applied
in either direction�, electrons cannot be hold by the lattice
wave anymore, and hence they follow the electric field. They
start rotating in the ring with the velocity defined by the ratio
E /
, which gives rise to the Drude current following Ohm’s
linear conduction law. For high values of the electric field
strength the anharmonicity of lattice vibrations is not strong
enough to dominate the dynamics. Clearly, we are outside
the domain of validity of the assumption used in Sec. III,
following the derivation of Eqs. �12�, and the current satisfies
Ohm’s law. Figures 9�B� and 9�C� illustrate two other re-
gimes with vanishing and negative current, respectively,
when the field strength becomes very weak as given by Eqs.
�22� and �23� �see Figs. 6�B� and 6�C��.

V. SUMMARY OF RESULTS

In view of the possibility of using natural or synthetic
molecules �polypeptide chains are one such case� for elec-
tronics we have considered here a paradigmatic 1D charged
lattice model with anharmonic �exponentially repulsive� dy-
namics allowing for soliton-mediated Ohmic and non-Ohmic
electric transport. We have shown that solitons in such an
anharmonic driven-dissipative system can be sub- or super-
sonic. The supersonic regime occurs for high values of the
stiffness in the lattice leading to high compressions.

There are several qualitatively different types of interac-
tion between a soliton wave in the ion lattice and electrons:
�i� The solectron regime: the electron is trapped by an up-
stream running soliton while ions move downstream; �ii�
Partial trapping by an upstream running soliton. Although
electrons move upstream with the soliton, from time to time
they move downstream with ions. �iii� Complete trapping by
the downstream moving ions. �iv� Downstream jumps of
electrons between ions induced by each pass of the soliton
wave �electrons move with ions, but when the soliton arrives
at an electron this jumps downstream to the next ion, so the
mean velocity of the electrons is higher than that of ions�.
The solectron regions and hence the regions of anharmoni-
cally driven fast electric conduction have been delineated in
the nonequilibrium �B ,�� phase diagram.
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FIG. 9. Current-field �voltage drop� characteristics for an anharmonic lattice with ions and free electrons. Due to anharmonicity the ion
vibrations lead to soliton waves propagating along the lattice. These soliton waves mediate the electron-ion interactions and hence determine
the electric current. Depending on parameter values �see Fig. 7� the electric current follows Ohm’s law �Drude conduction� or becomes
non-Ohmic. The latter is clearly a consequence of the anharmonicity. Its actual value depends on the stiffness of the springs. The result also
depends on the input-output energy balance set by the active friction maintaining the nonlinear oscillations and corresponding solitonic
waves. �A� Solectron areas ��=0.5, B=1.5 or B=6.5�; �B� ion trap ��=0.5, B=2.2�; �C� interion jumps ��=0.5, B=3.6�. In all cases the
dotted line shows Ohm’s law. Dimensionless quantities are according to Eqs. �10� and �13�.
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APPENDIX: DERIVATION OF THE OSCILLATION
PERIOD

We start with Eq. �14� assuming that ��1 is a smallness
parameter. For � positive �just after the Hopf bifurcation� we
have low amplitude oscillations whose frequency in first ap-
proximation is

� =
2�

T�0�
= 2 sin��/� , �A1�

where T is the period of linear oscillations given by

Tm�0� =
�

�sin
�m

N
� . �A2�

=N /m is the wavelength �m=1 corresponds to a single-
peak soliton�.

We seek a solution of Eq. �14� in the form of a running
harmonic wave:

xk =
a
�

�
cos �, vk = − a
� sin � , �A3�

with �=�t+Mk+�, and M =2� /; a and � are the ampli-
tude and phase of the oscillations, in general slow functions
of time.

Changing the variables �xk ,vk� in Eq. �14� by �a ,��, and
expanding the exponentials up to terms of the order of �3/2,
we obtain

da

dt
= −

a�

2
sin 2� −

�S + G

�

sin � , �A4�

d�

dt
= − � cos2 � −

�S + G

a
�
cos � . �A5�

with

�S = −
a
�

3�3 sin2�M/2��3�a2B2� + 4�2�cos �

− 4a2B2� cos M cos3 � + a2B2� cos 2M cos 3�

+ 6aB
�� sin M sin 2�� ,

G = a��3/2sin ��a2sin2 � − 1� . �A6�

Note that the expansion is valid if �=
�B�1, hence this
quantity should be considered the new smallness parameter
of the problem. Now averaging these equations over the fast
variable � and substituting Eq. �A1� ��=2 sinM /2� we ob-
tain

da

dt
=

��a

8
�4 − 3a2� , �A7�

d�

dt
=

a2B2�

8
sin�M/2� . �A8�

Equations �A7� and �A8� define a dynamical system in polar

coordinates that has an unstable focus in the origin leading to
a stable limit cycle of amplitude a*=2/
3. The phase veloc-
ity on the limit cycle is

d�

dt
=

�B2

6
sin

M

2
. �A9�

Going back to the wave solution Eq. �A3�, Eq. �A9� defines
the first-order correction to the oscillation frequency �A1�.
Thus for small 
�B the oscillation period scales as

T �
�

sin��/��1 + �B2/12�
. �A10�

According to Eq. �A10� for �=0 the oscillation period is
given by the linear oscillations, and it decays as �1−�B2� for
positive �.

Let us now consider moderate values of �. According to
the numerical results presented in Fig. 3, with appropriate
variable rescaling, the wave profile is almost the same in a
wide range of values of the lattice parameters �B ,��. Using
Eqs. �14� and �16� we get an equation describing the wave
profile:

dp

d�
= T�� e−
�BTz − e−
�BTz��+−1�

�3/2B
+ �p�1 − p2�� .

�A11�

The bracketed quantity on the right-hand side of Eq. �A11�
should scale as ��T�−1. Then the difference in the exponents
scales as �3/2B1�����+T−1�1/2B����, where � and � are
periodic functions depending on the running coordinate �
only. On the other hand, a modified cnoidal wave solution of
Eq. �A11� can be written as

FIG. 10. Oscillation period as a function of �. Squares show
results of numerical integration of Eq. �14�. Solid line corresponds
to the fitting by Eq. �A14�. Star at �=0 marks the period of linear
oscillations T��=0�=� / sin�� /��10.16. Dimensionless quanti-
ties are according to Eqs. �13� and �A14�.

ANHARMONICITY AND ITS SIGNIFICANCE TO NON-¼ PHYSICAL REVIEW E 73, 066626 �2006�

066626-11



e−
�BTz��� − 1 =
4K2

T2 �dn2�2K�� −
1

2
�� −

E

K
+ a�

+ �3/2B1���� −
1

2
� , �A12�

where K and E denote the complete elliptic integrals of the
first and second kind, respectively, and dn is the Jacobian
elliptic function of modulus n. Using this ansatz �A12� we
obtain that the modulus n is a constant independent of � and
B. Yet it is to be adjusted in such a way that Eq. �A12� fits
the waveform of the numerical solution �Fig. 3�. Then the
wave period scales as

T � �−1/2B−1. �A13�

This approximation is valid for moderate � but it diverges at
�→0. Matching these two asymptotic results we obtain an
approximate value of the oscillation period:

T �
T�0�

1 + �
�B
, �A14�

where � is a constant to be determined by fitting the theo-
retical curve �A14� to the numerical results. Substituting Eq.
�A2� into Eq. �A14� we end up with the estimate �17�. Figure
10 shows the oscillation period found by direct integration of
the governing equations �open squares� and the theoretical
estimate �solid line�, Eq. �A14�. The best fit is achieved for
�=0.2387.
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