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Abstract

We investigate the dynamical clustering in chains of atoms with Morse-type interactions
at higher densities, where the exponential repulsion dominates and the structure is lattice-
like. First we study several mechanisms to generate and stabilize soliton-like dynamical
clusters. Although, generally, clusters are unstable, yet, there exist dynamical clusters
with finite lifetime, which are due to local compressions running along the chain. We show
that these dynamical, metastable clusters may give rise to significant physical effects. In
order to study the effects of dynamical clusters on electrical transport we assume that
each atom may generate a free electron which is able to move on the lattice. Their motion
is described in a classical approximation. The dynamical clusters (localized compressions)
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running along the chain may interact with the electron system and influence their motion
creating some extra electronic current.

5.1 Introduction

For the case of one dimension (1D) several problems of statistical physics were
solved exactly [1, 2]. In several recent papers we developed the statistical ther-
modynamics of chains with Morse-type interactions [3, 4, 5]. In particular we
investigated the clustering problem in low density Morse systems. A cluster was
defined as a local density peak, which is relatively stable with respect to colli-
sions. Here we concentrate on higher densities where the exponential repulsion
dominates and the configuration is lattice-like. The usual equilibrium clusters
are unstable due to the strong interactions. However as we will show, there exist
dynamic clusters, representing running local compressions, which are soliton-like.
We will investigate here the generation and the properties of these dynamic clus-
ters moving along the lattice. Further we discuss the influence of dynamic clus-
tering on electrical transport. In recent communications [6, 7] the present authors
have already discussed, albeit in a sketchy way, the possibility of soliton-mediated
electric conductance phenomena in a lattice with Toda interactions. Here we will
study also the influence of dynamic clustering on electron dynamics.

5.2 Models of Interaction with Exponential
Repulsion

The Morse potential was introduced in 1929 by P. Morse in a paper with the title
”Diatomic molecules according to wave mechanics” [8]. In this fundamental work
Morse treated the problem of atomic interactions at small distances and derived
a simple expression for the quantum interactions between atoms. The potential
depends on two parameters B,D and reads in its general form

UM (r) = D
[
(exp(−B(r − σ)) − 1)2 − 1

]
. (5.1)

The potential has a minimum at r = σ and may be considered as a good alter-
native to the well-known model of Lennard-Jones

UL−J(r) =
B

r12
− A

r6
. (5.2)
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66 5 Dynamical Clustering in Chains of Atoms with Exponential Repulsion

The long range part of the Morse potential is less realistic than the 1/r6 term in
the Lennard-Jones potential, however the exponential repulsion term in the Morse
potential is well founded on quantum-mechanical calculations. The predominant
cause of exponential repulsion between atoms is the wave functions overlapping of
the valence electrons and is created mostly in the region close to the axis between
the atoms [9].

The repulsive part of the Morse potential is identical to the exponential potential
studied by Toda [10]

UT (r) =
a

b
exp(−b(r − σ)) . (5.3)

This potential, as well as a modification with an additional (unphysical) linear
term, was treated in great detail by Toda [10]. The characteristic frequency con-
nected with the Toda potential is

ω2
0 =

ab

m
, (5.4)

where m is the mass of the particles [10].

A useful combination between the Toda- and the Lennard-Jones potentials is the
Buckingham (exp6) potential

UB(r) =
D

10

[
6 exp(−b(r − σ)) − 16

(σ

r

)6
]

(5.5)

that describes well realistic cases [11]. Since simulations with an r−6-tail may
give rise to numerical difficulties (due to the long range which often is avoided by
setting a cut-off at some finite distance) we work here with the Morse potential
which has an exponentially decaying attracting tail. In order to be consistent
with the notation for the exponential potential, we introduce here a (generalized)
Morse potential in the following form

UM (r) =
a

b

[
exp(−b(r − σ)) − 2α exp

(
− b

2
(r − σ)

)]
. (5.6)

In the region of higher densities the first term dominates and the second one,
which is proportinal to a parameter α, will give only a small correction. The
potential has a minimum at

r = rmin = σ − 2
b

ln α . (5.7)
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5.3 Nonlinear Dynamics of Morse Chains 67

The potential crosses zero at the distance

rc = σ − 2
b

ln(2α) . (5.8)

For r < rc, the repulsive part grows exponentially with the stiffness b. In the
simplest case α = 1 we recover the standard Morse potential in the form of
Eq. (5.1) with B = 2b and D = a/b. In this case we get rmin = σ and the
characteristic frequency of oscillations around the minimum is given by

ω2
1 =

ab

2m
. (5.9)

The exponential repulsive part of the interaction forces models the Pauli repulsion
between the overlapping valence shells of the atoms. The Morse potential may be
considered as a quite realistic model for atomic interactions for both repulsive as
well as attractive interactions.

The evolution of anharmonic lattices with Morse interactions, in short Morse
chains, has been studied [3, 4, 5] including particle clustering, thermodynamical
and kinetic transitions. Most of the mentioned work was devoted to chains with
relative low density, where the attractive part of the Morse interactions dominates
the dynamics. Here we will focus attention on the opposite case of relatively high
density. We shall discuss the excitations and their possible influence on electrical
transport. In particular we will study the coupling between dynamical clusters
and electrical charges in ionized chains.

5.3 Nonlinear Dynamics of Morse Chains

First we will study the dynamics of a 1D Morse-type atomic lattice consisting
of N atoms with periodic boundary conditions. We will disregard any ionization
phenomena. Let us assume that the mean distance between the Morse particles
is r0 = L/N where L and N are, respectively, the length and the number of
particles in the chain. We will study now the forces acting on a particle. Take a
Morse particle placed midway between two other nearest neighbor Morse particles
separated by the average distance 2r0. If the displacement from the center is
denoted by x the effective potential felt by the central particle is (see Fig. 5.1)

UM
eff =

2a
b

[
exp(b(σ − r0)) cosh(bx) − 2α exp

(
b

2
(σ − r0)

)
cosh

(
b

2
x

)]
. (5.10)
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Fig. 5.1 Morse lattice: Effective potential acting on a given particle placed between two other
Morse particles at distance 2r0. We compare with the case of a pure exponential poten-
tial α = 0, corresponding to the density r0 = σ; the two curves for the exponential case
corresponding to the stiffness bσ = 3 or bσ = 4 respectively touch the abscissa. The
two other curves correspond to a Morse chain with α = 1 and to a two times higher
density of particles r0 = σ/2, the stiffness is bσ = 3 or bσ = 4 respectively.

In the following we shall omit the superscript M. We see that an exponential
potential with the density r0 = σ leads to quite similar effective interactions as
the proper Morse potential with the double density r0 = σ/2. Clearly the inner
particle is bound to experience quasilinear oscillations around the minimum for
small excitations or large elongations depending on the nonlinear terms.

In the presence of random forces and also external forces the dynamics of particles
with mass m in the chain is described by the Langevin equations (k = 1, 2, . . . , N)

d

dt
xk = vk ,

d

dt
vk + γ0vk +

∂U

m∂xk
=

1
m

Fk(rk, vk)) +
√

2D ξk(t) , (5.11)

governing the stochastic motion of the k-th particle on the ring. The stochastic
forces

√
2D ξk(t) model a surrounding heat bath (Gaussian white noise).
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5.3 Nonlinear Dynamics of Morse Chains 69

The potential energy stored in the ring reads

U =
N∑

k=1

Uk(rk) . (5.12)

The term γ0 describes the standard friction frequency acting on the atoms in the
chain from the side of the surrounding heat bath. The validity of an Einstein
relation is assumed [3]

D = kBTγ0/m . (5.13)

Here T is the temperature of the heat bath. Note that there exist several other
temperature concepts [5].

The force Fk acting on the chain of particles may include external driving as well
as interactions with host particles (like the electrons) imbedded into the chain.
First we studied the basic excitations when Fk = 0, γ0 = 0, and D = 0. We
consider a linear chain of N = 10 masses m located on a ring; this is equivalent
to a chain with periodic boundary conditions. The particles are described by
coordinates xj(t) and velocities vj(t), j = 1, . . . , N , i.e.

xk+N = xk + L . (5.14)

First we assumed that the mean density of the particles r0 = N/L is near to the
equilibrium distance rmin. Then we may linearize the potential, hence approx-
imating the potential Eq. (5.6) by linear springs. We introduce the deviations
from it rj = xj+1−xj −rmin (relative mutual displacements) and find in the case
of small amplitudes

Ui(rj) =
m

2
ω2

1r
2
j , (5.15)

corresponding to a harmonic pair interaction potential. For N masses connected
by linear springs without external noise and friction we get the following linear
system of dynamical equations for the displacements from equilibrium positions
uj

d2

dt2
uj + ω2

1 (uj+1 + uj−1 − 2uj) = 0 . (5.16)
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70 5 Dynamical Clustering in Chains of Atoms with Exponential Repulsion

The basic solution of this system reads

u
(n)
j (t) = A cos(ωnt − jknσ) . (5.17)

As well known there exist N different excitations corresponding to different wave
lengths and the corresponding wave numbers

−N

2
< n ≤ +

N

2
(5.18)

or wave ”vectors” kn

−π

σ
<

2πn

Nσ
≤ +

π

σ
. (5.19)

This is the so-called Brillouin zone.

We remind that k-values in the region k ± (2π/σ) are equivalent due to the 2π-
periodicity of the cos(x). The spectrum of eigen frequencies corresponding to
linear collective vibrations which are the phonons is

ωn = ±2ω1 sin
(σ

2
kn

)
. (5.20)

The spectrum of phonons characterized this way is also called the acoustical
branch. The frequency increases with the k-value.

There exists a second more complicated case, where the elementary excitations
may be treated analytically. This is the case of high density r0 � σ, when the
Morse chain is determined by the exponential repulsion of the particles. Then the
chain is equivalent to N point masses m connected at both sides by exponential-
ly repulsive springs corresponding to the case α = 0. As already mentioned, the
characteristic frequency is given by the Toda frequency ω0 =

√
ab/m. As we know

from the Toda theory of the uniform infinite Toda lattice this system possesses
solutions representing cnoidal waves and soliton-type solutions [10]. Soliton solu-
tions represent stable local excitations. They generate local energy spots which
are running along the lattice. For a uniform chain bn = b, (−∞ < n < ∞) Toda
found the following exact integrals of the Hamiltonian equations [10].

exp (−b(rj+1 − rj)) = const · Z(2K(k))Z (ω0t ± jk) . (5.21)

Here Z(u) and K(k) represent elliptic integrals or elliptic functions respectively
[10] (for simplicity we assume here units with σ = 1).
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5.3 Nonlinear Dynamics of Morse Chains 71

By adjusting appropriately the periodic boundary conditions for the N particles
we find N normal modes, which are the nonlinear generalizations of the phonon
modes found before. For the special case of an infinite lattice one of the solutions
reduces to

exp (−b(rj+1 − rj)) = 1 + sinh2(χ)sech2

(
χj − t

τ

)
. (5.22)

These solitonic excitations correspond to local compressions of the lattice with

Fig. 5.2 Toda lattice: Bottom: particle motions; center: the soliton function, top: first derivative
of the soliton function

the characteristic compression time

τsol = (ω sinhχ)−1 (5.23)

and with the spatial ”width” χ−1. This quantity is connected with the energy of
the soliton by

Esol = 2ε(sinh χ cosh χ − χ) . (5.24)

As the energy unit we will take the energy of an oscillator with the frequency ω0

and the amplitude σ connected via

ε = ω2
0σ

2 . (5.25)

vch 20 Sep 2005 14:31



72 5 Dynamical Clustering in Chains of Atoms with Exponential Repulsion

Here again σ serves as the unit of length.

Toda’s solution Eq. (5.22) represents a compression wave running along the chain.
In the following we will use the function

Cj(t) + 1 = exp[−b(rj − rj−1)] = exp[−b(xj+1 − 2xj + xj−1)] (5.26)

for characterizing the local strength of the solitonic pulse at site j. For ideal Toda
solitons

Cj(t) = sinh2(χ)sech2

(
χ(j − 1) − t

τ

)
(5.27)

holds. For deformed (real) solitons we expect a shape similar to a Toda soliton
pulse Eq. (5.22).

The soliton energy is determined only by the initial conditions and a soliton in
a conservative lattice lives forever. In our case however, the dissipative aspects
may play an important role, so we are going to study this aspect now in more
detail.

5.4 Excitation of Running Local Compressions:
Dynamical Clusters

5.4.1 Driving Solitons by External Forcing

The solutions presented so far solve the Hamiltonian equations in two limiting
cases. Let us study now the generation of excitations in a dissipative system
including friction and noise by forcing the elements. The aim is to force the
masses j = 1, . . . , N in such a way that the wanted excitations are generated.
The forcing introduces energy into the system which in a stationary state has
to be compensated by friction. We take the previous dynamical equations of
Newtonian type, introduce friction forces and external spatial and time periodic
forces resulting in the following set of equations

d

dt
xj = v , j = 1, . . . , N ,

(5.28)

m
d

dt
vj = Fj(t) − ∂U

∂xj
− mγ0vj .
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5.4 Excitation of Running Local Compressions: Dynamical Clusters 73

In the case of small motions around rmin we may linearize. In order to generate
phonons (or even cnoidal waves) of order n we may apply the forcing

F
(n)
j (t) = F0Ω2

n cos(Ωnt − jknσ + φ) (5.29)

with Ωn � ωn. As we will show, in general, the value of the frequency for excitation
should be a little bit higher than the value predicted by the dispersion relation
for the linear case Ωn ≥ ωn.
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Fig. 5.3 The ten trajectories corresponding to a forced soliton in a passive nonlinear lattice with
b = 2, a = 1, a1 = 0, γ0 = 0.2ω0, F0 = 0.15. We show the trajectories of ten particles
and demonstrate that one soliton per unit cell is excited

The physical realization of such a forcing is not trivial. We may think about a
piezoelectric material in which the chain is imbedded, a kind of ”waveguide”.
In this ”waveguide” we may induce running excitations of the wanted type with
given kn and correspondingly adapted Ωn, which by an appropriate coupling are
transferred to the chain.

We first consider the case of small amplitudes and linearized equations. In this
case the dispersion relation will be obeyed exactly, Ωn = ωn. It can be shown
that the driven system possesses an attractor given by

x
(n)
j (t) = A0 cos(ωnt − jknσ + Φ) (5.30)
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74 5 Dynamical Clustering in Chains of Atoms with Exponential Repulsion

with stable amplitudes and phases. A similar procedure works also for cnoidal
waves. However in this case the dispersion relation has to be found numerically.

The differential equations Eq. (5.11) have been integrated by means of a fourth-
order Runge-Kutta algorithm adapted for solving stochastic problems [12]. We
used l0 = σ as the length unit and t0 = 1/ω0 = (m/ab)1/2 as the time unit.
We show in Fig. 5.3 the trajectories of a 10-particle exponential lattice (periodic
boundary conditions) with a running external forcing according to Eq. (5.29). The
stiffness is b = 2, and the amplitude of the force is F0 = 0.15, correspondingly, we
are in the nonlinear regime. Being in the nonlinear regime, the dispersion relation
Eq. (5.20) is no longer valid. According to the dispersion relation we expect for
the solitonic mode ω1 = 0.57ω0 and a velocity corresponding to the velocity of
sound vs. In order to generate a solitonic mode we need a k-value corresponding
to this mode. The frequency of the exciting wave should be somewhat higher
than the value estimated from the dispersion relation for the linear case. The
appropriate value for k which should be also used in the excitation wave is

k1 =
2π
10σ

� 0.628 . (5.31)

Then the corresponding appropriate frequency is ωex = 0.82ω0.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

65 66 67 68 69 70 71 72 73 74

c
(t

)

t

’c2’
’c3’
’c9’

Fig. 5.4 The functions Ci(t) characterizing the soliton strength for the sites i = 2, 3, 9. The
functions correspond to the forced soliton described in Fig. 5.3
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In Fig. 5.4 we depict the local shape of the soliton Ci(t) as defined above for the
sites i = 2, 3, 9. We see that the pulse is indeed running along the lattice. The
height of the pulse is a measure of the soliton strength which is determined here
by the strength of forcing. We see that the pulse has indeed a similar shape as
Toda’s function Eq. (5.27). In other words, the excitation created by the forcing
remains soliton-like. In difference to Toda’s function we observe that the forced
excitation (Fig. 5.3) shows some ”tails” (see Fig. 5.4).

5.4.2 Excitation of Solitons by Stochastic Initial Conditions and
Stabilization by Active Friction

We consider now systems without external forcing Fk = 0 (Fig. 5.5) using initial
conditions created by stochastic disturbance. We may think about a realization
by sudden heating and quenching. We use a Gaussian distribution of the particle
velocities corresponding to a high-temperature Maxwellian as initial condition of
the order of kBTin � 0.1 (in units of the energy of harmonic oscillations with
amplitude σ). This is near to the critical temperature kBTcr � 0.16, where we
are in the soliton-generating region [17]. Besides other excitations many solitons
are generated. However they are difficult to recognize due to the random motions
of the particles. Then we quench to a temperature near to zero. The solitons
survive since they have a higher lifetime than most other excitations. Looking
at the trajectories we observe the expected nonlinear soliton-like excitations that
decay after a time of the order trel � 1/γ0 (Fig. 5.5). These excitations exist also
under equilibrium conditions [17].

In order to sustain the solitonic excitations for a longer time interval we applied
as in earlier works an active Rayleigh friction in the period after heating and
quenching. Then the soliton regime becomes a stable attractor [4, 18, 19] and
can be studied for a longer time (driven solitons appear in the lattice). In order
to provide the energetic support to soliton-like excitations we used the velocity-
dependent active friction function

F1(vk) = miγi0

(
δ − v2

k

v2
d

)
vk , (5.32)

where δ is a bifurcation parameter (δ = 0 corresponds to the passive case).

The effects of active friction force were investigated in more detail in our earlier
work [5]. For the passive regime δ = 0 the deterministic dynamics has a single
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Fig. 5.5 Metastable cnoidal (solitonic) waves: As a result of quenching of an initial state with
T (0) � 0.1 the trajectories of ten particles generate soliton-like excitations, which are
represented by the slopes of the wavy trajectorries

attractor at v = 0. Without noise all particles come to rest at v = 0. For δ > 0
the point v = 0 becomes unstable but there are now two additional zeros at

v = ±v0 = v1

√
δ − 1 . (5.33)

These two velocities are the new attractors of the free deterministic motion if
δ > 0.

In recent work [6, 7] it was shown that electrons may be coupled to the driven
solitons and form rather stable dynamic bound states with the solitons (”solec-
trons”). This effect will be studied again in the next section.

5.5 Dynamics of Electrons Coupled to Running

Local Compressions

5.5.1 Semiclassical Model of Electron Dynamics

In order to study the possible influence of dynamical clusters of the type described
above on electric conduction we will assume now that the atoms can be ionized
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5.5 Dynamics of Electrons Coupled to Running Local Compressions 77

emitting one free electron to a kind of ”band” and leaving a negative ion. In
other words, in the modified model we imbedded N electrons between the N
ionic masses on the chain. To describe the dynamics of the electrons we stay
on a classical level similar as the early conductance theories of Drude, Lorentz
and Debye. We mention quantum-meachanical approaches to related problems
by Davydov, Hennig and others [14, 15, 16].

For simplicity we start here with Langevin equations for N electrons (mass me,
charge −e) and N ions (mass mi, charge +e) moving on a lattice of length L = Nσ
with me � mi and periodic boundary conditions. Take the N electrons located
at the positions yj moving in the nonuniform, and, in general, time-dependent
electric field generated by the positive chain particles located at xk.

The electron-electron interaction, which results from Coulomb repulsion, Heisen-
berg uncertainty, and Pauli’s exclusion principle, is modelled here in a rather
crude way. We take into account that at small distances the effective potential is
linear before it approaches at larger distances the classical Coulomb interaction
[7]

Uee(r) = Uee(0) − e2

λ2
r + O(r2) ,

(5.34)

Uee(r) = 0 if r >
Uee(0)λ2

e2
,

where

λ =
�√

mkBT
(5.35)

is the de Broglie thermal wave length of the electrons. This leads to a rather weak
constant repulsive force at small distances

Fee = F0 =
e2

λ2
= const , (5.36)

which is much weaker than a purely classical Coulomb repulsion. The repulsive
force Fee acts between any pair of nearest neighbor electrons and keeps them away
from clustering. Due to the weak influence of the electron-electron repulsion we
neglected it in most calculations.

We assume that the chain particles are atomic ions or atoms with an ionic core.
In order to simplify the description, we decribe the electron-ion interaction by a
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Coulomb potential with an appropriate cut-off as often used e.g. in plasma theory
[7, 22]

Uek(rjk) = (eekκ) −
∑

k

eek√
r2
jk + h2

if rjk < r1 (5.37)

and

Uek(rjk) = 0 if rjk > r1 , (5.38)

where rjk = yj − xk is the distance between the electron and its neighbors in the
chain and 1/κ as well as r1 play the role of an appropriate ”screening length”
[7]. Here our choice is r1 = 3σ/4 and κ = 2/σ. Further −e is the electron charge
and ek the charge of the ion core of the chain particles. We introduced h as a
free parameter which determines the short-range cut-off of the Coulombic pole,
an appropriate choice is h � 0.3σ.
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Fig. 5.6 Typical configuration of the local electric field created by the solitonic excitation. The
minimum corresponds to a local compression of ions which means an enhanced charge
density

Similar pseudo-potentials were introduced first by Hellman and are of current use
in solid state theory [13]. The choice of the concrete value of ”height” of the pole
is made such that the electrons are only weakly bound to the ion cores and may
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tunnel from one side of an ion to the other one. Accordingly the electrons are
able to transit from one to the other side of an ion and yield an electron current.
For the electron dynamics we take a classical ”Drude-Lorentz-Debye dynamics”

dvj

dt
+

∑
k

∂Ue(yj)
me∂yj

= −γe0vj +
√

2De ξk(t) . (5.39)

The evolution of the electrons is assumed to be passive (i.e. damping for all veloc-
ities), including white noise. The stochastic forces,

√
2De ξj(t), model a surround-

ing heat bath (Gaussian white noise), obeying a fluctuation-dissipation theorem.
Note that the friction acting on the electron is small meγe � mγ0. The character
of the electron dynamics depends on h and on the positions of the ions. Our
choice h � 0.3σ allows to generate strong local minima at the positions of strong
(soliton-like) compressions (see Fig. 5.6).

Several of the assumptions made here with respect to the electrons are not very
realistic. However what matters here only is the principal effect. We wanted to
show, how the dynamical clusters created by solitonic excitations act on the
electrons. A quantum-mechanical tratment of the electron dynamics within the
tight-binding approximation is presented elsewhere [16]; it has been shown there
that the essential effects described in the present work are not influenced by the
approximations.

5.5.2 Coupling Between Soliton Modes and Electron Dynamics

In order to study the coupling of electrons to the lattice vibrations we will con-
sider long trajectories of the electronic positions and velocities, ve

j = ẏj. We
measure the energy (temperature) in units U0 = mω2

0σ
2, fixed bσ = 1 and taking

e2/(mσ) = 0.2U0. All computations start with the initial state of equal distances
between ions.

The initial velocities of the ions were randomly taken from a Gaussian distribution
with amplitude vin. Initially each electron is placed midway between two ions at
rest, ve,l = 0. Differential equations Eqs. (5.39) have been integrated by means
of a fourth-order Runge-Kutta algorithm adapted for solving stochastic problems
[12]. We used l0 = σ as the length unit and t0 = 1/ω0 = (mi/ab)1/2 as the
time unit. Our assumption that the initial velocities of the ions were randomly
taken from a normal distribution corresponds to an initial Maxwell distribution
and therefore to an initial temperature. We mention that such conditions may be
reached experimentally by a heat shock applied to the lattice. The motions of ions
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80 5 Dynamical Clustering in Chains of Atoms with Exponential Repulsion

and electrons occur in different time scales. Heavy ions are not affected practically
by light electrons and electrons move on the background of the Coulomb potential
profile created by the ions. The dynamics of the ion ring leads to soliton-like
excitations. Typical solitonic excitations correspond to local compressions moving
on the ring. Fig. 5.6 shows a characteristic profile of the electric field created
by the ion ring at certain time moment. We see a rather deep potential well
moving around the ring. The light electron may be captured in this dynamic
potential well and eventually may follow the soliton dynamics. In our simulations
the integration step is chosen to describe correctly the fastest component of the
process, the oscillations of electrons in the potential well.
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Fig. 5.7 Metastable ”solectron”: As a result of quenching of an initial state with T (0) � 0.1
the trajectories of ten Toda particles (ions) generate solitons. A soliton forms a bound
state with an electron captured by the soliton (a ”solectron”). During this time interval
the electronic trajectory is parallel to the ”tangent” representing the solitonic velocity.
(Parameter values: γi0 = γe0 = (0.0002)/t0 , unit of time on the abscissa, t0/

√
5, unit

of length on the ordinate, l0 = σ)

In the computer experiments demonstrated in Fig. 5.7 we used an initial Gaussian
distribution of the ion velocities corresponding to a high-temperature Maxwellian
with kBTin � 0.1 (in units of the energy of harmonic oscillations with ampli-
tude σ). As in the case earlier studied, this is near to the critical temperature
kBTcr � 0.16, where we are in the soliton-generating region [17]. Besides other
excitations many solitons are generated. However they are difficult to recognize
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5.5 Dynamics of Electrons Coupled to Running Local Compressions 81

due to the random motions of the particles. Then we quenched to a temperature
near to zero. The solitons survive since they have a higher lifetime than most
other excitations. Looking at the trajectories we observe the expected nonlinear
soliton-like excitations that decay after a time of the order trel � 1/γ0 (Fig. 5.7).
These excitations exist also under equilibrium conditions [17].
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Fig. 5.8 Trajectories of 10 ions moving clockwise creating one fast dissipative soliton moving in
opposite direction to the motion of the ions, and trajectories of 10 electrons captured
in part by the soliton which is made stable due to the energy input (δ = 2)

In order to sustain the solitonic excitations for a longer time interval we applied
an active Rayleigh friction in the period after heating and quenching as described
in the previous section. Then the soliton regime becomes a stable attractor [4, 18,
19]. The simulations presented below correspond to the Rayleigh approximation
with δ = 2, vd = 1, m/me = 1000, γ0 = γe0 = 0.2. A soliton corresponds to a local
compression of the lattice which is running opposite to the mean ion motion. This
creates a charge density wave. Snapshots show that the electrons are captured by
local concentrations of the ionic charge. Since the electrons search for the deepest
nearby minimum of the potential, they will be most of the time located near to
local ion clouds. The soliton is a dynamic phenomenon, the ions participating in
the local compression are changing all the time. Hence, the electrons have always
new partners for forming the ”solectron”.

Three stages are found: In the first one the initial state tends to one of N + 1
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for N odd (or N in the other case) attractors [18]. The maximal average velocity
among the running waves has the excitation with one local compression on the
ring. The attractor, reached by the system without noise and external field, is
defined mainly by the value of vin given by the initial conditions. Rotations appear
at very small initial velocity values. Then, upon increasing vin, k-solitonic waves
may be excited with increasing k. There exists always a target attractor for a
given value vin. For our case the initial conditions lead preferentially to the one-
soliton attractor. In the absence of the external field both directions have equal
probability, the field breaks the symmetry.

As mentioned above our choice for the value of a cut-off distance in the electron-
ion interaction Eq. (5.36) is h = 0.3σ. In this case the difference between the
maximum in the electron-ion interaction force and the corresponding value for
an electron and an ion being away from the electron more than 1.5σ, is an order
of magnitude lower, and hence interaction of the electron with such ions is not
taken into account in the simulations. Thus we consider the interaction of each
electron with the ions placed, e.g., about one third of the ring near that electron
only (N = 10, ne = ni = 1).

To simplify, the parameters of the potentials, of the Rayleigh formula, the friction
coefficients, both masses and charges of particles were held fixed. The initial
velocities vin, the values of the external field and the electronic temperature Te

are varied in different runs.

In Fig. 5.8 we show a simulation for the trajectories (left to right) of 10 ions
creating 1 dissipative soliton which moves in opposite direction (right to left).
After a transient regime, the electron is coupled to the soliton and moves approx-
imately with the soliton velocity opposite to the motion of the ions. In the driven
case (δ = 2) the ions perform a constant drift. After a transient regime, solitonic
excitations of the ions are formed moving with velocity vs opposite to the average
drift of the ions. Most of the electrons are captured by these dynamical clusters.

5.6 Discussion

We have shown that in dense lattices of particles with exponential repulsion,
special nonlinear waves may be excited which may be interpreted as dynamical
clusters - running local compressions. These dynamical clusters are similar to
the cnoidal waves in Toda’s theory. We have shown that these strongly localized
excitations corresponding to local compressions of the chain may be generated
also in dissipative lattices by external forcing, stochastic initial conditions or
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negative friction. In order to measure the solitonic strength of the excitations, we
introduced a special function.

We studied the properties of ionized atomic, hence electrically conducting, chains.
Each atom was assumed to provide one electron moving along the chain in the
field of the remaining ionic lattice. The electrons prefer positions near to the
deep (electrostatic) potential wells formed by the local compression connected
with the soliton. We have shown that, as time proceeds, most of the electrons are
captured by such local compressions and move with the soliton velocity opposite
to the ion drift. This way we have shown how significant for electric conduction is
the role of localized running excitations in lattices with exponential repulsion and,
in particular, the role of bound states between dynamical clusters and electrons
(”solectrons”).
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