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We study solitonic charge transport in a hydrogen-bonded model system representing a one-dimensional
polypeptide chain. Supersonic solitons are constructed for zero temperature in the frame of a Morse lattice
model for which an �nonlinear� electronic system is coupled in a tight-binding approximation to H-bond
vibrations of the molecular chain. The latter are of anharmonic nature. Charge transport is realized via the
coupling between the electron and the local lattice deformations. This electron-lattice coupling is described by
the soliton solutions, assigned to states of a localized charge in association with its local chain deformation. By
retaining the discrete nature of the underlying lattice system it is shown that even strongly localized states are
mobile. In fact, we illustrate that for nonlinear electron-vibration interaction supersonic solitonic carriers in the
lattice assist the transport of narrow electron and lattice solitons. Moreover, by using realistic values from
polypeptides for the system parameters we demonstrate that the interaction between the H-bond vibrations and
the electron is strong enough to sustain thermal perturbations up to T=300 K. Most importantly localization is
maintained over extended periods of time during which the electron travels directionally over such long
distances along the chain exceeding by far those achievable with single-step tunneling. Furthermore, we
discuss the role of an applied electric field. It is demonstrated that in a wide range of its values the velocity of
the soliton motion and hence the electric current remains unaffected by the electric field. Above this range the
velocity of the solitons is proportional to the field strength so that the corresponding current follows Ohm’s
law. Then for still higher field strengths above a critical value the coupling between electron and soliton
dynamics breaks down.
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I. INTRODUCTION

Many biological activities, such as photosynthesis, repair
mechanism of DNA after radiation damage, metabolism, sig-
nal transduction in cells, enzymatic processes, and respira-
tion are driven by electron transfer �ET� reactions.1–4 In bio-
molecules ET is assumed to take place via a single-step
tunneling over distances from donors to acceptors in the
range of �5–20� Å, while the shortest time scale lies in the
range of picoseconds. Characteristic for biomolecules is that
they exhibit a strong interplay between function and struc-
ture. In fact, structural elements such as the protein backbone
can serve as effective molecular wires along which electrons
tunnel between redox sites in proteins. So has it been shown
that in certain protein ET systems the electron tunneling oc-
curs along polypeptide strands with tunneling jumps via hy-
drogen bonds.5–7 Moreover, recently, it has been demon-
strated that typical biological systems ET may proceed along
a single pathway which, as the preferred channel for ET, can
be established by a hydrogen-bonded strand within the sec-
ondary structure.8,9

The experimental evidence that polypeptide chains can
form an effectively one-dimensional molecular wire appears
to be highly promising for applicable molecular electronics
offering a way to miniaturization on the nanoscale.10–13 From
the perspective of using biomaterials in molecular electron-
ics, the control of the electron flow is essential for the suc-
cessful operation of electronic devices on the molecular
scale. Such an achievement requests a theoretical under-

standing of the underlying transfer mechanism.
Theories on a molecular basis gave insight into the rela-

tion between the structure and function for charge and energy
transfer in proteins.14,15 In particular, it was demonstrated
that the H bridges contained in the protein structure play a
crucial role for mediating ET. In fact, the dynamics of the
bonds of proteins may serve as the driving force of ET.16

Attempts to theoretically describe the charge transport in-
voked from the beginning polaron and soliton models utiliz-
ing the idea that the interaction between the charge carrier
and vibrational degrees of freedom of the molecular system
conspire to form localized compounds.17 Assuming that a
large width of the corresponding localized pulse compared to
the spacing of the underlying lattice system shows that the
continuum approximation can be applied and Davydov and
co-workers showed that a mobile self-trapped state can travel
as a solitary wave along the molecular structure.17,18 Later
Davydov generalized the idea of solitonic exciton transport
to include also charge transport in proteins.17,19,20 The soli-
ton’s stability is the result of the attained balance between
two competing mechanisms, namely the interaction between
an excitonic degree of freedom and the lattice vibrations of a
polypeptide chain and, on the other hand, the lattice disper-
sion. The lattice vibrations are represented by acoustic pho-
non modes of a not too large amplitude allowing for their
description in the harmonic approximation. However, to ob-
tain higher velocities of the self-trapped compound necessi-
tates larger lattice deformations so that the validity of the
harmonic approximation does not hold anymore. Thus anhar-
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monicity has to be included in the description of the lattice
vibrations either by adding higher-order terms to the har-
monic potential or considering from the beginning potentials
with strong repulsive parts, represented by, e.g., Morse
potentials.21 In the latter case, the lattice dynamics itself sup-
ports supersonic solitons which can accommodate charge
and excitonic energy establishing transfer beyond the sub-
sonic regime.22–27 Indeed, it has been proposed that super-
sonic acoustic solitons can capture and transfer self-trapping
modes in anharmonic one-dimensional systems.23–26 In Ref.
23 it has been demonstrated that the supersonic quasiparticle
transfer in a chain with anharmonic phonon part is achiev-
able. In recent works24–26 the coupling between a quasiclas-
sical electron dynamics and solitonic excitations in lattices
with exponential repulsion has been studied. It has been
shown that under special conditions the electrons might be
trapped by the solitonic excitations due to the nonlinear lat-
tice deformations. Further a nonlinear current-voltage char-
acteristics has been derived. In other recent works28–34 an-
harmonic electron-lattice models have been studied in
focusing on the inclusion of anharmonic effects in the mul-
tiphonon potential energy only and treating the coupling be-
tween the electron and the phonons harmonically. However,
when larger displacements play a role the coupling term
ought to include higher-order terms in the amplitude of the
lattice vibrations as well. In the current work we consider a
general form of an electron-vibration coupling term with ex-
ponential dependence originating from a distance depen-
dence of the electronic transfer matrix element.

More precisely, we study a biomolecular ET chain model
where we show that ET can be mediated by supersonic soli-
tons using realistic parameter values of biomolecular sys-
tems. The model represents a typical one-dimensional
polypeptide chain where neighboring peptide groups are
bridged via hydrogen bonds �as it, for example, arises in the
secondary structure of �-helix and �-sheet forms of pro-
teins�. We suppose that the hydrogen-bond pathway is the
dominant one for ET in such a model protein and thus we
focus our interest on ET along a one-dimensional channel
consisting of a strand of hydrogen-bonded molecules.

Alternatively, the one-dimensional ET chain model can be
regarded as a synthetically produced polypeptide chain built
up from hydrogen-bridged peptides which may form the con-
stituents, that is molecular wires, of a nanoscale electronic
device.

With a view to possible applications in molecular elec-
tronics it is highly desirable to determine also the thermal
stability of the soliton motion. For this aim the polymer lat-
tice model, viz. the electronic tight-binding system coupled
with longitudinal vibrations of the molecular units, is
brought in contact with a heat bath. We focus our interest on
whether the stable long-range soliton motion persists under
the imposed thermal perturbations. Another aspect of our
study is the influence of an applied electric field on the cur-
rent produced by the electron soliton propagation.

The paper is then organized as follows: In the Sec. II we
introduce our model for the polypeptide chain and recall the
range of realistic parameter values for proteins. In Sec. III
the soliton solutions are considered. Two methods are used to
obtain them. First there is the possibility of launching them

“directly” in a lattice region by choosing proper initial values
for the electron and lattice components in the form of local-
ized states. It is demonstrated that these solitons accomplish
long-range ET in the polypeptide chain. Alternatively, soliton
solutions are constructed with the help of a variational ap-
proach with which lowest energy configurations are found
that consist of a localized electron state and its assigned lat-
tice deformation. Subsequently, we study the thermal stabil-
ity of solitons. To this end the lattice system is coupled to a
heat bath modeled by a stochastic force in the form of Gauss-
ian white noise. The influence of an applied electric field on
the soliton propagation is discussed in Sec. V. Finally, we
give a summary of our results.

II. THE POLYPEPTIDE CHAIN MODEL

We study a linear lattice of molecules coupled by Morse
forces in which one excess electron is imbedded. Accord-
ingly, our model of charge transport in the system is based on
the following Hamiltonian consisting of two parts:

H = Hel + Hlattice. �1�

Hel describes quantum-mechanically the ET over the mol-
ecules in tight-binding approximation and Hlattice represents
the classical dynamics of longitudinal vibrations of the mol-
ecules, viz. stretchings and compressions of the associated H
bonds. The electron dynamics and the coupling to the lattice
are described by the tight-binding system

Hel = − �
n

Vn n−1�cn
*cn−1 + cncn−1

* � . �2�

The index n denotes the site of the nth molecule on the
strand of hydrogen-bonded units and �cn�2 determines the
probability to find the electron �charge� residing at this site.
Vn n−1 is the transfer matrix element �its value is determined
by an overlap integral� being responsible for the nearest-
neighbor transport of the electron along the chain.

The lattice part of the Hamiltonian, Hlattice, models dy-
namical longitudinal changes of the equilibrium positions of
the molecules yielding alterations of the length of a hydrogen
bond. The latter can appropriately be modeled by Morse
potentials.27–35 The Hamiltonian of the Hlattice is given by

Hlattice = �n � pn
2

2M
+ D�1 − exp�− B�qn − qn−1��	2
 . �3�

The coordinates qn quantify the displacements of the mol-
ecules from their equilibrium positions along the molecular
axis. D is the break-up energy of a hydrogen bond, B is the
stiffness of the Morse potential, and M denotes the mass of a
molecular unit. The Morse potential exhibits an exponential-
repulsive part preventing the cross-over of neighboring lat-
tice particles �molecules� for large displacements. Note that,
with an expansion of the exponential functions, one recovers
in lowest order the harmonic limit used in solid state
physics21,36,37 and taking into account higher-order terms an-
harmonic potentials. On the other hand, the Morse potential
looks very much like the six-twelve Lennard-Jones
potential.21,25
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The interaction between the electronic and the vibrational
degrees of freedom is due to the modifications of the elec-
tronic parameters Vn n−1 by displacements of the molecules
from their equilibrium positions. To be precise, the transfer
matrix elements Vn n−1 are supposed to depend on the relative
distance between two consecutive molecules on the chain in
the following exponential fashion:

Vn n−1 = V0 exp�− ��qn − qn−1�� . �4�

The quantity � regulates how strong Vn n−1 is influenced by
the distance rn=qn−qn−1, or in other words it determines the
coupling strength between the electron and the lattice sys-
tem. On the other hand, the actual charge occupation has its
�local� impact on the longitudinal distortion of the molecular
chain. Note that the exponential form of the electron-lattice
interaction accounts also for small or large displacements of
the lattice units thus going beyond the range of harmonic
interaction studied in Refs. 17, 20, 28–34, 38, and 39. The
latter limiting case is recovered by keeping only the linear
term in an expansion of the exponential function in Eq. �4�,
i.e., V�rn��V0�1−�rn�, which is justified only for small ar-
guments �rn. In fact, for arguments �r=−0.5 the linear treat-
ment falls already by 25% short of those of the simplest
anharmonic form including the next-order expansion term,
i.e., V�rn�=V0�1−�rn+1/2��rn�2�. Therefore, for a more re-
alistic description of stronger lattice deformations it is inevi-
table to include also higher-order contributions of the vibra-
tional amplitudes in the electron-vibration interaction
potential. We remark that in our model for a small coupling
� /B=1 displacements of the order of rn=−0.78 are encoun-
tered. For a coupling � /B=1.75 the maximal compression
takes on the value rn=−1.54.

For a dimensionless representation we introduce the fol-
lowing time scale: t̃=�Morset, with �Morse=�2DB2 /M being
the frequency of harmonic oscillations around the minimum
of the Morse potential. The energy of the system is then
measured in units of the depth of the Morse potential, i.e.,
H→H / �2D�. The dimensionless representation of the re-
maining variables and parameters of the system follows from
the relations:

q̃n = B qn, p̃n =
pn

�2MD
, Ṽ =

V0

2D
�5�

�̃ =
�

B
. �6�

In what follows we drop the tildes.
The equations of motion derived from the Hamiltonian

given in Eqs. �2� and �3� read as

i
dcn

dt
= − ��exp�− ��qn+1 − qn��cn+1 + exp�− ��qn − qn−1��cn−1	

�7�

d2qn

dt2 = �1 − exp�− �qn+1 − qn�	�exp�− �qn+1 − qn��

− �1 − exp�− �qn − qn−1�	�exp�− �qn − qn−1��

− �V��cn+1
* cn + cn+1cn

*�exp�− ��qn+1 − qn��

− �cn
*cn−1 + cncn−1

* �exp�− ��qn − qn−1��	 . �8�

The adiabaticity parameter �=V / ���Morse�, appearing in the
right-hand side of Eq. �7� determines the degree of time scale
separation between the �fast� electronic and �slow� acoustic
phonon processes.

With regard to parameter values we note that the geo-
metrical parameters of the equilibrium configuration of
hydrogen-bonded chains of biomolecules are well known.40

The equilibrium length a of a hydrogen bond is in the range
3.4–5 Å, the dissociation energy is �0.04–0.3� eV and the
range parameter B�2–5� Å−1. As the coupling strength be-
tween the electronic and lattice system is concerned, accept-
able values for ET along hydrogen-bonded polypeptide
chains can be obtained using values for the electron-phonon
coupling strength from the Davydov model for charge trans-
port in �-helices.17,20 Regarding charge transport along
hydrogen-bonded chains for the value of the transfer matrix
element holds V0�1.0 eV.18,20

For our model study we use, unless stated otherwise, the
following values representative of a typical H-bond chain:
a=4 Å, D=0.1 eV, B=4.45 Å−1, and V0=0.1 eV.2,3,40 For
our computations we have chosen a value of the transfer
matrix element V0 lying one order of magnitude below the
value used by Davydov in the context of solitary electron
transfer in proteins.18,20 Nevertheless, with our choice of the
value of V0 a fairly pronounced time scale hierarchy between
the fast electron and the slow vibrations is ensured. In fact,
the characteristic frequencies are given then by �Morse
=5.34�1012 s−1 and �electron=V0 / � =1.52�1014 s−1 yield-
ing an adiabaticity parameter �=28.47. The influence of a
larger transfer matrix element on the ET is currently being
studied. The adjustable coupling parameter varies in the
range �= �1–1.75�B.

III. SOLITON PROPAGATION

A. Soliton launching

In order to generate soliton solutions of the coupled sys-
tem we use two methods. First there is the possibility of
launching a Toda-like soliton on the chain of coupled Morse
oscillators. Indeed, in the range of parameter values relevant
for the present study, the Morse chain exhibits compressions
and localization features that are very similar to those of a
Toda chain.25,41–43 Particularly, the Toda soliton solution
which was expressed in appropriate units reads as

exp�− ��qn − qn−1�� = 1 + �2 cosh−2�	n − �t� , �9�

is preserved in the Morse chain with the soliton parameters
��3 and �=sinh 	 apart from the emission of small-
amplitude waves. The latter radiation yields additional but
negligibly small deformation of the molecular lattice chain.
Moreover, as shown in Ref. 44 it is possible that a localized
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electronic pulse travels in unison with the Toda soliton along
the lattice chain accomplishing in this manner solitonic
charge transport.

In order that this collective propagation takes place the
initial electronic wave pattern has to match the shape of the
Toda soliton according to

cn�t� = � cosh−1�	n − �t�exp�− i�
t − �n + ��� , �10�

with �angular� frequency


 = − 2 cos � cosh 	 , �11�

and phase �� �−� ,��. In the case of vanishing coupling �
=0, the electron Eq. �7� is linear and hence, the localized
pulse given in Eq. �10� disperses in the course of time. How-
ever, for �0 an effective nonlinearity is induced in the
electron equation and the latter gets the structure similar to
the integrable the Ablowitz-Ladik’s �AL� equation45 which
possesses soliton solutions. With the initial condition for the
electron wave function, given in Eq. �10�, it is assured that
the Toda soliton and the localized electron pulse, in the form
of a AL-soliton solution, travel concertedly along the lattice.

For the present study we have utilized this approach to
excite solitonic charge transport in the coupled electron
lattice-vibration system. We integrated with the help of a
fourth-order Runge-Kutta method the set of coupled Eqs. �7�
and �8� associated with a molecular lattice chain consisting
of 99 sites where we imposed periodic boundary conditions.
�An odd number of lattice sites was chosen to place the lo-
calized electronic occupation probability symmetrically at
the central lattice site. However, whether the number of lat-
tice sites is even or odd does not play a role so long as the
length of the lattice is sufficiently large compared to the
width of the localized electronic pulse.� The norm conserva-
tion �n �cn�t��2=1 �as well as the conservation of the total
energy in the conservative case� was monitored during the
integration procedure to guarantee accurate computations.

The spatiotemporal evolution of the electron and the lat-
tice soliton, respectively, is presented in a density plot in Fig.
1 for strong coupling �=1.75. The energy contents attributed
to the lattice deformation, that is the “phonon dressing” of
the soliton, and the electron-phonon interaction are
0.0938 eV and −0.1306 eV, respectively, resulting in a soli-
ton binding energy of −0.0368 eV �see also further below in
Sec. III B�. We emphasize that throughout this time no sig-
nificant energy redistribution takes place, viz., the two sub-
systems virtually retain their allocated energy which proves
also the dynamical stability of the soliton propagation.

Both the electron and lattice components move direction-
ally along the lattice maintaining practically their respective
localized structure apart from the emission of a small-
amplitude wave from the main lattice deformation soliton.
The solitons travel with velocity vsoliton=1.028vs where vs is
the velocity of sound in the Morse chain. Thus supersonic,
long-range and stable solitonic ET is achieved. We empha-
size that the extension of the localized electron pulse is com-
paratively large which facilitates its motion.

B. Variational approach

As an alternative to the above described method solitons
can also be obtained with the use of a variational approach.
Again we seek for solutions where the lattice part is given by
a Toda-like soliton. We consider solutions moving in a frame
with u=	n−�t the traveling wave argument of the Toda soli-
ton. The system for the spatial pattern can be obtained from
the total energy of the system

E = �
n

� 1
2„1 − exp�− q̃n − q̃n−1�…2 − V exp�− ��q̃n − q̃n−1��

���n
*�n−1 + �n�n−1

* �	 , �12�

according to

�E

� q̃n

= 0,
�

��n
�E + 
�

n

�n
2� = 0, �13�

where the �n’s solve the corresponding stationary
Schrödinger equation obtained from Eq. �7� with the substi-
tution cn�t�=�n exp�−i
� and where 
 is the corresponding
spectral parameter. The adiabatic approach is based on the
fact that there is a large time scale hierarchy between the fast
charge transport and the slow bond vibrations. In this case
the inertia in Eq. �8� are negligible so that the energy of the
system is given by Eq. �12�.

Solutions of the Morse chain are supposed to be of the
form of the Toda-soliton

exp�− �q̃n − q̃n−1�� = 1 + sinh2	 cosh−2�	n� , �14�

where 	 is treated as a variational parameter. For the local-
ized electronic solution we use a simple trial function

�n = A��n�, �15�

where the variational parameter 0���1 gives the width of
the solution. The closer � is to the value �→1 the more
delocalized the state becomes. Correspondingly, for �→0
the state gets more localized. The coefficient A follows from
the normalization condition and is evaluated as

A =�1 − �2

1 + �2 . �16�

The total variational energy is then given by

� =
1

2�
n

sinh4	

cosh4�	n�
− 2V

1 − �2

1 + �2

��
n
�1 +

sinh2	

cosh2�	n��
�

��n���n−1�. �17�

For a given set of system parameters � and V the global
minimum of �, giving the lowest energy configuration, has
to be found in the two-parameter space �	 ,��. Unlike the
above used “direct” method, for which in order to comply
with the norm conservation the parameter 	 is fixed to a
single value, the present one has the advantage that it is also
applicable to different values of 	 resulting in various local-
ized electron and lattice patterns.
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In Fig. 2 we depict the localized pattern belonging to the
ground state of the coupled system for three different cou-
pling strengths. The electronic wave function is localized
around a lattice site and the envelope of the amplitudes de-
cays monotonically and exponentially with growing distance
from this central site. The localized lattice pattern adapts a
kinklike �domain wall or topological soliton� shape attributed
to compression of the chain.25 Likewise the electronic com-
ponent of the ground state of the associated longitudinal dis-
placement pattern, when represented in the form exp�−�qn

−qn−1��−1, is bell-shaped, and is also exponentially local-
ized around the central lattice site. With increased coupling
strength, �, the width of the localized electronic pulse dimin-
ishes and the amplitude becomes higher and hence, the de-
gree of electronic localization is enhanced. There is a smooth
transition from a fairly extended electron pulse, ranging over

17 lattice sites, to a narrow state being localized at only four
sites. Remarkably, as it will be illustrated further below, even
the strongly localized states move along the lattice, a fact
that distinguishes soliton solutions from their polaron coun-
terparts, which are mobile only if their size is large enough to
overcome the pinning effects of the lattice.46,47 Stronger lo-
calization of the electron demands larger binding energy
which means higher deformation energy of the chain, mean-
ing that the compression of the chain has to be suitably large.
The binding energy of the soliton, Eb, is determined by Eq.
�12�. EB measures the lowering of the energy of the system
with respect to the lower band edge of the extended state.
There is a growth of the binding energy with raising � rang-
ing from EB=−0.2051 eV for �=1 to EB=−0.2480 eV for
�=1.75. The binding energy has to be supplied externally in
order to destroy the soliton. Consequently, in the dynamical

FIG. 1. Morse lattice. Density plot of the spa-
tiotemporal evolution of the solitons with �
=1.75. The amplitudes corresponding to the dif-
ferent colors is given in the panel at the right-
hand side of the plots. �a� Lattice deformation
exp�−�qn�t�−qn−1�t��	−1. �b� Electronic occupa-
tion probability �cn�t��2.
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regime, the larger the coupling strength the more robust the
solitons should be with regard to perturbations. The region of
the lattice that has been traversed by the soliton remains in
distorted shape for which the displacement of the corre-
sponding lattice units from their equilibrium position is
given as 2	 and for destruction of the soliton these units
have to be brought back to their equilibrium positions.17,20

As the degree of the compression of the lattice is concerned
we remark that for �=1 ��=1.75� the relative reduction of
the length of a hydrogen bond is 4.27% �9.00%�. The mo-
mentum of the lattice soliton with the corresponding value of
	 is given by

pn = 2�„exp�2	�n − 1��/�1 + exp�2	�n − 1��	

− exp�2	n�/�1 + exp�2	n��… . �18�

The lattice soliton serves as the carrier of the localized elec-
tron pulse inducing in this manner a bound state �solectron�.
This is different from the above used direct method for soli-
ton launching. In the latter case the electron pulse takes the
actively part �even though the formation of the electronic AL
soliton is induced by the coupling to the lattice Toda-soliton�
for it possesses already initially its own momentum whereas

in the present case the initial electron wave function is rep-
resented by a standing wave �see also �Ref. 23��.

For characterization of the soliton propagation we plot in
Fig. 3 the time evolution of the first momentum of the elec-
tronic occupation probability and that of the lattice deforma-
tion pattern defined as

n̄electron�t� = �
n

n�cn�t��2, �19�

n̄lattice�t� = �
n

n�exp„− �qn�t� − qn−1�t�	… − 1�2, �20�

giving the position of the soliton. The coupling parameter is
�=1.5 giving an electron that is localized over five sites.
Clearly, the supersonic electron and lattice soliton travel col-
lectively with uniform velocity, vsoliton=1.0653vs, corre-
sponding to vs=12.361 Å/ps, on the chain. In this manner
the electron travels faster over long distances exceeding by
far easily the maximal possible distance of 20 Å achieved by
a single-step tunneling.48,49

Furthermore, the degree of localization of the electron and
lattice energy can be measured using the partition number
defined as

Pelectron = 1��
n

�cn�t��4, �21�

Plattice = �
n

Elattice
2 �t�� ��

n

Elattice�t��2
, �22�

respectively. Since the electronic wave function is normal-
ized the electron is completely confined at a single site if
Pelectron=1 and is uniformly extended over the lattice if
Pelectron is of the order N, viz. the number of lattice sites.
Hence, Pelectron measures how many sites are excited to con-
tribute to the electronic pattern. Equivalent arguments hold
for Plattice. We observed that both Pelectron as well as Plattice
keep their initial value with negligible oscillatory variations
around them.

FIG. 2. Morse lattice. Spatial patterns of the localized states for
different coupling strengths �. The assignment of the line types is
as follows: dashed line, �=1.0; dotted line, �=1.50; and solid line,
�=1.75. �a� The electronic occupation probability ��n�2. �b� The
longitudinal displacements qn.

FIG. 3. Morse lattice. Time evolution of the first momentum of
the electronic occupation probability �solid line� and of the lattice
soliton �dotted line� defined in Eqs. �19� and �20�, respectively.
Parameter value: �=1.5.
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With respect to the influence of the coupling strength �
we remark that for couplings up to ��1.6 the motion is
coherent, that is the solitons travel with constant velocity
over long periods of time �in the simulation taken as 600
time units corresponding to 112 ps�. This behavior is pre-
sented in Fig. 4 depicting the time evolution of the first mo-
mentum of the electronic occupation probability for different
�’s. When the coupling is increased the solitons still travel
but with progressing time they become slower and eventu-
ally the motion terminates at a site at which the solitons stay
from now on. Even for a large value �=1.75, for which the
size of the solectron is small �see Fig. 2�, propagation is
achieved in an initial phase. The soliton passes ten lattice
sites, corresponding to a distance of 40 Å, before the motion
terminates and the soliton gets trapped. That the motion of
narrow electron and lattice solitons is accomplished at all is
in so far remarkable as in the Holstein50 and the Davydov
model where the small polaron and soliton solutions, respec-
tively, are immobile due to their pinning to the discrete
lattice.17,20,33,46

To illuminate how vital amharmonicity contained in the
lattice vibration potential as well as the electron-lattice cou-
pling is for the mobility of strongly localized states we com-
pare our soliton solutions with those obtained in systems
with harmonic interaction between a quasiparticle and the
lattice vibrations, such as, e.g., the Holstein and Davydov
system. To this end we have constructed strongly localized
polaron states �located at five sites� in the Holstein system by
adjusting a sufficiently strong coupling between the �in-
tramolecular� optical vibrational mode and the electron. At-
tempts to initiate afterwards the motion of the standing po-
larons utilizing the method outlined in Ref. 51 failed.
According to this method the motion is activated through
suitable perturbations of the momentum variables in the di-
rection of the so-called pinning mode. However, even for
very strong perturbations �though beyond the physical en-
ergy range characteristic for excitations in the Holstein sys-
tem� the polarons remain strictly immobile.

Regarding the Davydov system it seems not justified to
construct exciton states which are localized over only a few

lattice sites on the basis of the mere harmonic coupling be-
tween the exciton and an �intermolecular� acoustic mode of
the lattice. To obtain narrow exciton states fairly strong cou-
pling to the lattice vibrations is necessary which in turn, as
argued above, yield big amplitudes of the pulse of the lattice
compressions. Therefore, the linear approximation in the lat-
tice amplitude of the coupling term alone is no longer suffi-
cient. Notice that the supersonic transport in the context of
the Davydov model in Ref. 23 is demonstrated for two-
component soliton solutions whose excitonic parts are fairly
broad and the lattice compressions are comparatively strong
but yet not too pronounced to hinder mobility.

Finally, let us note that we obtain qualitatively equal re-
sults when the value of the parameters a, b, D, and V0 are
varied in their respective ranges given above.

IV. THERMAL STABILITY

In this section we investigate the thermal stability of the
soliton motion and hence the robustness of the charge trans-
port. For this aim the system is brought in contact with a heat
bath mimicked by a stochastic force acting upon the lattice
and a corresponding damping. The corresponding Langevin
equation reads as

d2qn

dt2 = �1 − exp�− �qn+1 − qn�	�exp�− �qn+1 − qn��

− �1 − exp�− �qn − qn−1�	�exp�− �qn − qn−1��

− �V��cn+1
* cn + cn+1cn

*�exp�− ��qn+1 − qn��

− �cn
*cn−1 + cncn−1

* �exp�− ��qn − qn−1��	 − �
dqn

dt

+ �2Db� . �23�

We focus our interest on whether the stable long-range soli-
ton motion persists under the imposed thermal perturbations.
The stochastic term ��t� on the right-hand side of Eq. �23� is
of Gaussian white noise with zero mean and delta correla-
tion, i.e., ���t��=0 and ���t���t���=��t− t��. The strength of
the damping � on the right-hand side of Eq. �23� is related to
the amplitude of the stochastic force via the fluctuation-
dissipation theorem, Db=kBT� /M. The damping constant
lies in the range ��0.02 corresponding to “life times” on
time scales of at least 10 ps relevant for biological ET. As
Fig. 5, illustrating the position of the solitons, reveals that the
stable long-range soliton motion persists under the imposed
thermal perturbation even at temperature T=300 K for which
EB=−0.2245 eV is considerably above kBT. For small
enough damping parameters �c�0.01 the thermal perturba-
tions effectively do not have an impact on the soliton propa-
gation of the zero temperature regime although in the end the
solitons become a little bit slower. For a critical damping
strength ��c the motion of the solitons is characterized by
an initial phase during which propagation is still achieved
albeit with gradual reduction of the velocity with progressing
time so that finally, the soliton gets trapped at a lattice site.
Apparently, the departure of the electron from the original
coherent soliton path is more pronounced the stronger the �.

FIG. 4. Morse lattice. Temporal behavior of the position of the
solectron on the lattice for different coupling strengths �. The line
types are assigned as follows: solid line, �=1.6; dashed line �
=1.65; dotted line �=1.75.
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Nonetheless, in the entire �-interval, that is physically rel-
evant, the solitons are able to travel over a distance of at least
35 consecutive lattice units during the phase of maintained
soliton propagation before they come to a halt. Moreover, we
note that the solitons keep their localized patterns throughout
the time, a behavior which is reflected in the corresponding
evolution of the partition numbers which exhibit small-
amplitude oscillations around the mean value determined by
the initial partition number. Similar features regarding ther-
mal stability of solitons were found for the Davydov
model.20,52–54

Interestingly, in cases of relatively weak couplings, i.e.,
��1.2, the decoupled lattice soliton alone, when subjected
to thermal fluctuations, gets destroyed. The thermal sensitiv-
ity of the lattice soliton is due to the fact that the lattice
deformation energy is then simply too low compared to
kBT=0.024 eV at T=300 K. Nevertheless, the bound combi-
nation of the solectron persists even for small electron-
vibration couplings. This illustrates that the resulting binding
energy of the soliton is far below the lower edge of extended
states to assure its thermal stability.

V. ELECTRIC FIELD

Finally, we studied also the role of an electric field on the
solectron propagation. To this aim the right-hand side of the
electron equation is modified by an additional term accord-
ing to

i
dcn

dt
= − ��exp�− ��qn+1 − qn��cn+1

+ exp�− ��qn − qn−1��cn−1	 − nẼcn, �24�

with the dimensionless field strength Ẽ=ea / ���Morse�E. As
shown in the preceding section for sufficiently small damp-
ing � the soliton evolution remains virtually unaltered �even
at temperature T=300 K�. Thus, focusing interest on the im-
pact of the electric field on the soliton dynamics, we can

restrict the current study to the T=0 case. Furthermore, since
for small damping the relaxation time of the �damped� lattice
motion is considerably larger than our simulation time the
lattice vibration proceeds virtually frictionless. The dynamics
is initialized with soliton solutions gained with the help of
the variational method described in Sec. III B. We apply an
electrical field acting in the direction of the running soliton.
We study how the interaction between the running soliton
and the moving electron influences the electron flow. Our
results are summarized as follows: For low field strengths E
smaller or equal to Ec�0.0738�105 V/cm the solectron
propagation is independent of the electric field and the ve-
locity, and thus the current is always that of the field-free
case. For field strengths above Ec there exists an interval in
which the current follows Ohm’s law, viz. the soliton travels
with a constant velocity that is proportional to E. Interest-
ingly, the soliton propagation proceeds in each case, i.e., with
and without the external field, with constant velocity hinting
that the kinetic energy allocated to the soliton stays unaltered
�see also Ref. 55�. These features are illustrated in Fig. 6
depicting the velocity of the solectron as a function of the
field strength. Eventually, for large values E�3.518
�105 V/cm soliton dissociation occurs, viz. under the action
of the strong field the electron is immediately swept over the
lattice without being accompanied by its lattice counterpart
anymore. For strong fields the heavy lattice particles are too
sluggish to adjust rapidly enough to follow the fast electron
motion imposed by the field.56 Clearly, if we proceed from
high field values down at E=Ec there is a transition from
Ohmic to non-Ohmic electric conduction �see also Ref. 26�.

VI. SUMMARY

In the present paper we have investigated the soliton me-
diated propagation in a hydrogen-bonded chain model in the
realm of the charge transfer in biomolecular chains. The cor-
responding model system comprises two parts, a tight-
binding system accounting for the description of the
quantum-transport of a charged entity �an excess electron or

FIG. 5. Morse lattice. Time evolution of the first momentum of
the electronic occupation probability at T=300 K and for damping
�=0.002 �solid line� and �=0.02 �dashed line�. Parameter value:
�=1.5.

FIG. 6. Morse lattice. The velocity of the solectron as a function
of the strength of the electric field. One unit on the abscissa is
equivalent to 0.879 105 V/cm while one unit on the ordinate corre-
sponds to 21.428 Å/ps.
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hole� along the lattice sites �molecular units� and a Morse
chain modeling the displacement of the molecules from their
equilibrium positions along the molecular axis, viz. the
stretchings and/or compressions of the hydrogen bonds. The
coupling between the electronic and lattice vibrations is due
to the dependence of the electronic transfer matrix element
on the relative distance between two neighboring molecules
in an exponential fashion. This renders the electron-vibration
coupling to be of anharmonic type going beyond the usually
considered harmonic coupling. We have focused interest on
the excitation of soliton solutions in the chain which accom-
plish long-lived and stable charge transfer. To this end two
methods have been employed. First, choosing properly
shaped initial conditions, solitons are directly launched in the
lattice yielding a two-compound soliton solution containing
the localized charge pattern together with its attributed lattice
deformation. Concerning the Morse chain the solitonic wave
is of the form of a Toda soliton constituting a domain wall
�topological soliton� that leaves the region that has been tra-
versed by it permanently distorted, i.e., the associated hydro-
gen bonds remain compressed. The bell-shaped electronic
wave function travels in unison with the lattice deformation
with supersonic velocity.

Alternatively, we have invoked a variational approach to
construct a soliton in the Morse chain and electronic tight-
binding lattice, respectively, composing so a soliton state of
the coupled electron-vibration system �the solectron�. The
stronger the electron-vibration coupling the higher is the de-
gree of localization of the solitons. Strikingly, even move-
ment of narrow electron states, being localized mainly on
five lattice sites, is supported by the supersonic solitons. It
has been demonstrated that for realistic parameter values,
being representative for strands built up from hydrogen-
bonded peptides, the solitons travel over long distances
maintaining their localized shape. Hence, the pinning effect
due to the discreteness of the underlying lattice is subdued.
This feature differentiates the solectron with the foundation
on anharmonic lattice-vibrations and corresponding electron-
vibration interaction from their counterparts that exist in the
Holstein and Davydov model, respectively, relying on the
harmonic exciton vibration interaction. In the latter two cases
the corresponding polaron and soliton solutions, respectively,

are mobile only if their width is large enough to overcome
the pinning barrier of the lattice. On the other hand, our
findings lead us to the conclusion �of some universal valid-
ity� that with anharmonic vibrations supersonic carriers can
promote the transport of narrow excitations. This result is
also valid when due to dissipation the soliton must be main-
tained by an appropriate input-output energy balance.26

Furthermore, we have investigated the impact of thermal
perturbations on the soliton propagation and hence the ro-
bustness of the solectron. For this scope the lattice system is
brought into contact with a heat bath that is mimicked by a
Gaussian white noise with zero mean, and delta-function cor-
relations. The corresponding damping constant is related to
the temperature via the fluctuation-dissipation theorem. Alto-
gether the evolution of the solitons virtually does not change
under the impact of thermal perturbations because the soliton
binding energy exceeds always the thermal energy for all
couplings 1���1.75. As for the influence of the damping
constant we have found that for values ��0.01 the directed
soliton motion prevails in an initial phase but at last there
occurs soliton trapping impeding further motion. Neverthe-
less, even in the strong damping case the ET takes place on
biologically relevant time scales and the charge is carried
over fairly long distances.

Finally, we have studied the influence of an applied exter-
nal electric field on the ET. For relatively high values of the
field the velocity of the solitons is proportional to the field
strength and hence, the associated current obeys Ohm’s law.
Lowering the field strength we have found a regime for
which the soliton velocity is kept at a constant level indepen-
dent of the field strength. For relatively higher values above
a critical field strengths the solectron is ruptured with the
consequence that the electron is swept over the lattice by the
strong field.
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