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ON THE POSSIBILITY OF ELECTRIC CONDUCTION
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Based on the study of the dynamics of a dissipation-modified Toda anharmonic (one-dimensional,
circular) lattice ring we predict here a new form of electric conduction mediated by dissipative
solitons. The electron-ion-like interaction permits the trapping of the electron by soliton exci-
tations in the lattice, thus leading to a soliton-driven current much higher than the Drude-like
(linear, Ohmic) current. Besides, as we lower the values of the externally imposed field this new
form of current survives, with a field-independent value.
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Our understanding of electric conduction in met-
als owes much to the pioneering work of Drude
[Ashcroft & Mermin, 1976]. Present day the-
ory relates conductance to the electron–phonon
(lattice) interaction for both normal and supercon-
ducting materials. Hints also exist about the possi-
ble role played by electron–soliton interactions in
accounting for electric conduction but no theory
has been developed yet to observe its explicit role
in a model problem [Choquard, 1967; Payton III
et al., 1967; Krumhansl & Schrieffer, 1975; Lee,
1987; Davydov, 1991]. Note, however, the extensive
and fruitful work done on solitons and polarons in
conductive polymers [Yu, 1988; Heeger et al., 1988].

Solitons have been extensively studied by many
authors [Scott, 2003]. Suffices here to mention the
pioneering work on anharmonic lattices done by
Fermi et al. [1965], which motivated the work
by Zabusky and Kruskal [1965], who coined the
word, and Toda [1989]. Toda’s lattice with exponen-
tial interaction was the first nonlinear, many-body
problem exactly solved. This interaction, defined
below, has two limit cases, the harmonic (phonon,
linear) case and the hard-sphere (gas) interaction.

Toda’s exponential interaction is simpler to
implement electronically [Hirota & Suzuki, 1973;
Singer & Oppenheim, 1999; Makarov et al., 2001;
del Rı́o et al., 2003] than the apparently simpler
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cubic or quartic power law potentials used by Fermi
et al. [1965] and also used in textbooks to account
for anharmonic effects in heat diffusion ([Ashcroft
& Mermin, 1976]; see also [Payton III et al., 1967]).
Accordingly, we consider Toda’s lattice as the
“simplest” (or most tractable) model of an anhar-
monic soliton-bearing lattice. Needless to say, quite
like the Ising–Lenz model that cannot account for
the actual equilibrium properties of a real mag-
netic material but, however, serves to understand
what critical phenomena are about [Bernasconi &
Schneider, 1981], the Toda lattice (save the ques-
tion of dimensionality) is expected to allow under-
standing basic features of nonequilibrium dynamics,
flows and transitions in solids. In the present note
we generalize Toda’s lattice to include dissipative
effects and an energy pumping mechanism in order
to study the evolution of a driven-dissipative non-
equilibrium model system for an anharmonic solid.

We consider a one-dimensional array of N iden-
tical Brownian point-particles with masses located
on a ring of length L. Hence the coordinates of
the particles are xi(t) and their velocities vi(t),
i = 1, 2, . . . , N , with xi+N = xi. For the inter-
action we take

U =
N∑

i=1

[
UT

i (ri) + Ue(ri)
]
, (1)

with UT
i (ri) = (a/b)[e−b(ri−σ)] denoting Toda’s

interaction, ri = xi+1 −xi; σ > 0 is the mean inter-
particle distance. The parameters “a” and “b” refer
to the amplitude of the force and the stiffness of the
spring constant, respectively. Ue denotes the inter-
action with electrons to be made explicit below.

The evolution of the lattice is governed by the
following equations

d

dt
xk = vk, (2a)

m
dvk

dt
+

∂U

∂xk
= ekE + F (vk) +

√
2Dξk(t), (2b)

where the stochastic component on the r.h.s.
mimicks a heat bath as a Gaussian white noise
with zero mean and delta-correlated 〈ξi(t)〉 = 0,
〈ξi(t′)ξj(t)〉 = δijδ(t′ − t). The quantity E accounts
for an external field acting on charges ei. We
introduce the dissipative force

F (vk) = −mγ(vk)vk, (3)

such that γ(v) = γ0 + γ1(v), with γ0 > 0 describing
standard friction between particles and the bath.
We shall assume Einstein’s relation D = mkBTγ0,
with kB and T denoting Boltzmann’s constant and
temperature, respectively. The γ1 component of the
friction is assumed nonfluctuating [Schweitzer et al.,
1998; Erdmann et al., 2000; Dunkel et al., 2001].

Note that without drive and current the ions
form an equidistant lattice, with equally spaced unit
cells or unit domains. Due to the (nonlinear) inter-
actions the system may develop phonon and soli-
ton excitations. With varying noise/temperature
the nonlinearity may be taken to advantage for a
disorder–order transition. By adding driving terms,
γ1, the solitons are eventually stabilized. On the
other hand, with the nonlinear Toda interaction,
each particle is displaced from its equilibrium
position to either direction along the lattice ring,
making wide excursions within its “domain walls”,
corresponding to a wandering local compression
(more about this below). This is one way to visual-
ize the underlying support of a (nonlinear) wave of
translation in the lattice (for pioneering work see,
e.g. [Takahasi, 1961]). In standard (linear) waves,
matter (or charge) transfer is not a first-order effect
while it is, indeed, a first-order effect with (nonlin-
ear) waves of translation and hence with solitons or
solitonic wave trains (periodic and otherwise). Fur-
thermore, as discussed by Payton III et al. [1967] for
heat transport, solitons in the nonlinear lattice ring
experience little scattering with the “particles” and
this seems responsible for the faster transfer relative
to a harmonic lattice.

As noted above the lattice is compressed around
a soliton (a spike or solitonic peak) and hence in
the lattice ring with an exponential repulsion force
(akin to the hard-sphere interaction) a soliton is
a compression wave. The nonlinear, periodic (e.g.
cnoidal) wave causes expansion of the lattice. There
is compression around the peaks but the troughs
are expanded, hence a nonlinear periodic wave in
a Toda lattice consists of sharp spikes and wide
troughs. Yet, these two processes in our circular ring
are not in conflict with the fact that the length, L,
is held constant.

The total energy balance in the system is

dE

dt
= −

∑
k

mγ(vk)v2
k +

√
2D

∑
k

vkξk(t). (4)

Note that the first term in the r.h.s. of Eq. (3)
has a sign not yet prescribed. Let us take a simple
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Rayleigh-like active friction depending on a tunable
parameter, µ,

F (v) = mγ0v[µ − v2/v2
1 ]. (5)

This type of active friction for mechanical
systems with energy input was proposed in the the-
ory of sound developed by Lord Rayleigh. Need-
less to say, this is not a realistic model for a real
material. However, we use it here only as the sim-
plest model for generating dissipative solitons in a
lattice [Nekorkin & Velarde, 2002]. It appears that
this force model may be considered as a mechanism
for active Brownian particles that carry refillable
energy depots (internal degrees of freedom). More
general forms of active friction have been discussed
in the literature [Schweitzer et al., 1998; Erdmann
et al., 2000; Dunkel et al., 2001]. Due to the restric-
tion to Rayleigh friction we will not be able to dis-
cuss in full the role of temperature in the system.
It helps, however, seeing in a transparent way the
new form and value of the flow currents appearing
in the lattice.

The dimensionless parameter, µ, in the
Rayleigh model controls the conversion of the
energy taken from the external energy reservoir into
kinetic energy. It plays the role of a bifurcation
parameter in our model system. The region µ < 0
is the region with (nonlinear) passive friction, and
µ > 0 is the region of active friction. For µ < 0 the
force has a single zero at the velocity v = 0 which is
the only attractor of the deterministic system. The
critical value is µ = 0. For µ > 0 the motionless
state becomes unstable. In the following we shall
mostly use a special set of parameters assuming
µ = 1 and v1 = 1. Consequently, our dynamical
system has the stationary velocity v0 = 1.

Let us now add a second kind of charge (elec-
trons) and let us study how stochastics changes
the deterministic dynamics. Consider “electrons”,
−e, at positions, yj, somewhere along the lattice of
“positive” charges (called here ions) located at sites
xk, and let us assume that the added particles expe-
rience a Coulomb interaction with suitable cut-off,

Ue(yj , xk) =
(−e)ek√

(yj − xk)2 + h2
, (6)

with h ≈ σ/2 as the cut-off distance. Note that we
do not treat here proper 1d or 2d charges but rather
we are treating particles with 3d interactions (with
cut-off) like if we have two separate, parallel rings

near each other (distance h). For further simplicity
we take

d

dt
yj = vj , (7a)

me
d2

dt2
yj +

∂Ue

∂yj
= −eE − meγe0vj +

√
2Deξj(t),

(7b)

hence the electron behaves passively, with friction
being small meγe0 � miγi0. The electronic con-
tribution to the current density (current per unit
length) can be expressed as

je = −e〈ve〉, (8)

where 〈ve〉 is the average electron velocity. In the
Drude approximation the current density is given as

jD =
(

e2

meγe0

)
E. (9)

We will show that the soliton-driven transport of
the electron may be much higher. The total current
density along the ring, if we take an equal number
of electrons and ions (in the simulations we assume
N = 10), is

j = 〈ji(t)〉 + 〈je(t)〉 = ei〈vi〉 − e〈ve〉, (10)

where, accounting for sign of charge and current
directions, both terms have equal sign.

Figures 1–4 depict salient findings of our com-
puter simulations. Note that the problem has three
parameters, the tuning parameter µ, the electric
field, and the temperature/noise (in fact two noise-
parameters). We restrict consideration here to only
a few significant results. Figure 1 illustrates the tra-
jectories of the ten ions moving clockwise which cre-
ate one dissipative soliton. The trajectory of one of
the electrons is also shown. The parameter values
used are: σ = 1, a = 13.69, b = 1, h2 = 0.08,
mi = 103me, me = 1, γe0 = γi0 = 1, µ = 1, and
v1 = 1. In Fig. 2 we show an excitation with four
dissipative solitons excited and moving clockwise,
and again we show the trajectory of one of the
electrons. The two pictures correspond to super-
critical (driven) states with v0 = 1, arising from
different initial conditions and with different val-
ues of the a/b ratio in the Toda potential. For
Fig. 2 the ratio a/b is of lower value than in Fig. 1.
The noise is assumed to be very small (practically
D = De = 0). We clearly see that the electron forms
dynamic bound states (solectrons, in short) with the
running solitons. The electron is electrostatically
bound to the local compression (the soliton spike)
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Fig. 1. Trajectories of N = 10 (ten) “ions” (thin lines) and
of one of the “electrons” (thick line) in the lattice ring in
the case that a cnoidal-like wave with a single solitonic peak
is excited. The heat bath temperature is taken very small
(D = De = 0). The weak external field ensures a single
direction of ring rotation. The ion is supposed to be a thou-
sand times heavier than the electron. The quantity γe0 is set
equal to unity. The initial distance between neighboring ions
is unity.

Fig. 2. Trajectories of N = 10 (ten) “ions” (thin lines) and
one of the “electrons” (thick line) in the lattice ring in the
case of 4 (four) solitons (like a cnoidal wave) excited. Again
the heat bath temperature is taken very small (D = De = 0).
The parameter values are as in Fig. 1, except the ratio a/b
of the Toda potential which is taken here with lower value.

which is running with the soliton velocity counter-
clockwise, thus leading to the soliton-driven cur-
rent. Note that the electron first follows a couple of
ions and subsequently jumps on a soliton (negative
slopes tangent to the ion trajectories). The electron
changes partners all the time and flows with the
velocity given by the (absolute) value of the slope.

The actual currents (the electronic current, the
Drude current of the electrons and the ionic current)
are depicted in Fig. 3 as functions of the strength

Fig. 3. Different contributions to the electric current as a
function of the external electric field. The dotted line shows
the Drude-like current, jD, of the electrons. The solid line
shows the soliton-driven current, je(t)/ |ee|, observed in the
simulations with ten ions and ten electrons. The lower bro-
ken line gives the ionic current, ji. Parameter values are as
in Fig. 1.

of the external field. As reference scale or unit we
take E0, which in the passive case would lead to the
unit value of velocity, v = 1.

Let us emphasize the observed effects. Note first
that for a wave and, eventually, a current to be
observed traveling in one or the other of the two
possible directions, the symmetry-breaking bias of
an imposed external electric field suffices. Clearly,
ions proceed along the direction imposed by the
external field while electrons proceed in the oppo-
site direction. Following a transient regime there is
self-organization leading to solitonic excitations of
the lattice (ions) moving with velocity, vsol, oppo-
site to the (mean) drift ion motion. The electron
originally placed in the valley between two solitonic
peaks drifts a bit towards one of them, being “cap-
tured” and moves with the soliton velocity, which
is in the opposite direction to the ion drift.

When one soliton is excited with rather high
velocity, vsol ≈ 2, this soliton catches all ten elec-
trons, one after the other. This leads to a rather
high electronic current, about ten times lower is the
ionic current,

je ≈ 2; ji ≈ 0.2. (11)

We see that the currents are independent of the
field. The electronic current is much higher than the
Drude current. At E > 2E0, the Drude current of
electrons exceeds the soliton-driven current. Since
our main interest is devoted to the soliton-driven
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Fig. 4. Different contributions to the electric current, je,
as a function of electron temperature, T = De, D � 1 at
E/E0 = 0.5. The dotted line shows the Drude-like current,
jD , of the electrons. Parameter values are as in Fig. 1.

current, the region E < 2E0 is the most inter-
esting in our context. Increasing the temperature
(D > 0,De > 0) may destroy the soliton or break
loose electrons from the soliton. Because of the dif-
ference between the masses of ions and electrons the
second effect, generally, prevails. We depict in Fig. 4
the observed temperature dependence of the elec-
tronic current for D � 1, E/E0 = 0.5. We see that
the cloud of trapped electrons is stable if the elec-
tronic temperature T = De ≤ 0.02. At T ≥ 0.02,
one or more electrons sometimes leave the potential
well created by the soliton and form a Drude com-
ponent of the electronic current during some time
intervals. With increasing temperature the solitonic
component of the current decreases and the Drude
current grows. Accordingly, the total current tends
to the Drude value, jD (9).

The electronic current is (nearly) independent
of the external field (zero differential conductiv-
ity) with much higher value than Drude’s. Then
in the very low range of values of E the current
exhibits a gap (Fig. 3) illustrating a high con-
ductivity near zero field. So far we did not carry
out systematic studies of the temperature depen-
dence. However, already from the existing quali-
tative studies we may say that the soliton-driven
(highly conducting, supercritical, µ > 0) current is
not destroyed upon increasing the temperature until
reaching some higher value of temperature where
the soliton-driven current is finally destroyed.

There exist other regimes, where different
numbers of solitons are excited as the model-system

possesses more than one attractor. Here, we have
illustrated the rich and striking dynamics of the
model by considering just the case of some soli-
tons excited in the anharmonic lattice ring where
electrons could be captured and transported. Our
model with N units possesses (N + 1) attractors,
two of them are trivial constant rotations [Ebeling
et al., 2000; Makarov et al., 2001; del Rı́o et al.,
2003]. A special case is that of the “optical” mode
which exists with N even and corresponds to
antiphase oscillations of the ions. Worth emphasiz-
ing is that the actual value of the external field is of
little if any significance while what really matters
is its symmetry breaking role as, e.g. done by mag-
netic fields in the para-ferromagnetic transition in
equilibrium.

It is difficult to refrain from speculating about
the possible significance of the findings reported
here for the understanding of some form of high-T
superconductivity. There is ground for serious spec-
ulation. On the one hand, evidence (theory, numer-
ics, and experimental) [Nepomnyashchy et al., 2002;
Nekorkin & Velarde, 2002] supports the claim
that, in the presence of dissipation, solitary waves
and, eventually, solitons and solitonic wave trains
can be excited and may survive if an appropri-
ate input–output energy balance exists in the sys-
tem. Solitary waves or solitons, in the moving
frame, appear as a kind of dissipative structures
[Nicolis & Prigogine, 1977; Velarde, 2004]. Such bal-
ance is to be added to, e.g. a (local) nonlinearity-
dispersion balance defining the solitary wave, as in
the Boussinesq–Korteweg–de Vries (B–KdV) equa-
tion [Zabusky & Kruskal, 1965; Nepomnyashchy
et al., 2002; Nekorkin & Velarde, 2002]. Another
similar case could be the balance between non-
linearity and diffraction leading to the nonlinear
(envelope) Schroedinger equation describing opti-
cal solitons [Akhmediev & Ankiewicz, 1997]. On the
other hand, the B–KdV equation is the continuum
limit of the lattice with cubic power law potential
used by Fermi et al., [1965]. Real solids ought to
exhibit anharmonic excitations like solitons [Payton
III et al., 1967; Krumhansl & Schrieffer, 1975; Lee,
1987; Davydov, 1991] and do exhibit dissipation
with flow currents. Our Toda–Rayleigh system, or
dissipative Toda lattice, exhibits both solitons and
dissipation while allowing transition from linear
conduction to solitonic conduction. Such a tran-
sition bears similarity with those found in other
non-equilibrium systems [Nicolis & Prigogine, 1977;
Normand et al., 1977].
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In view of the results reported here, one can
safely say that the following new phenomena are to
be expected:

(i) In many (complex enough) materials, solitonic
modes should be observable by suitable excita-
tion of their (nonlinear) lattice dynamics. Soli-
tons, however difficult to find, should not be
considered as exotic lattice excitations, void
of practical interest. Indeed, the role of soli-
tons is well established in conducting polymers
[Yu, 1988; Heeger et al., 1988]. Furthermore,
this point is far from abstract when we foresee
application to conducting materials as complex
as the recently found high-T superconductors.

(ii) If solitons can be excited in a conducting mate-
rial, at intermediate temperatures and as the
temperature is lowered, the passage from lin-
ear to nonlinear lattice excitations ought to be
observable in its dynamic structure factor or
response using thermal neutrons.

(iii) Applying an electric field, besides Ohmic linear
currents, solectronic currents should be observ-
able in (complex enough) conductors at inter-
mediate (not too high) temperatures, albeit as
decaying fluctuations.

(iv) As the temperature is lowered enough, the
above mentioned solectronic currents would be
surviving for longer and longer time intervals.
Then at a certain (critical) temperature the
fluctuations ought to survive as “residual” cur-
rents (hence when the field goes to zero).

(v) As demonstrated in this work, for a system
with dissipation capable of experiencing self-
organization, and a disorder–order transition
leading to solitons, such a soliton-driven cur-
rent corresponds to a “free ride” on top of the
nonlinear waves in addition to the Ohmic lin-
ear current. This is very much like the free
ride that a surfer experiences when placing
him- or herself on top of an (appropriate) wave
approaching the sea-shore. Surf-waves like soli-
tary waves in rivers (bore and otherwise; mov-
ing downstream or upstream) are waves of
translation that travel much faster that the
base mean flow.

Finally, it is noteworthy that the known high-
T superconducting materials exhibit quite a low
electric conductance in the normal state. Measure-
ments have also shown that the conductivity comes
with 1/f noise when approaching the transition
temperature, Tc [Maeda et al., 1989]. In terms of

the simple model-problem presented here, does the
nonlinear dynamics of the system use white noise
to self-organize leading to the solitonic state and
then evacuating 1/f noise? [Klimontovich, 1990;
Ebeling et al., 2000]. We plan to address this
question in a future publication, where we shall pro-
vide further results, details of the computer simula-
tions, a discussion of the role of noise/temperature,
the fluctuation–dissipation theorem in the general
case (and, in particular, with active friction), the
quantum mechanical description of the electron-ion
interaction, the interaction between electrons, and
also of the role of the electric field in the case of
just passive friction. A study of the more com-
plete Morse (including appropriate attraction, and
hence akin to the Lennard–Jones) potential model-
problem will also be given elsewhere.
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