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Abstract. We investigate the onset and maintenance of nonlinear soliton-like excitations in chains of atoms
with Morse interactions at rather high densities, where the exponential repulsion dominates. First we
discuss the atomic interactions and approximate the Morse potential by an effective Toda potential with
adapted density-dependent parameters. Then we study several mechanisms to generate and stabilize the
soliton-like excitations: (i) External forcing: we shake the masses periodically, mimicking a piezoelectric-
like excitation, and delay subsequent damping by thermal excitation; (ii) heating, quenching and active
friction: we heat up the system to a relatively high temperature Gaussian distribution, then quench to a
low temperature, and subsequently stabilize by active friction. Finally, we assume that the atoms in the
chain are ionized with free electrons able to move along the lattice. We show that the nonlinear soliton-like
excitations running on the chain interact with the electrons. They influence their motion in the presence
of an external field creating dynamic bound states (“solectrons”, etc.). We show that these bound states
can move very fast and create extra current. The soliton-induced contribution to the current is constant,
field-independent for a significant range of values when approaching the zero-field value.

PACS. 05.70.Fh Phase transitions: general studies – 05.40.Jc Brownian motion – 05.70.Ln. Nonequilibrium
and irreversible thermodynamics

1 Introduction

Recently, we have developed the statistical thermodynam-
ics of one-dimensional (1D) lattices with Morse interac-
tions [1–4]. In particular we have investigated the cluster-
ing problem in low density 1D Morse lattices. A cluster
was defined as a maximum of the local density, which is
stable with respect to collisions. In the present report we
concentrate on the opposite case of higher densities where
the exponential repulsion dominates. The features of high-
density Morse lattice rings has already been investigated
in earlier work, where we could identify phonon peaks as
well as peaks corresponding to solitonic excitations [3]. At
relatively high densities the equilibrium clusters created
by the attractive part of the forces become unstable due
to the strong repulsion at small distances. We consider
a system as dense, if the average distance between parti-
cles is equal or less than the distance where the potential
minimum is located. We shall show, that in such dense sys-
tems excitations exist, which are soliton-like, whose gener-
ation and evolution along the lattice we study. Further, we
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discuss the influence of soliton-like excitations on electric
transport. In recent communications the authors have al-
ready predicted [5] and discussed [6,7], albeit in a sketchy
way, the possibility of soliton-mediated electric conduction
in nonlinear lattices. Here we thoroughly study the influ-
ence of nonlinear interactions in dense Morse chains on
electron dynamics and electric transport. We will make use
of the fact that dense Morse chains may be well approx-
imated by effective Toda chains with density-dependent
adapted potential parameters. For illustration, the param-
eters of the forces used in this work are chosen in a range
typical for hydrogen bonded polypeptide chains, such as α-
helices [8–13]. Although our model-problem is a 1D-lattice
we think that understanding the equilibrium, dynamic and
transport features of 1D systems has always proven use-
ful [14–18] for the subsequent work in 2D and 3D cases.

2 The Morse potential and other models
of atomic interaction with exponential
repulsion

The Morse potential was introduced in 1929 by Morse
in a paper with the title “Diatomic molecules according
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Fig. 1. Morse potential B = D = 1; σ = 1 (UM , solid line),
and effective (equivalent) Toda potential (UT

1 , upper dotted
line) adapted to the minimum at r0 = σ (a = 2/3; b = 3). The
third curve (UT

2 , lower dotted line) gives the effective Toda
potential adapted to the point r0 = σ/2 and therefore cor-
responding to twice higher density. In this case the effective
Toda potential is nearly identical with the Morse case left to
the minimum, but is higher on its right.

to wave mechanics” [19]. Morse treated the problem of
atomic interactions at small distances and derived a simple
expression for the quantum interactions between atoms.
The potential depends on two parameters B, D and reads

UM (r) = D(exp(−B(r − σ)) − 1)2. (1)

The potential has a minimum at r = σ and may be
considered as a good alternative to the Lennard-Jones
model [7,20,21]

UL−J(r) =
B

r12
− A

r6
. (2)

The long range part of the Morse potential is less realistic
than the 1/r6 term in the Lennard-Jones potential. How-
ever the exponential repulsion term in the Morse potential
has solid quantum-mechanical foundations. The predomi-
nant cause of exponential repulsion between atoms is the
overlapping of wave functions of the valence electrons and
is created mostly in the region close to the axis between
the atoms [22].

The repulsive part of the Morse potential is similar to
the repulsive part of the Toda potential

UT (r) =
a

b
[exp(−b(r − σ)) − 1 + b(r − σ)] . (3)

Toda [16] found analytical solutions describing the non-
linear excitations in 1D lattices with equation (3) as in-
teraction. The linear frequency connected with the Toda
potential is

ω2
0 =

ab

m
,

where m is the mass of the particles. Since the Toda po-
tential is exactly solvable, it seems useful to approximate
the Morse potential with the parameters B and D by a
Toda potential. In the region around the minimum a use-
ful approximation of the Morse potential by an effective
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Fig. 2. Effective Morse potential (solid line) acting on a given
particle placed between two other Morse particles at distance
2σ with D = B = 1. We compare with the corresponding
result obtained from an effective Toda potential (dotted line)
with the adapted parameters a = 2/3, b = 3.

Toda potential is obtained with the choice

aeff = a =
2
3
BD, beff = b = 3B. (4)

With this choice the Morse potential UM (r) and the ef-
fective Toda potential UT

eff have nearly identical shape
around the minimum, as shown in Figure 1. This is due
to the fact that the Taylor expansions around the mini-
mum are identical up to the third order and the fourth
orders are very near to each other. Our approximation by
an effective Toda potential is done to help us finding ap-
proximate analytical solutions for systems where the mean
distance between particles corresponds to the minimum:

r0 =
L

N
=

1
n

= σ, (5)

(L is the length of the elementary cell which serves as
the element for periodic repetition, N is the number of
particles in a cell).

We shall study now the forces acting on a single par-
ticle embedded into a 1D lattice. Take a Morse particle
placed midway between two other nearest-neighbor Morse
particles separated by the average distance 2r0. Clearly,
the inner particle is bound to experience quasilinear os-
cillations around the minimum for small excitations and
nonlinear oscillations with large elongations due to the an-
harmonicity of equation (1). If the displacement from the
center is denoted by x, the effective embedding potential
felt by the central particle is (see Fig. 2)

UM
em = 2D[exp(2B(σ − r0)) cosh(2Bx)

− 2 exp(B(σ − r0)) cosh(Bx)]. (6)

We see from Figure 2, which corresponds to the equilib-
rium density (5), r0 = σ, that an effective Toda potential
with adapted parameters a = (2/3)DB, b = 3B is nearly
identical in shape with the result obtained for the Morse
potential. For higher densities (r0 < σ) the particles do
not oscillate around the minimum but move in average
on the repulsive branch of the Morse potential, left to the
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minimum. In this case the effective oscillation frequency
is given by the second derivative of the Morse potential at
r = r0:

mω2
0 = U ′′M (r = r0)

= 4B2D

[
exp(2B(σ − r0)− 1

2
exp(B(σ − r0)

]
.(7)

Then we can write a useful approximation by a Toda-
type potential which at r = r0 is adapted to the Morse
potential:

UT (r) = UM (r0) + U ′M (r0)(r − r0)

+
mω2

0

b2
0

[exp(−b0(r − r0))−1 + b0(r − r0)] ,(8)

with density-dependent parameters (for simplicity we omit
in the following the argument r0). The dash denotes
derivative. The stiffness parameter b0 may be used to fit
the third derivative

b0 =
U ′′′M (r0)
U ′′M (r0)

=
U ′′′M (r0)

mω2
0

, (9)

so that

b0 = 2B
1 − 1

4 exp(−B(σ − r0))
1 − 1

2 exp(−B(σ − r0))
.

Please note that our choice of the effective parameters in-
troduces an implicit density dependence of the effective
Toda potential. The effective Toda potential (8) is also
called the local Toda approximation to the Morse poten-
tial. Note also that the constant and the linear terms in
equation (8) are irrelevant, the constant term gives no con-
tribution to the forces and the linear terms cancel in sys-
tems with periodic boundary conditions. The embedding
potential (expressed by the equivalent local Toda approx-
imation) has for high densities (5), r0 � σ, a similar form
as shown in Figure 2 for the case r0 = σ,

Uem(x) = 2
mω2

0

b2
0

exp(b0(σ − r0)) cosh(b0x). (10)

In particular this approximation provides the correct os-
cillation frequency ω0 of the central particle.

There are other possible potentials with exponential
repulsion. A useful combination between the Toda- and
the Lennard-Jones potentials is the Buckingham (exp6)
potential that describes well (with appropriate parame-
ters) realistic cases

UB(r) = A exp(−b(r − σ)) − B
(σ

r

)6

. (11)

Since computer simulations with an r−6-tail may give
rise to numerical difficulties (due to its long range often
avoided by setting a cut-off at some finite distance) we
prefer here to work with the Morse potential which has
an exponentially decaying attractive tail. A different way
to treat the Buckingham potential is an approximation by
an effective Toda potential, fitting as for the Morse case,

the height and the first three derivatives at r = r0. Let us
emphasize that these potential models with exponential
repulsion are quite realistic for the description of dense
systems, where the Pauli repulsion between the overlap-
ping valence shells of the atoms dominates.

Using effective Toda potentials facilitates not only the
computer simulations but also the thermodynamic calcu-
lations, since one may use standard formulae developed for
the thermodynamics of Toda potentials [23,24]. In partic-
ular, we shall be studying nonlinear excitations and their
possible influence on electric transport, e.g., the coupling
between nonlinear excitations and electric charges in ion-
ized Morse chains. For illustration, the parameter values
of the Morse potential will be chosen in a range typical
for hydrogen bonded polypeptide chains [8–13].

3 Nonlinear dynamics of Morse
and equivalent 1D Toda lattices

Let us first consider a 1D Toda and 1D Morse lattices con-
sisting of N equal atoms (mass, m) with periodic bound-
ary conditions disregarding ionization. Let us assume that
the mean distance between the particles is r0 = L/N = σ
where L and N are, respectively, the length and the num-
ber of particles in the chain (5). The particles are described
by coordinates xj(t) and velocities vj(t), j = 1, . . . , N .
Note that r0 < σ may be reached only by applying exter-
nal pressure.

In the presence of random forces (hence non zero tem-
perature) and also external forces the dynamics is de-
scribed by the Langevin equations

d

dt
vj + γ0vj +

1
m

∂U

∂xj
=

1
m

Fj(xj , vj)) +
√

2Dv ξj(t),

(12)

governing the stochastic motion of the jth particle on
the lattice. The stochastic forces

√
2Dv ξj(t) model a sur-

rounding heat bath (Gaussian white noise). The term γ0

describes the standard friction frequency acting equally
on all the atoms in the chain from the side of the sur-
rounding heat bath. The validity of an Einstein relation
is assumed [1]

Dv = kBTγ0/m, (13)

where T is the temperature of the heat bath. Note that
in non-equilibrium there exist several other temperature
concepts [4]. The force Fj acting on the particles may
include external driving as well as interactions with host
particles (like electrons as we shall consider further below)
embedded into the lattice.

The potential energy stored in the ring reads

U =
N∑

j=1

U(xj). (14)

First we will study the basic excitations when Fj = 0, γ0 =
0, Dv = 0. For illustration, we shall consider a linear chain
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of N = 10 atoms located on a ring; this is equivalent to a
chain with periodic boundary conditions:

xj+N = xj + L. (15)

Assuming that the mean distance (5) of the particles r0

is near to the equilibrium distance rmin we may linearize
the potential, hence approximating (10) by linear springs.
Using the deviations from it rj = xj+1 − xj − rmin (rel-
ative mutual displacements) we find in the case of small
amplitudes

U(rj) =
m

2
ω2

0r
2
j ,

corresponding indeed to a harmonic pair interaction po-
tential. For N masses connected by linear springs, noise-
free, and frictionless we get the following linear system of
equations for the displacements uj from equilibrium posi-
tions:

d2

dt2
uj + ω2

0 (uj+1 + uj−1 − 2uj) = 0.

The basic solution of this system reads

u
(n)
j (t) = A cos(ωnt − jknσ). (16)

There exist N different excitations corresponding to dif-
ferent wave lengths and corresponding wave numbers

−N

2
< n ≤ +

N

2
, (17)

or wave “vectors” kn = 2πn/Nσ,

−π

σ
<

2πn

Nσ
≤ +

π

σ
. (18)

This is the so-called Brillouin zone [25]. Recall that
k-values in the region k ± 2π

σ are equivalent due to
the 2π-periodicity of the cos(x). The spectrum of eigen
frequencies corresponding to linear collective vibrations,
which are the phonons, is

ωn = ±2ω0 sin
(σ

2
kn

)
. (19)

This is also called the acoustical branch. The frequency
increases with the modulus of the k-value. A special role
play in our case (N = 10) the slow mode with n = ±1
and the fast optical-like mode n = ±5.

The phonon modes were obtained by linearization of
the equations of motion. Let us see now the anharmonic
case. We have shown that in the case of high densities,
r0 ≤ σ, the Morse chain is determined by the expo-
nential repulsion of the particles and can be approxi-
mated by an equivalent adapted Toda lattice. Accordingly,
the Morse chain may be approximated by a chain of N
point masses m interacting with Toda forces with adapted
density-dependent parameters ω0(r0), b(r0). The uniform
Toda lattice possesses solutions representing cnoidal waves
and soliton-type solutions [16]. Soliton solutions repre-
sent stable local excitations. They generate local energy

spots which are running along the lattice. For a uniform
chain, Toda found the following exact integrals of the
Hamiltonian equations [16].

exp (−b(rj+1 − rj)) = constZ(2K(k))Z (ω0t ± jk) . (20)

Here Z(u), K(k) represent elliptic integrals and elliptic
functions respectively. (For simplicity we assume here
units such that r0 = σ = 1.) By adjusting appropriately
the periodic boundary conditions for the N particles we
find N normal modes, which are the nonlinear general-
izations of the phonon modes found before for the har-
monic potential. For the special case of an infinite lattice,
N → ∞, one of the solutions reduces to

exp (−b(rj+1 − rj)) = 1+sinh2(χ)sech2 (χj − t/τ) . (21)

These solitonic excitations correspond to local compres-
sions of the lattice with the characteristic compression
time

τsol = (ω0 sinh χ)−1
, (22)

and with the spatial “width” χ−1. This quantity is con-
nected with the energy of the soliton by

Esol = 2ε(sinh χ coshχ − χ). (23)

As the energy unit we shall take the energy of an oscillator
with frequency ω0 and amplitude σ:

ε = mω2
0σ

2. (24)

Toda’s solution (21) represents a compression wave run-
ning along the chain. In the following we shall use the
function

Cj(t) = exp[−b(rj − rj−1)] − 1
= exp[−b(xj+1 − 2xj + xj−1)] − 1, (25)

to characterize the local strength of the solitonic pulse at
site j.

For ideal Toda solitons

Cj(t) = sinh2(χ)sech2 (χ(j − 1) − t/τ) . (26)

Due to its Hamiltonian structure the soliton energy is de-
termined only by the initial conditions and such a soliton
in a conservative lattice lives forever. For solitons in dis-
sipative or forced Toda lattices we expect a soliton shape
similar to a Toda soliton pulse (21). Further we expect,
based on the possibility to approximate the Morse lattice
by an adapted Toda lattice, that the essential solitonic
features remain also valid for Morse lattices. This will be
shown below. On the other hand, dissipation may lead to
changes with respect to the conservative excitations, that
we are going to study in detail. From now on we will dis-
tinguish between the cases of weakly dissipative solitons
(with shape and velocity near to the conservative case)
and strongly dissipative solitons (deviating albeit not too
significantly from Eqs. (20–23)).
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4 Excitation of soliton-like waves

4.1 Driving weakly dissipative solitons
by external forcing

The solutions presented so far solve the Hamiltonian equa-
tions for Toda, and to some extent also for Morse lattices,
in two limit cases, small and large amplitudes. Let us study
now the generation of excitations in a weakly dissipative
system including small friction and noise by forcing the el-
ements. The aim is to force the masses j = 1, ... N in such
a way that the wanted excitations are generated. The forc-
ing introduces energy into the system which in a station-
ary state has to be compensated by friction. We take the
previous dynamical equations of Newtonian type, intro-
duce friction forces and external spatial and time periodic
forces. Then we have

d

dt
xj = vj , j = 1, ...N,

m
d

dt
vj = Fj(t) − ∂U

∂xj
− mγ0vj . (27)

In the case of small motions around rmin we may linearize.
In order to generate phonons (or even cnoidal waves as we
do later on) of order n we may apply the forcing

F
(n)
j (t) = F0mω2

0σ cos(ωext − jknσ + φ), (28)

with frequency ωex and amplitude F0. As we will show, in
general, the value of the frequency for excitation should
be a little bit higher than the value predicted by the dis-
persion relation for the linear case ωex ≥ ωn.

The physical realization of such a forcing is not simple.
We may think about a piezoelectric material in which the
chain is embedded, a kind of “waveguide”. In this “waveg-
uide” we may induce running excitations of a chosen type
with given kn and corresponding (adapted) ωex, which by
a suitable device or coupling are transferred to the chain.
We first consider the case of small amplitudes and lin-
earized equations. In this case the dispersion relation will
be obeyed exactly, ωex = ωn. It can be shown that the
driven system possesses an attractor given by

x
(n)
j (t) = A0 cos(ωnt − jknσ + Φ), (29)

with stable amplitudes and phases. A similar procedure is
expected to work also for cnoidal waves. However in this
case the dispersion relation has to be found numerically.

The differential equations (27) have been integrated by
means of a fourth-order Runge-Kutta algorithm adapted
for solving stochastic problems [26]. We used l0 = σ as the
length unit and t0 = 1/ω0 as the time unit. Figure 3 shows
the trajectories of a 10-particle adapted Toda lattice (pe-
riodic b.c.) with a running external forcing according to
equation (28). The stiffness is b = 2, and the amplitude of
the forcing is F0 = 0.15, hence we are in the anharmonic
regime. Being in the nonlinear regime, the dispersion re-
lation (19) is no more valid. We expect for the solitonic

160

x

16

20

24

28

150 t170 180 190

Fig. 3. Trajectories of N = 10 particles excited by an ex-
ternal force (28) F0 = 0.15, ωex = 0.82 in a passive Toda
lattice with b = 2, a = 1, γ0 = 0.2. One weakly dissipative
soliton per unit cell is excited.
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Fig. 4. The functions Cj(t) (25) characterizing the soliton
strength for the sites j = 2, 3, 9. The functions correspond to
the forced soliton described in Figure 3.

mode a frequency ω1 = 0.57 and a velocity correspond-
ing to the velocity of sound vs (vs = 1 in dimensionless
units). In order to generate a solitonic mode we need a
k-value corresponding to this mode. The frequency of the
exciting wave should be somewhat higher than the value
estimated from the dispersion relation for the linear case.
The appropriate value for k which should be also used in
the excitation wave is

k1 =
2π

10σ
� 0.628.

Then the corresponding appropriate frequency is ωex =
0.82. In Figure 4 we depict the local shape of the soliton
function Cj(t) as defined above for the sites j = 2, 3, 9.
We see that the pulse is indeed running along the lattice.
The height of the pulse is a measure of the soliton strength
which is determined here by the strength of the forcing.
We see that the pulse has indeed a similar shape as Toda’s
soliton (26). In other words, the excitation created by the
forcing remains soliton-like. At variance with Toda’s func-
tion we observe that the forced excitation (Fig. 4) has a
“tail”, a kind of radiation due to the dissipation [27–29].
In Figure 5 we show for comparison a soliton excited under
the same conditions in a Morse lattice. As we see, there is
practically no significant difference. This is an important
result, since the Toda lattice is more of academic interest,
while the Morse lattice is able to model, with an appro-
priate choice on parameters, quite realistic situations, as
e.g. with macromolecules [30].
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Fig. 5. Trajectories excited by an external forcing F0 =
0.5, ωex = 0.82 in a passive Morse lattice with B = 1, γ0 = 0.2.
The excited waves are qualitatively similar to those in a Toda
lattice.
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Fig. 6. Trajectories of N = 10 particles in a Morse lat-
tice (B = 1, γ0 = 0.004) excited by a external forcing F0 =
0.12, ωex = 0.82 which is switched off at time t = 100. We see
that the excited soliton-like waves persist quite a long time af-
ter switching off the force (F0 = 0 at t > 100) before they are
damped out by friction.
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Fig. 7. The function C2(t) characterizing the soliton strength
for excitations given in the previous figure.

We will study now a Morse lattice excited by an ex-
ternal force that we switch off after some time toff = 100.
Our choice for the friction is γ0 � 0.004, a value which
seems to be realistic for hydrogen bonded polypeptide
chains [8–13]. This value means that a linear oscillation is
damped out after about 100 oscillations. Figures 6 and 7
show that after switching off the external driving force the
solitonic modes persist for some time but also other modes
appear. Upon increasing the damping, the relaxation time
is decreasing as we see in Figure 8 for γ0 = 0.02, B = 1.

100 140 180 220 t

10

20

30

x

Fig. 8. Trajectories of N = 10 particles in an excited lattice
for a higher value of damping than in Figures 6 and 7, γ0 =
0.02, B = 1. We see that the excited soliton-like waves persist
only a short time after switching off the force (forcing at t <
100). In a subsequent stage the solitons are first transformed
to phonons before they are completely damped out by friction
(kBT = 0).

100 140 180 220 t
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Fig. 9. The solitonic excitations given in the previous Figure 8
may be maintained by thermal fluctuations by embedding the
lattice into a heat bath (kBT = 0.075).

Switching on the noise by embedding the chain into a ther-
mal heat bath, clearly increases the life time of the soli-
tons as shown in Figure 9. We have chosen a temperature
kBT = 0.075, which is not too far from the critical tem-
perature of the infinite lattice kBTc � 0.16, where solitons
are supported by thermal fluctuations [7,17,23,24,31]. Ac-
cordingly, solitonic excitations, which are quickly decaying
in passive systems at T = 0, as we go up to the critical
temperature become longer and longer lived metastable
modes.

4.2 Excitation of strongly dissipative solitons
by stochastic initial conditions and stabilization
by active friction

Let us now consider a lattice without external forcing,
F0 = 0 (Fig. 10), using initial conditions created by a
stochastic disturbance. We may think about sudden heat-
ing and quenching. We use a Gaussian distribution of
the particle velocities corresponding to a relatively high-
temperature Maxwellian as initial condition of the order
of kBTin � 0.1. Besides other excitations solitons are also
generated. However they are difficult to recognize due to
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Fig. 10. Metastable cnoidal (solitonic) waves: As a result of
quenching of an initial state with kBT � 0.1 the trajectories
of 10 Toda particles (r0 = σ) generate soliton-like excitations,
which are represented by the slopes of the wavy trajectories.

the random motions of the particles. Then we quench to
zero temperature. The solitons last longer since they have
a longer lifetime than, with large space scale λ ≈ L, most
other excitations. Looking at the trajectories we observe
the expected soliton-like excitations that decay after a
time of the order trel � 1/γ0 (Fig. 10). These excitations
exist also under equilibrium conditions [7,24]; they are
metastable.

In order to maintain the solitonic excitations for quite
a long time interval we apply an active friction in the
time interval after heating and quenching. Then the soli-
ton regime becomes a stable attractor [2,32–35]. A form
of active friction is the velocity-dependent function

F (v) = mγ0v
[
µ − v2/v2

d

]
, (30)

first introduced by Lord Rayleigh to maintain harmonic
oscillations in the presence of dissipation [36,37] (µ = δ−1,
vd appears as a parameter to set the velocity scale). Note
that Lord Rayleigh’s function differs from the later pro-
posal by Van der Pol [38] of an active friction proportional
to the space displacement (not the velocity) amplitude
square. Then the quantity δ appears a bifurcation param-
eter. The value δ = 1 corresponds to the passive case,
where the deterministic dynamics has a single attractor at
v = 0. Without noise all particles come to rest at v = 0.
For δ > 1 the branch v = 0 becomes unstable. There are
two additional zeros at

v = ±v0 = vd

√
δ − 1, (31)

which define the new attractors of the free deterministic
motion if δ > 1.

Recently, it was predicted [5] that electrons may be
coupled to maintained solitons, using equation (30), and
may form rather stable dynamic bound states with the
solitons (“solectrons”). This effect is studied in detail in
the next section (see also [39]).

5 Dynamics of electrons coupled
to solitonic excitations

5.1 Models of electron dynamics

In order to study the possible influence of nonlinear ex-
citations on electric transport we will assume now that
the atoms can be ionized emitting one free electron to a
kind of “band” and hence leaving a positive ion at the
corresponding atom site along the lattice. This is like em-
bedding N electrons between the N positive ionic masses
on the chain. The interactions between the ions lattice will
be described as above by a Toda potential with adapted
parameters to mimic the Morse interactions. To describe
the dynamics of the electrons we shall stay on a clas-
sical level as done in the early conductance theories of
Drude, Lorentz and Debye [25,41]. Let us mention that
the quantum treatment using the tight-binding approx-
imation for the electron-(anharmonic) lattice vibrations
does not qualitatively change the picture [8,9]. For dis-
cussion of related quantum problems see [10–13].

We take Langevin equations for N electrons (mass me,
charge −e) and N ions (mass m, for all i, charge +e)
moving on a lattice of length L = Nσ, with me � m,
with periodic boundary conditions. The N electrons are
located at the positions yl moving in the nonuniform, and,
in general, time-dependent electric field generated by the
positive lattice ion-particles located at xj . The electron-
electron interaction which results from Coulomb repulsion,
Heisenberg uncertainty, and Pauli’s exclusion principle, is
modelled here in a rather crude way. We take into ac-
count that at small distances the effective potential is lin-
ear before it approaches at larger distances the classical
Coulomb interaction [6]

Uee(r) = Uee(0) − e2

λ2
r + O(r2). (32)

If the characteristic thermal wave length of the electrons

λ =
�√

mekBT
,

is larger than the mean distance, we may use a piecewise
linear approximation

Uee(r) = Uee(0) − e2

λ2
r

Uee(r) = 0 if r >
Uee(0)λ2

e2
. (33)

This approximation leads to a rather weak constant re-
pulsive force at small distances

Fee =
e2

λ2
= const., (34)

which is much smaller than the purely classical Coulomb
repulsion. The repulsive force Fee acts between any pair
of nearest-neighbor electrons and keeps them away from
clustering. For degenerate electrons in 1D, the influence
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of the repulsion is quite weak, since constant forces act-
ing from right and from left on a given electron compen-
sate each other. Hence for computational purposes the
electron-electron repulsion will be neglected.

As done above the repulsive forces between ions are
taken of exponential character. The additional Coulomb
repulsion is of relevance only at relatively high densities.
Therefore we may work again with an adapted local Toda
approximation of type (8).

The electron-ion interaction will be described by a
Coulomb potential with an appropriate cut-off as often
used in plasma theory [6,41]

εrU(rlj) = (eejκ) − eej√
r2
lj + h2

, (35)

if rlj < r1 and

εrU(rlj) = 0 if rlj > r1, (36)

where rlj = yl−xj is the distance between the electron and
its neighbors in the chain, ej is the charge of the ion core
of the chain particles. Further εr is the relative dielectric
constant of the medium in which the chain is embedded,
and 1/κ as well as r1 play the role of appropriate “screen-
ing lengths”. Here our choice is r1 = 3σ/4, κ = 2/σ, and
εr = 10. We have introduced h as a parameter which de-
termines the short-range cut-off of the Coulombic pole; an
appropriate choice is h � 0.3σ. Similar pseudo-potentials
are of current use in solid state theory [25,42]. The choice
of the concrete “depth” of the pole is made such that the
electrons are only weakly bound to the ion cores and may
cross from one side to the other of an ion. Accordingly,
the electrons are able to wander through the lattice and,
eventually, yield an electron current. The character of the
electron dynamics strongly depends on the value of h and
on the positions of the ions. Our choice h � 0.3σ provides
two kinds of minima (see Figs. 11, 12): (i) shallow minima
at the location of the ions outside a soliton pulse; and (ii)
deep local minima at the positions of soliton-like pulses .

In correspondence to the dual structure of the poten-
tial landscape we have also a dual structure of the electron
dynamics, hence the electrons may be divided roughly into
two different classes:

Ne = Nf
e + N b

e , Nf
e = αNe, N b

e = (1 − α)Ne.

where α denotes the “degree of ionization”. We have: (i)
Nf

e free electrons that move like the free electrons in a
plasma, or like the electrons in a conduction band in met-
als in a shallow periodic (harmonic) potential landscape;
and (ii) N b

e bound electrons that for a considerable time
are pinned to one of the moving minima created by a soli-
tonic excitation. This division is of course artificial. The
essentially new point here is that there is the possibility of
forming dynamic bound states (“solectrons”) as predicted
in reference [5]. The character of these bound states de-
pends on the depth of the potential Umin, on the tem-
perature T and on the relation between the characteristic
quantum time τq ∝ �/Umin and the classical time scale
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Fig. 11. Potential felt by an electron placed between two
nearby positive ions at ±0.5 (abcissa: elongation in σ units). If
the ions are at equilibrium distance, r = σ, the potential min-
imum is at the center of each ion core (dotted line). Between
two compressed ions, r = σ/5, the potential minimum appears
midway between the ions (solid line).
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Fig. 12. Typical configuration of the local electric potential
created by the solitonic excitation. The minimum corresponds
to a local compression of ions which means an enhanced charge
density.

1/ω0. Assuming that the classical time scales are much
longer, we may take an adiabatic approximation [6]. Then
the bound states are given by

εn = Umin + �ωmin

(
n +

1
2

)
,

n = 0, 1, 2, ... (37)

These states may, in principle, be filled by electrons obey-
ing the Pauli principle. In the ground state, if enough
number of solitons are available, each of the solitons can
capture two electrons with opposite spin. At first glance,
these electron pairs, which are Bosons, appear as kind of
“bipolarons” or “Cooper pairs”. We will come back to this
point later. In a thermally excited but otherwise isolated
system, the number of solitons does not depend on the ini-
tial and boundary conditions. Here the number of solitons
can be approximated by the formula [17]

Ns = N
ln 2
π2

kBT

ε
. (38)

In principle the number of solitons increases with increas-
ing temperature and may affect 2–5% of the number of
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lattice sites around the critical temperature. This is a
small but significant concentration of thermal solitons in
the lattice. On the other hand their contribution to macro-
scopic properties, as e.g. the specific heat goes down as
temperature increases. Therefore we will have in general
a kind of “optimal temperature” where solitons have the
strongest influence [3,7,17,23,24,31].

As a first approximation we may assume for the elec-
tron dynamics a classical “Drude-Lorentz-Debye dynam-
ics” [5,6,25,30]

dvl

dt
+

1
me

∂Ue

∂yl
= −γe0vl +

√
2De ξl(t) (39)

where γe0 is connected to the relaxation time γe0 ∝ 1/τ .
Again, the stochastic forces

√
2De ξl(t), model the sur-

rounding heat bath (Gaussian white noise), obeying a
fluctuation-dissipation theorem. Note that, due to the
large difference in masses, the friction acting on the
electron is small meγe0 � mγ0. The Drude-Lorentz-
Debye model is not very realistic. However, it provides
a model which can be easily treated by numerical sim-
ulations. It suffices to show, how the dynamical clusters
created by solitonic excitations act on the electrons. A
quantum-mechanical treatment of the electron dynamics
within the tight-binding approximation has been given
elsewhere [8,9]; it has been shown there, that the ba-
sic features described in the present work and in earlier
works [5,6], are not significantly altered.

5.2 Influence of soliton modes on electron transport.
Computer simulations

In order to study the coupling of electrons to the lattice
vibrations we shall consider long trajectories of the elec-
tron positions and velocities, vl = ẏl. Consider a Morse
lattice in local Toda approximation, measuring the en-
ergy (temperature) in units ε = mω2

0σ
2 and fixing bσ = 1.

Each electron is initially placed midway between two ions
at rest, vl = 0. As in the case earlier discussed, both dif-
ferential equations (12) and (39) have been integrated by
means of a fourth-order Runge-Kutta algorithm adapted
for solving stochastic problems [26]. l0 = σ is the length
unit and t0 = 1/ω0 is the time unit.

The key parameter is the ratio between the strength
of electric forces, which in average is of the order e2/εrr

2
0 ,

and the strength of the lattice forces, being in average of
order mω2

0r0:

η =
e2

mω2
0εrr3

0

. (40)

In order to keep small the influence of the electrons, we
take η � 0.01. Since e is a universal constant, our choice
means that we assume for the lattice frequency

ω0 = 10
[

e2

mεrr3
0

]1/2

. (41)
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Fig. 13. Formation of “solectrons” and “solectron pairs”: due
to external forcing the trajectories of N = 10 positive ions
(x, bottom part of figure) generate solitons. Several electrons
are captured in solitonic potential wells (Fig. 12). During cer-
tain time intervals the electronic trajectories are parallel to the
“tangents” representing the solitonic velocity. We observe free
electrons (y), single “solectrons” and “solectron pairs” (Param-
eter values as in Fig. 3).

This is a rather high frequency which requires stiff springs.
According to equation (7), in general this may be reached
only by compression of the lattice, i.e., r0 < σ.

In our first series of computer simulations the solitons
were created by external forcing of the lattice. These soli-
tons are weakly dissipative, the friction is small (γ0 ≈ 0.2).
Looking at the trajectories displayed in Figure 13 we ob-
serve soliton-like excitations. The motions of ions and elec-
trons occur in different time scales. Heavy ions are not
much affected by the light electrons. Therefore the elec-
trons move more or less adiabatically on the background
of the Coulomb potential profile created by the ions. The
dynamics of the ion ring leads to soliton-like excitations.
As noted above, typical solitonic excitations correspond
to local compressions moving along the lattice. Figure 12
shows a characteristic profile, a snapshot, of the electric
field created by the ion ring at certain time instant. We
see a rather deep potential well moving around the ring.
The light electron may be captured in this dynamic poten-
tial well and eventually follows the soliton. In our simu-
lations the integration step is chosen to describe correctly
the fastest component of the process, the oscillations of
electrons in the potential well.

Recall that with infinitesimal compressions the land-
scape would be purely harmonic (linear dynamics). With
strong (local and moving) compressions the landscape is
a composite made of cnoidal-like peaks upon a practically
harmonic background. Due to such potential wells gen-
erated by the solitons, electronic bound states may be
formed. In the course of time most of the electrons are
captured in solitonic potential wells (see Fig. 13). During
certain time intervals the electron trajectories are paral-
lel to the “tangents” representing the solitonic velocity.
We observe single “solectrons”, also “solectron pairs” and
multi-electron clusters.

In another series of computer experiments we ex-
cited strongly dissipative solitons maintained by active
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Fig. 14. Trajectories of 10 positive ions (x) moving clockwise
creating one fast dissipative soliton moving in opposite direc-
tion to the motion of the ions, and trajectories of 10 electrons
(y) captured in part by the soliton which is maintained due to
the energy input by active friction (δ = 2).

friction (30). Results are depicted in Figures 14 and 15.
We used an initial Gaussian distribution of the ion veloci-
ties with amplitude vin corresponding to an intermediate-
temperature Maxwellian with kBTin � 0.1 (as in earlier
cases we use units of the energy of harmonic oscillations
with amplitude σ). This is indeed in the soliton-generating
region as kBTc � 0.16 [3,7,17,23,24,31]. All computations
start with an initial state of equal distances between ions.
Such conditions may be reached experimentally by a suit-
able heat shock applied to the lattice. As besides other
excitations many solitons are generated, we quenched to
zero temperature.

As earlier done, in order to maintain the solitonic ex-
citations for quite a long time interval we applied the ac-
tive Rayleigh friction (30) in the period after heating and
quenching. Then the soliton regime becomes a stable at-
tractor [2,32–34]. In the driven case the ions perform a
mean constant drift. After a transitory regime, solitonic
excitations of the ions are formed moving along the lat-
tice with velocity vs opposite to the average drift of the
ions. Most of the electrons are captured by these dynam-
ical clusters. The computer simulations presented in Fig-
ures 14 and 15 correspond to Rayleigh friction (30) with
δ = 2, vd = 1, m/me = 1000, γ0 = γe0 = 0.2. As the soli-
tons corresponding to a local compression of the lattice
are running opposite to the mean ion motion they, indeed,
create a running potential well. Snapshots shown in Fig-
ures 14 and 15 illustrate how the electrons are captured
in the running potential wells. Looking for the deepest
nearby minimum of the potential, the electrons will be,
most of the time, located near to local ion clouds. The
soliton is a dynamic phenomenon, and the ions partici-
pating in the local compression are changing all the time.
Hence, the electrons have always new partners for forming
the “solectron”, “solectron pairs” or higher-order clusters.

As said above, in the presence of active friction, the
dynamical system possesses several attractors [2,32–34].
The computer simulations shown in Figure 14 correspond
to initial conditions which lead preferentially to the single
peak soliton attractor. In the absence of the external field
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Fig. 15. Example of electrons (y) captured in the (nonlinear)
optical-like mode. Due to random initial conditions and stabi-
lization by active friction the trajectories of 10 positive ions (x)
generate optical-like excitations (upper figure). The electrons
may form bound states with local potential wells and perform
forced oscillations. The lower figure shows the corresponding
oscillatory current.

both directions have equal probability, the field breaks the
symmetry. To simplify, the parameters of the potentials, of
the Rayleigh formula, the friction coefficients, both masses
and charges of particles were held fixed. The initial veloc-
ities vin, the values of the external field and the (electron)
temperature Te (obtained from Einstein’s relation obeyed
by Eq. (39)) are varied in different runs.

In Figure 14 we show a computer simulation for the
trajectories (left to right) of 10 ions creating a dissipa-
tive one-peak soliton which moves right to left. After a
transient regime, the electrons are captured by solitons.
By changing the initial conditions we have been able to
excite the optical mode, where neighboring ions move al-
ways in counter phase. This mode is the driven nonlinear
version of the optical oscillations in linear lattices. Fig-
ure 15 shows that this nonlinear mode is also able to cap-
ture electrons and force them to oscillate. Accordingly, the
corresponding electron current is also oscillatory.

6 Influence of nonlinear excitations
on the currents

The currents on the 1D ion-electron lattice, or line con-
ductor, are determined by the electrons. The electron cur-
rent density is given by averages of the electron velocities,
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Fig. 16. Solectron and (positive) ion stationary currents in a
lattice corresponding to the case of dissipative solitons main-
tained by active friction as functions of the field strength. (i)
Currents for the single-peak soliton mode (parameter values:
b = 1, h = 0.3, δ = 1.25, γ0 = γe0 = 0.45, Dv = 0); (ii) currents
for the optical mode (parameter values: b = 2, h = 0.2, δ =
2, γ0 = γe0 = 2.0, Dv = 0). The dotted oblique straight line
gives for comparison the linear Drude-Ohm current. It clearly
appears that as we lower the field strength a transition occurs
from linear to nonlinear hence non-Ohmic conduction. E0 is the
field strength creating the same force as the friction at velocity
v0 (eE0 = mγe0v0). Points above (E > 0) and below (E < 0)
are marked differently to emphasize that the two branches have
been calculated separately, and not plotted by symmetry.

vl = ẏl taken over long trajectories

je = −nee
∑

l

〈vl〉. (42)

An estimate of the electron currents may be based of
the splitting given above. Treating the free electrons by
standard theory [41] and taking into account that the
bound electrons, the “solectrons” move (approximately)
with soliton velocity we find the estimate (α denotes the
fraction of free electrons)

je = α
nee

2

meγ0e
± (1 − α)neevs, (43)

which shows that the second contribution is independent
of the external field. We expect therefore, that the currents
are in (plateau-like) regions of “solectron formation” with
α = 0 constant.

In order to check these estimates we carried out sev-
eral computer simulations. The results of computer simu-
lations are displayed in Figure 16 for both the single-peak
(one-soliton) soliton mode and the optical mode. The ex-
citations were created by stochastic initial conditions with
subsequent stabilization by active friction. Noteworthy is
that the currents do not practically depend on the value of
the field in a wide range of values, as expected from the es-
timate above. The characteristic value E0 corresponds to
the field imparting a velocity v0 to an electron non inter-
acting with ions. We see a strongly nonlinear current-field

characteristics with a plateau region of constant current
(corresponding to zero differential conductivity) as pre-
dicted in reference [5]. At very low, near zero field val-
ues there is a gap in values of the current. In the narrow
region around zero field we could not find reliable data
from the computer simulations. However the existence of
a gap may be considered as a hint for the existence of
rather high conductivity. In our computations too low a
field value cannot specify the direction of motion for soli-
tons, they may travel in either direction. On the other
hand, too high a field value does not allow electrons to
be trapped by a potential well, hence the current follows
Drude-Ohm’s law.

7 Discussion

We have shown that in 1D dense lattices of particles with
exponential repulsion, soliton-like waves may be excited
in the form of running local compressions. These dynam-
ical clusters correspond to the cnoidal waves for a con-
servative Toda lattice (and also for a Morse lattice) [16].
We have shown, that these localized excitations may be
generated also in dissipative lattices [27,28] by external
forcing, or stochastic initial conditions, e.g., correspond-
ing to a high enough heating observable by subsequent
quenching. In order to measure the solitonic strength of
the excitations, we used Toda’s exponential function C(t).
Switching off the external excitation, the solitonic excita-
tions survive only a finite time determined by the damping
(trel ∝ 1/γ0); they are metastable. However, they may be
maintained by means of an appropriate active friction in-
cluded in the dynamics.

We have also studied the properties of ionized, hence
electrically conducting lattices. Each atom was assumed to
provide one electron moving along the chain in the field
of the remaining ionic lattice. The electrons prefer posi-
tions near to the deep (electrostatic) potential well formed
by the local compression connected with the soliton (see
Figs. 11 and 12) thus creating a dynamic bound state,
called solectron [5]. This solectron is to the anharmonic
lattice what the polaron is to the harmonic case. Polarons
are created by the polarization due to the electrical field of
the electrons embedded into the lattice. Indeed, the elec-
tron attracts the neighboring ions by its electric field and
gives rise to a local deformation/polarization of the lattice.
The latter influences the electron by feedback effects and
makes it to stay in some localized region of the lattice. On
the other hand, the fast oscillations of the electron support
the polarization. Our “solectrons” are due to the nonlin-
ear dynamics of the lattice and, in particular, to the field
created by the running solitonic excitations. The electrons
are “slaved” to the anharmonic lattice excitations which
act as true electric “carriers”. Of course, the process of
solectron formation is also connected with polarization ef-
fects. However, the latter are not the dominant effects.
Let us insist that the dominant processes are in our case
the autonomous, moving, anharmonic lattice excitations.
Hence, solectrons are different from polarons in structure
and, more important, in dynamics. Note that we study



98 The European Physical Journal B

Fig. 17. Schematic picture of a “solectron pair”: two electrons
are bound together to a potential minimum created by a soli-
tonic excitation.

here a single case, the one-way interaction electron-lattice
vibration, which is expressed by the factor η = 0.01 which
can be reached only by compressions in the lattice. The
stronger the feedback of the electrons on the lattice is, e.g.
at η � 1, the more polaron effects we see.

We have shown with our computer simulations that
under given conditions, formulated above, as time pro-
ceeds, if the soliton number is large enough, most of the
electrons in the lattice are captured by solitonic excita-
tions and move with the soliton velocity. Since the motion
of solitonic excitations is slow with respect to the forma-
tion of quantum states, we expect the (adiabatic) forma-
tion of electronic quantum levels within the wells [6]. At
each “location” two electrons with opposite spins may be
placed, thus satisfying Pauli’s exclusion principle. Indeed,
if a sufficient number of strong solitons is available, then
at least the ground state n = 0 may be populated. In the
ground state two electrons may form pairs with opposite
spins which populate a solitonic minimum as schemati-
cally illustrated in Figure 17. These pairs have bosonic
character. At first glance these “solectron pairs” look like
“bipolarons” or like “Cooper pairs” at low temperatures.
A closer inspection however shows that the electron pairs
created by solitonic excitations are quite different from
bipolarons and from Cooper pairs: (i) on the one hand,
the solectron pairs move most of the time with soliton ve-
locity, which in general is supersonic in the lattice. Indeed,
in our anharmonic system, strong compressions with hard
repulsions provide a fast carrier wave along the lattice as
predicted in reference [5]. Polarons are generally pinned in
lattice sites, unless they extend over quite a large atomic
domain; (ii) on the other hand, the dynamics of our solec-
tron pairs is dissipative. Yet the amount of dissipation
connected with the motion of the solectron pairs is low
since the excited solitons are nearly those of the conserva-
tive limit (Toda lattice); (iii) the solectron pairs are not
connected with any macroscopic wave functions, they are
strictly local phenomena. The correlation length (the size)
is small, much smaller than in the case of bipolarons and
Cooper pairs; (iv) the correlation times of solitonic ex-
citations and their bound states with electrons are large
and the spectrum may exhibit 1/f - contributions [5,23,
43]; (v) the formation of solectron pairs needs a source of
excitation which can come either from external forcing or
from a heat bath in some “optimal high temperature” [3,
7,17,23,24,31]).

Most of the results on electric conductivity presented
here were obtained for the case of zero or very low tem-

perature. The soliton carriers were created either by ex-
ternal forcing or by quenching and stabilized by active
friction. In such systems, the number of solitons depends
strictly on the initial and boundary conditions. However,
there is a result (see Figs. 8 and 9) which shows the ex-
istence of long-living soliton modes in high temperature
systems. This shows that solitons may be maintained also
by appropriate thermal excitations. In principle the num-
ber of thermally excited solitons increases weakly with the
temperature. On the other hand their stability and their
contribution to macroscopic properties, as e.g. the specific
heat goes down as temperature increases. Therefore we ex-
pect as in the case of specific heat [3,7,17,23,24,31]), the
existence of a kind of “optimal high temperature” where
solitons have the strongest influence on electric properties.
This, however, remains an open question and will be the
subject of future study.

Finally, in conclusion, we have shown how significant
for electric conduction might be the role of bound states
between dynamical solitons and electrons (“solectrons”,
etc.) thus confirming our earlier prediction [5]. Closely re-
lated dynamical phenomena, albeit for conservative sys-
tems, have been discussed by Zolotaryuk et al. [44] and
by Hennig [45]. A full quantum theory of the phenomena
described here is not available yet. First steps to a quan-
tum approach in the framework of the tight-binding model
have been given elsewhere [8,9].
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