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Abstract. We study the evolution of a simple one-dimensional chain of N = 4 particles with Morse inter-
actions and periodic boundary conditions which are imbedded into a heat bath creating dissipation and
noise. The investigation is concentrated on thermodynamic properties for equilibrium, near-equilibrium
and far-equilibrium conditions. For the thermodynamic equilibrium, created by white noise and passive
friction obeying Einstein’s fluctuation dissipation relation, we find a standard phase diagram. By applying
active friction forces the system is driven to stationary non-equilibrium states, creating conditions where
various self-sustained oscillations are excited. Thermodynamic quantities like energy, pressure and entropy
are calculated near equilibrium, around a critical distance from equilibrium and far from equilibrium.
We observe maximal order (minimum entropy) in certain region of the noise temperature, a phenomenon
which is reminiscent of stochastic resonance. With increasing distance from equilibrium new “phases”
corresponding to the existence of several attractors of the dynamical stem appear.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise and Brownian motion – 05.70.Fh Phase
transitions: general studies – 05.70.Ln Non-equilibrium and irreversible processes – 64.60.-i General studies
of phase transitions

1 Introduction

We study here the thermodynamics and statistical physics
of a driven – dissipative system. For simplicity we consider
a one – dimensional lattice of four particles with periodic
boundary conditions. The motivation for this work is the
following: Phase transitions and critical phenomena are
well understood at thermodynamic equilibrium. The cor-
responding phenomena occurring at non-equilibrium are
only understood in the linear realm of irreversible phenom-
ena. When we consider phenomena far from equilibrium
the situation is quite different, as general thermodynamic
framework is available. Thus we feel that a systematic ex-
ploration of simple model systems may be of help to pro-
vide the basis of a non-equilibrium thermodynamics and
a theory of non-equilibrium transitions.

Following the pioneering work of Fermi, Pasta, and
Ulam, and Toda [1], studies of one-dimensional nonlin-
ear model systems have greatly contributed to our under-
standing of nonlinear excitations in various physical sys-
tems [2]. A topic of special interest is the coupling of finite
size nonlinear ring chains to a heat bath and the properties
of the resulting excitation spectra [3–7]. Progress has been

a e-mail: ebeling@physik.hu-berlin.de

achieved in the numerical exploration of thermal excita-
tions and clustering processes in one-dimensional Morse
ring chains with small particle number N [8–10]. In par-
ticular, phase diagrams and collective excitations for the
N ≤ 4 case were determined. Here these investigations are
extended to situations far from equilibrium. The case con-
sidered is that of a ring chain driven away from equilibrium
by applying active friction forces. [6,11–14]. In particular
we show that several interesting nonlinear excitations as
e.g. “dissipative” solitons may be excited. The concepts of
“dissipative” forces and “dissipative” solitons were inves-
tigated recently both on the theoretical as well as on the
experimental sides [16–19]. Another relevant concept, is
that of active (nonlinear) Brownian motion [20–23]. The
third important concept is connected with cluster forma-
tion. Clustering and Van der Waals type phase transitions
are specific for systems with attractive interactions as e.g.
Lennard-Jones and Morse potentials [8–10,24].

The paper is organized as follows. In Sections 2 and 3
we introduce the equations of motion and recall earlier
results needed here. Section 4 gives some analytical re-
sults for the thermodynamics of ideal systems. Section 5
contains a survey of the numerical algorithms and some
results about the contributions of the interactions to the
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thermodynamic functions. Section 6 deals with the total
thermodynamic functions and a discussion of stochastic
resonance and “phase transitions”. Since we are dealing
here with small 1 − d systems we do not observe proper
thermodynamic phase transitions but instead we see fast
qualitative changes in a narrow region which are not con-
nected with mathematical discontinuities of functions in
the sense of Ehrenfest’s definitions.

2 Stochastic dynamics of Morse chains

We consider a one-dimensional model of N identical point-
particles with masses m located on a ring of length L.
This is equivalent to a linear system with periodic bound-
ary conditions. The particles are described by coordi-
nates xi(t) and velocities vi(t), i = 1, . . . , N with

xi+N = xi + L. (1)

The potential energy stored in the ring is

U =
N∑

i=1

Ui(ri), (2)

where Ui(ri) = Ui(xi+1 − xi) denotes the Morse pair in-
teraction potential explicitly given by

Ui(ri) =
a

2b

[
e−b(ri−σ) − 1

]2 − a

2b
(3)

with positive parameters a, b, σ > 0. We consider only
nearest-neighbor (n.n.) interactions. The Morse potential
has a minimum with the depth ε = a/2b at ri = σ and
tends asymptotically to 0 for ri → ∞. The angular fre-
quency of oscillations around the equilibrium distance is
given by mω2

0 = ab. The Morse potential (3) (akin to the
Lennard-Jones potential can also be considered as a gen-
eralization of Toda’s exponential potential [1]. In the limit
of ri � σ the Morse potential is completely dominated by
the exponential repulsive part. For Morse interactions σ
gives the equilibrium length of the springs. Due to the
coupling to the heat bath, the evolution is given by the
Langevin equations

d

dt
xi = vi, (4)

m
d

dt
vi +

∂U

∂xi
= F (vi) + m

√
2D ξi(t),

governing the stochastic motion of the ith particle on the
ring in the presence of dissipation and noise. The stochas-
tic forces

√
2D ξi(t) (Gaussian white noise), are character-

ized by

〈ξi(t)〉 = 0, 〈ξi(t′)ξj(t)〉 = δij δ(t′ − t). (5)

Following Lord Rayleigh we define the “dissipative” force
as a velocity-dependent active friction function

F (vi) = −m γ(vi) vi (6)

consisting of an equilibrium and a non-equilibrium part

γ(v) = γ0 + γ1(v). (7)

Here the first (constant) part γ0 describes the standard
friction between the particles and the surrounding heat
bath. It obeys the the Einstein relation [8,23]

D = kBTbγ0/m. (8)

where Tb is the (noise) temperature of the heat bath.
Other temperature concepts will be discussed in the next
section. The fluctuating force connected with the passive
(equilibrium) friction γ0 obeys the fluctuation-dissipation
theorem (FDT) (8). The force corresponding to the active
(non-equilibrium) friction, γ1, does not fluctuate in our
model. A discussion of nonlinear systems, where the FDT
differs from the simple Einstein relation (8), can be found
in [20–22]. In accordance with earlier works [8,13,14,23],
we will model here the active part of the friction by the
expression

γ1 = −γ0
δ

1 + v2/v2
d

· (9)

Then the total friction force acting on a particle may be
represented as

F (v) = −mγ0v

[
1 − δ

1 + v2/v2
d

]
· (10)

This friction force was introduced and investigated
in [13,14,23] to model active Brownian particles that carry
refillable energy reservoirs (internal degrees of freedom).
In equation (10), the characteristic velocity vd > 0 is con-
nected to internal dissipation. The bifurcation parameter
δ ≤ 0 controls the conversion of the energy taken up from
the surrounding into kinetic energy. The value δ = 0 cor-
responds to equilibrium, the region 0 < δ < 1 stands for
nonlinear passive friction and δ > 1 corresponds to active
force. The bifurcation from one to the other regime occurs
at δ = 1. For the passive regime 0 < δ < 1 the friction
force vanishes at v = 0 which is the attractor of the deter-
ministic motion. Without noise all particles come to rest
at v = 0. For δ > 1 the point v = 0 becomes unstable but
we have now two additional zeros at

v = ±v0 = vd

√
δ − 1. (11)

These two velocities are the new attractors of the free de-
terministic motion if δ > 1. In Figure 1 we have plotted
the friction force for the two values δ = 0 (equilibrium)
and δ = 2 (strong driving). The figure includes the rep-
resentation of a useful piecewise linear approximation of
the friction force for δ > 1 which reads

F = −γplv

[
1 − v0

|v|
]

; γpl = 2γ0
δ − 1

δ
· (12)

This is a linear approximation to the friction force near to
the two stable velocities v = ±v0.
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Fig. 1. Dissipative force for the parameter values δ = 0 and
δ = 2 and a piecewise linear approximation for δ = 2.

The units can be chosen that m = 1, σ = 1 and ω0 = 1.
Further, in the numerical part, we will take the special
values vd = 1, γ0 = 1. Choosing these c.u., equation (4)
becomes

d

dt
vi +

∂U

∂xi
=

[
δ

1 + v2
i

− 1
]
vi +

√
2D ξi(t).

3 Equilibrium configurations
and attractors of the dynamical system

In the limiting case of constant friction γ0 > 0, no driv-
ing γ1 = 0 and no noise D = 0, the system will lose in
the course of time its kinetic energy and go to the min-
ima of the potential energy. Hence it will take certain
equilibrium configurations. Morse rings have a potential
landscape showing many minima [8–11,19]. This allows a
rich variety of clustering phenomena, due to the attractive
forces between n.n. at distances beyond the potential min-
imum. The character of the equilibrium configurations of
the particles on the ring essentially depends on the mean
particle density n := N/L. Instead of n we may also con-
sider the mean length (mean distance between the par-
ticles) l := 1/n = L/N . The effects of density variation
at low temperatures may be studied by investigating the
total potential energy U(x1, . . . , xN ). A particle configu-
ration is a stable state of the ring, if it corresponds to a
local minimum of U . Noteworthy is that in a ring with
Toda interactions, for arbitrary values of n, only one sta-
ble state exists, given by the equidistant configuration [5].
At high densities

n >
b

ln 2 + b
=: nc. (13)

Morse rings are completely equivalent to Toda rings, since
the exponential repulsion dominates since for always cor-
responding to a minimum of U . For big densities, Morse
rings with the parameter b behave like Toda rings with

Fig. 2. Schematic representation of the Morse ring with N = 4
particles. The equidistant configuration (left) corresponds to a
minimum of the Morse potential at high density, n > nc, the
single big cluster (right) is the only stable state if the density is
low. In certain interval both equidistant and cluster configura-
tions are stable states. The 3 central configurations correspond
to saddle-points of U .

the parameter 2b. On the other hand, in Morse rings with
small density n < nc, there may exist different types of
stable states [9,10]. Then, the equidistant configuration
becomes a maximum of U and, therefore, it is unstable.
However, for Morse rings there still exists a second crit-
ical value n̄c(N) ≥ nc, such that for n < n̄c(N) new
minima of U can be observed. These new stable states
can be identified as the N equivalent configurations each
corresponding to a single cluster of size N (see Fig. 2; ex-
treme right configuration), which we refer to as ‘N -mer’ in
the following. For N ≥ 3 there exists a transition interval
(nc, n̄c), where both the N -mers and the equidistant con-
figuration represent stable states; put differently, there is
a coexistence region for qualitatively very different stable
states [10]. In the remaining low density region n < nc

the N -mers are the only stable configurations, and one
can evaluate Zs

N = 2N − 2−N as the lower boundary for
the number of saddle points in the (N − 1)-dimensional
potential energy landscape U . These meta-stable points
correspond to symmetric combinations of smaller clusters
(‘k-mers’ with 1 ≤ k < N), as illustrated for N = 4 in
Figure 2. Let us study now the case of driven systems and
find their corresponding attractors. If the driving strength
is weak enough i.e. δ < 1, as in the passive case, the at-
tractors are simply the minima of the global potential en-
ergy. For larger values δ > 1, we observe negative friction
at small velocities, then slow motions tend to be ampli-
fied. Therefore we find new attractors of motion, which
are connected with the stable particle velocities v = ±v0.
The general attractor structure might be very complicated
and is known only for particular cases [11]. If the particle
density is much larger than the critical density we may
approximate the interaction by the simpler exponential
potential. In this case the strongly driven system has (at
least) N +1 attractors [5,11]. Hence, for N = 4 we should
find at least 5 attractors of motion. The attractors are
characterized by different values of the mean velocity V
and the corresponding mean angular momentum M of the
ring [5,11]

V =
1
N

∑

i

vi; M = m
∑

i

R0vi. (14)

Here R0 is the radius of the ring. A rough estimate is based
on a simple counting how many particles move in average
to left or to right [5]. The combination of N − k parti-
cles moving clockwise (vi > 0) and k particles moving
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counterclockwise vi < 0 gives the estimate

V =
N − 2k

N
v0; M = mR0(N − 2k)v0, (15)

where k ≤ N/2. All the attractors provided by our esti-
mate follow from a pitchfork-type bifurcation of the one
(passive case) attractor at δ = 1. For Morse rings, a com-
plete analysis is known so far only for the case N = 2 [11].

4 Thermodynamic functions
of the noninteracting system

In order to formulate a thermodynamics we need to define
quantities like energy, entropy and temperature. Let us
discuss this in general terms, for a system of N particles
moving on a ring of length L. There exist different ways to
define a temperature. There is the bath temperature (noise
temperature) which, according to the Einstein relation, is

Tb =
D

kBmγ0
. (16)

In our c.u. we get Tb = D. Then, we may define a kinetic
temperature by means of the average kinetic energy, i.e.,

Tk =
m〈v2〉

kB
. (17)

Third, we may introduce (in non-equilibrium) the hydro-
dynamic temperature which considers only the stochastic
part of the kinetic energy,

Th =
m〈(v − 〈v〉)2〉

kB
. (18)

Finally, we may define the entropic temperature by means
of the standard thermodynamic relation

1
Ts

=
(

∂S

∂E

)

V

. (19)

Although in equilibrium all these definitions coincide, in
nonequilibrium they may lead to different values under
the same conditions. Let us see this first for the simple
case of noninteracting (free) particles.

For the case of free particles the stationary distribution
functions, which are the solutions of the Fokker-Planck
equation corresponding to the Langevin equation are
known [22,23]:

f(v) = C exp
[
− v2

2D
+

δv2
1

2D
ln

(
1 +

v2

v2
1

)]
. (20)

The energy has only a kinetic contribution

Eid = N

∫
dxdv

h

v2

2
f(v). (21)

The entropy follows from

Sid = −kB

∫
dxdv

h
f(v) · ln f(v), (22)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D

δ

Fig. 3. Two different regions of noise strength and driving
force: In the left near-equilibrium region the noise dominates,
we have approximately equilibrium conditions. The thermody-
namic equilibrium itself corresponds to the axis δ = 0. In the
right far-equilibrium region, the dynamical system has several
deterministic attractors. The corresponding probability distri-
bution may have several maxima around the location of the
deterministic attractors.

where h is Planck’s constant. In the case of thermody-
namic equilibrium, the Maxwell distribution holds, and
all temperatures are equal to the noise temperature Tb =
Tk = Th = Ts = T = D. For energy end entropy we get in
dimensionless units

Eid0 =
N

2
T (23a)

Sid0 = N

(
1
2

ln T − ln n

)
+ const. (23b)

In nonequilibrium we cannot solve the integrals explicitly,
but we have only one-dimensional integrals which are easy
to treat numerically. In the calculations we have to distin-
guish between the two regions shown in Figure 3. In the
left/upper region the noise dominates, i.e. approximately
equilibrium conditions with Maxwell distributions

f(v) = const. × exp
[
− v2

2D

]
· (24)

Energy and entropy are given by the equilibrium expres-
sions with the noise temperature instead of the thermo-
dynamic temperature:

Eid1 =
ND

2
(25a)

Sid1 = N

(
1
2

ln D − ln n

)
+ const. (25b)

In the right/lower region the velocities are bistable, always
near to one of the deterministic attractors v = ±v0, the
dispersion (mean square deviation from these characteris-
tic velocities) is small. Assuming a piecewise linear friction
law (Fig. 1) the distribution may be approximated by

f(v) = const. × exp
[
−γpl(|v| − v0)2

2D

]
. (26)
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This is a symmetrical bistable distribution corresponding
to the two most probable values of the velocity. The ef-
fective dispersion around the most probable values of the
velocity is determined by

D∗ =
γpl

D
=

Dδ

2(δ − 1)
· (27)

Energy and entropy as above come from the two (posi-
tive/negative) branches of the distribution

Eid2 =
N

2
(v2

0 + D∗). (28)

Here the first contribution corresponds to the stable ve-
locity and the second one is determined by the dispersion
around it. The entropy is given by

Sid2 = N

(
1
2

ln D∗ − ln n

)
+ ... (29)

Thus for the region of bistability the ideal entropy contri-
bution:

Sid2 = N

(
1
2

ln D − ln n + ln
(

δ

δ − 1

))
+ ... (30)

In order to calculate the ideal pressure we assume that the
ideal pressure is the momentum exchange of the stochas-
tic motion with the wall. This gives for regions 1 and 2
respectively:

pid1 = n〈v2〉 = nD, (31)
pid2 = n〈v2〉 = n

(
v2
0 + D∗) . (32)

Let us now calculate the contributions due to the Morse
interactions of the particles by computer modelling.

5 Numerical calculations
of the interaction contributions

We calculated the interaction contributions to the energy,
ein, the pressure, pin, and the entropy, Sin, which are due
to the forces between the particles. These quantities are
estimated by processing the data about the trajectories
of the particles extracted from computer experiments, us-
ing suitable algorithms. Before we proceed to discuss the
results of the numerical modelling, it seems useful to fur-
ther clarify the meaning of the interaction parts ein, pin

and Sin, taking into account the possible clustering of par-
ticles in the Morse chains.

First we will describe the thermodynamic functions
for passive particles and, subsequently, will proceed to
consider the characteristic features of active interacting
particles. The interaction contributes the potential ener-
gies Ui of all pairs of particles to the total energy

ein = u = lim
τ→∞

1
τ

∫ τ

0

1
N

N∑

i=1

Uidt. (33)

A time average is carried out instead of an ensemble aver-
age assuming ergodicity of the system of passive particles.
The contribution of the interaction to the pressure is cal-
culated as a time average using the virial theorem

pin = n

〈
N∑

i=1

∂Uji

∂rji
rji

〉
. (34)

The contribution of the interactions to the entropy was
only roughly estimated taking into account the possible
clustering of particles and the directions of motion. We
construct a rudimentary phase space in which only the
composition of clusters in the chain and the directions of
motion of clusters (to the right/ or to the left) distinguish
the states of the system. For example, the ensemble of
N = 4 particles forming two dimers possesses four states,
the most ordered configuration – one big cluster (N-mer)
– is the only state for the passive regime (0 < δ < 1)
with a zero mean velocity (δ < 1) and two others for
the active regime (δ > 1) with the two stable velocities;
the least ordered configuration – the gas-like regime – has
16 states. Because of the small number of configuration
states in ensembles of a small number of particles, the
sought quantity

Sin = ln Ω + const. (35)

may be calculated directly from trajectories of particles by
using an algorithm developed by Ma [25]. Here Ω is the
number of micro-states of the system with the constant
chosen to satisfy the condition Sin → 0 in the gas-like
state at high temperature. Certainly, the estimate of Sin

(it may be called the “configuration entropy”) is approxi-
mate but it gives, as we will show below, reasonable results
in both cases, for passive and active particles as well. Of
course we are aware that the entropy for non-equilibrium
states is an ill – defined concept. Noteworthy is an alter-
native method to calculate the entropy evolution of micro-
scopically simulated far-from-equilibrium structures [26].

The numerical integration of the stochastic Langevin
equation (8) was performed by using a fourth-order
Runge-Kutta algorithm, especially adapted for solving
stochastic problems [10,27]. In all computer experiments
the heat bath is realized by Gaussian random numbers.
Moreover, we always start with equal distances between
the passive particles, ri = 1/n, and all particles initially at
rest, vi(0) = 0. We may assume that the stationary state
of the heated passive ensemble does not depend on initial
conditions. At variance to this simple situation, the en-
semble of active particles has several attractors [8,9] with
corresponding basins. At low temperatures the ensemble
occupies one of the attractors getting there from a cho-
sen initial state and staying there. In this case each of the
quantities, defined above, may take different values, de-
pending on which of the attractors is occupied by the sys-
tem. In principle, it is possible to calculate the probability
of realization of any state, estimating a relative phase vol-
ume of the corresponding basin of attraction. It allows to
introduce the averaged values for ein, pin, and Sin. How-
ever, the physical meaning of the values defined in such
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way is far from clear. Moreover, a numerical averaging
over all possible stochastic transitions between the attrac-
tor basins takes a very long computer time, in particular
at low noise strength. For these reasons we will study here
(at low values of noise strength) only the most typical sta-
tionary states and study their transitions with increasing
temperature. In our computer experiments the integra-
tion step is fixed to dt = 0.001 or dt = 0.00125 (in c.u).
Each run consists of two stages: First the ring chain is
heated to the temperature corresponding to the given bath
temperature D; at the second stationary stage, i.e., when
the time averages of characteristic physical quantities do
not change anymore, measurements are made by record-
ing long trajectories. We restrict ourselves to the study
of the processes occurring in low-density rings (n < nc)
focusing on details of the clustering phenomena in ensem-
bles of both passive and active particles as. All results in
this section refer to ensembles with densities in the range
n = 1/3 < nc = 0.59. (This density region corresponds
to parameter values with no multi-stable states. We come
back to this point in Section 7, observing the cluster phase
diagrams.) We consider ensembles for three typical values
of the bifurcation parameter δ = 0.0, 2.0, 1.2. The first of
them corresponds to the passive regime (Fig. 3), the sec-
ond refers to the active regime with dominance of deter-
ministic factors in the wide region of the temperature D.
The third parameter set (δ = 1.2) corresponds to the tran-
sition region, where active behavior is observed only at low
values of the temperature D.

5.1 Passive particles δ = 0

Let us first study the simplest case of rings of passive par-
ticles corresponding to thermodynamic equilibrium. The
dependence of the average potential energy ein = u = 〈U〉
(Fig. 4) on the temperature D looks as expected. At low
temperatures we find the potential energy u 	 umin 	
(−0.5 × 3)/4 = −0.375 corresponding to the state where
four particles form a single 4-cluster with equilibrium dis-
tances l 	 1. On the other hand, the interaction energy
tends to zero when the temperature increases. In fact, u
does not reach the zero value in the considered D ≤ 1
temperature range but the tendency is clear. The region
of the fastest growth of ein corresponds to the “liquid-like
state” of the ensemble [10] (recall the results of Sect. 6).
Note that for non-equilibrium states, δ = 1.2 and 2.0,
the dependence on the noise temperature D is much more
complicated. We observe the energy corresponding to the
highest ordered cluster state only in certain window of
the noise strength. The curves for the interaction part of
the entropy Sin vs. D (Fig. 4b) correspond to the u(D)
dependence. The interaction contribution to the entropy
increases from the value Smin

in 	 −2.8, corresponding to
the minimal configuration entropy (in our definition), at
low temperatures, and it vanishes in the gas-like state.
Besides, it changes from the minimum to the maximum
in the same temperature range as observed for u(D). In
the same temperature range a typical behavior of the in-
teraction contribution to the pressure Pin(D) is observed
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Fig. 4. Morse ring with N = 4, b = 1 and l. Numerically
calculated contributions of the interaction effects to the ther-
modynamic potentials as a function of the temperature (noise
strength D): (a) internal energy, (b) entropy, (c) pressure. The
specific volume is fixed at l = 1/n = 3. The case of equi-
librium δ = 0 is compared with the cases of “near critical”
non-equilibrium δ = 1.2 and strong non-equilibrium δ = 2.

(see Fig. 4c). The “interaction” part of the pressure is
negative and very small at low temperatures (Fig. 4c)
corresponding to the formation of only one big cluster
with free ends. But with increasing noise the cluster is
destroyed, pin falls rapidly, corresponding to a transition
“crystal- liquid”. In the following region (0.2 < D < 1.0)
the pressure contribution is again approximately constant
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corresponding to a “liquid-like state”. Finally it follows a
noise region (D > 1), where the pressure contribution falls
down with increasing noise temperature, corresponding to
a “gas-like-state”.

5.2 Active particles far from equilibrium δ = 2

At low temperatures the particles move regularly on the
ring, only weakly disturbed by the noise of the surround-
ing bath. Hence the finite value of u(D) at D → 0 reflects
the contribution of several dynamical excitations (nonlin-
ear oscillations such as solitons, etc. [19]). Three kinds of
regular motion are observed in the 4-particles ensemble,
according to the initial state of the system:
a) One big cluster is running as a whole, clockwise or coun-
terclockwise. We will call this the state St1 with the prob-
ability for clusters PD(k) = (0, 0, 0, 1), where k = 1, 2, 3, 4
is the expected number of particles in the cluster [9],
b) Pairs of particles (dimers) are formed which show
so-called “optical” oscillations, because the dimers oscil-
late in anti-phase. We call this state St2 with PD(k) =
(0, x, 0, 1 − x), 0 < x < 1,
c) Two oscillating non identical clusters – a mono-mer
and a three-mer – are formed. These clusters are super-
imposed on the collective rotation of this group of two
clusters (on the right/left). This state is called St3 with
PD(k) = (y, 0, y, 1−2y), 0 < y < 0.5. Both values x and y
depend on the specific volume l and, for instance, x = 0.66
and y = 0.33 for the considered ensemble with l = 3. They
increase when l increases.

The states St2 and St3 have about the same values for
the configuration entropy Sin but a different relationship
between of the temperatures introduced above – Tk = Th

for St2 and Tk > Th for St3. The behavior of the ensemble
in the state St2 is reduced to that in the 2-particle ensem-
ble studied in detail in [9]. It is worth recalling results from
the earlier study of the dynamics of the St3-state of the
ensemble because it also corresponds to the interaction
of two “particles” though not identical. If we denote the
configurations in Figure 2 in accordance with their cluster
composition (from the left to the right) as (1 + 1 + 1 + 1),
(2+1+1), (2+2), (3+1) and (4+0), one can interpret the
state St2 as transitions from the configuration topologi-
cally like (4+0) to one topologically like (2+2) and back.
Similarly, the state St3 is the transition between a config-
uration like (4 + 0) and one like (3 + 1). Another possible
state obtained with participation of other, more complex,
structures 2+1+1 and 1+1+1+1, has been found to be
unstable. They are born sometimes during the transition
process but always decay (at least, in all of our computer
simulations) into one of the other mentioned above.

Before we begin to illustrate the results of the numer-
ical estimations for the thermodynamic quantities, let us
discuss the probability of excitation of any kind of reg-
ular states of the ensemble. For that the simulation was
performed placing the particles at the initial time at rest
and at equal distances, r0. Varying the distance r0 from
r0 = 1 up to r0 = l, one can control the initial value of

the energy into the ensemble, e0 = u0. Besides, the quan-
tity ∆u = u0−umin may serve as a bifurcation parameter
defining the initial ability of the system to be in a non-
equilibrium state. Varying ∆u from 0 at r0 = 1 up to 0.25
at r0 = l = 3. and changing the initial state of the noise
generator we found that if 0 < ∆u < 0.0001, only the
state St1 is excited; if 0.0001 < ∆u < 0.001, the state St1
or St3 can be excited depending on the initial state of the
noise generator, and besides, the state St1 prevails near
the lower boundary of the range and St3 near the upper
one; if 0.001 < ∆u < 0.0015, only the state St3 occurs;
at 0.0015 < ∆u < 0.007, the states St3 or St2 are estab-
lished; at 0.007 < ∆u < 0.2 there is only the state St2; and
finally if 0.2 < ∆u < 0.25, both states St3 and St2 can be
excited again. Thus, the ensemble settles at the state St1
only for very particular conditions, when the initial state
corresponds to a very low energy. But if the bifurcation pa-
rameter δ exceeds the rather small value δ1 	 0.0001 this
state loses stability and the oscillatory mode takes over.
Most frequently we observe the “optical” oscillations of
pairs of dimers accompanied by rotations of the ensem-
ble as a whole with superimposed regular oscillations of
two dimers moving towards each other. In our simulations
we have never seen the steady-state regime in which the
ensemble transfers from the state St2 to the one St3 and
back, although this state is possible.

The potential energy and the configuration entropy do
not appreciably change (ein ≈ const. and Sin ≈ const.)
in this temperature range D ≤ 0.01 but, of course, both
u > umin and Sin > Sinmin (Figs. 4a and 4b). The ini-
tial conditions are chosen as described above, with r0 = l.
With increasing D there is the striking effect that the
increasing noise of the surrounding bath stimulates the
system to pass to the most ordered state with only the
big N-cluster, characterized for the active ensemble by
the minimal values of both u and Sin. The transition to
the single-cluster state happens at D ≈ 0.02, and only at
D ≥ 0.04 the cluster begins to decay and the potential
energy and configuration entropy grow in agreement with
each other. Note, however, that the state St2 – “optical”
oscillations of the pair of dimers – is more stable than
the St3 and transforms to the state “one-big-cluster” in a
much more limited parameter range of the increasing tem-
perature D relative to the state St3. However, this follows
only from a limited number of runs for the state St2.

Returning to the results for the state St3 we find that
the curve pin (Fig. 4c) is shifted to lower temperatures
also, but the pressure range corresponding to “one-big-
cluster state”, is very narrow. The range of regular behav-
ior occurs at very low D. However, strictly speaking, at
D → 0 thermodynamic functions make no sense since the
dynamical system is multi-stable and has several attractor
regions. In principle for any finite value of the noise the
separatrices between the attractors are transparent but
transitions may be very rare. For this reason very long
trajectories are required and we run into numerical diffi-
culties. At high values of the noise all curves tend to the
results for thermodynamic equilibrium.
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5.3 Active particles near to the border
of excitation δ = 1.2

The ring with δ = 1.2 is chosen in order to study the
transition phenomena between the two regions shown in
Figure 3. In the parameter space (δ, D) (Fig. 3) this sys-
tem is placed near the boundary between the two earlier
mentioned regions with different relation of noise strength
and driving force at low temperature. For these systems
we observe the lowest temperature D23 of transition to
the “gas-like state” [10] (that is the transition from the
region 2 to the region 3 in Figure 7a, see also Sections 6
and 7 below). Since for D 	 0.1 this system is rather near
to the boundary between two regions in the parameter
space (δ, D) (Fig. 3), it is difficult to distinguish the peaks
in the distribution near v = ±v0. However the numer-
ical results presented in Figures 4a–c appear acceptable
since they lay just between the cases δ = 0 and δ = 2.
For example, the estimates for the entropy, look reason-
able because the dependence Sin(D) correlates with the
dependence ein(D) and is similar to that observed for the
ring with δ = 2. Note, however, that the temperatures at
which the system is in the most ordered state are much
lower for the studied ring in comparison with the case of
strong driving force (δ = 2) where the corresponding tem-
perature range is narrower. We will discuss the reasons
for the observed effects in more detail in Sections 6 and 7,
but before that let us consider the total thermodynamic
functions, i.e. the sum of the ideal and the interaction
contribution, in cases where we able to do this.

6 Discussion of the total thermodynamic
functions

In the parameter ranges where we calculated the ideal and
the interaction contributions we can determine the total
thermodynamic functions e = eid +ein, S = Sid +Sin and
p = pid + pin. We will analyze them in two cases – for
the passive particles (δ = 0) and for active particles with
a rather big value of the deterministic velocity v0 (δ =
2), both systems corresponding to regimes far from the
boundary dividing the regions left/upper and right/lower
in Figure 3. The more difficult case of the transition region
between the two regimes is not considered here.

6.1 Equilibrium regime δ = 0

For the ring of passive particles the thermodynamic char-
acteristics look like the classical ones; the energy and en-
tropy grow with increasing temperature D in accordance
with the temperature behavior of kinetic and potential
energies (Fig. 5). The kinetic energy Tkin = 2 · Tk(D) is
shown in the Figure 5a together with the energy e(D),
and with Tk ≈ Th in this case.

To analyze the changes in the pressure due to variation
of parameters, isotherms p versus specific volume l = 1/n
at D = const. are plotted (see Fig. 5c). We represented
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Fig. 5. Morse ring with N = 4, b = 1 and passive friction
δ = 0. (a) Energy e and kinetic energies 2∗Tk and (b) entropy S
vs. temperature D for specific volume l = 1/n = 3., and (c)
isotherms P vs. specific volume l = 1/n at D =const. Curves
at (c) for: 1-D = 0.001, 2-D = 0.01, 3-D = 0.1, 4-D = 1.



A.P. Chetverikov et al.: Dissipative Morse chains 517

the isotherms for a wide range of density values, both for
n > nc and n < nc, to illustrate the anomalous behavior
of the isotherms at small D near the critical density nc, as
earlier observed [10]. The new results support the conclu-
sion about the specific change with density in the pressure
near nc caused by transitions between multi-stable states
when n ≈ nc and D � ε = 0.5 (here ε is the depth of
the Morse potential defined above). The virial method for
the determination of the pressure which we use here, al-
lows to describe correctly the behaviour of the pressure;
it is negative in the regime of one stable big cluster with
free ends. This improves the method of average force used
in [10], which does not distinguish attractive and repulsive
forces.

6.2 Far-equilibrium regime δ = 2

Before analyzing the standard thermodynamics character-
istics let us consider the behavior of the temperatures Tk

and Th in Figure 6a. One can see that they clearly differ
at low temperature when the particles do not move chaot-
ically. Hence, the system moves as whole in the state St3
and particles oscillate in the ring. But if the ensemble
passes to the big-cluster state then Th goes to zero. The
energy e also falls in spite of Tk increasing; the ring begins
to rotate faster. Thus, the increasing noise drives the en-
semble to a more ordered state. Only if the noise intensity
exceeds some level, e, Th and then Tk begin to grow. The
entropy (see Fig. 6b) behaves with changing D in full ac-
cordance with e, Tk and Th. We observe that S decreases
when D grows, and if one did not know that the system
is open, the phenomenon could be surprising. It should be
noted that such a behavior is reminiscent of effects found
in stochastic and chaotic resonance [28,29]. Indeed finite
noise may have an ordering influence in many cases. How-
ever, we shall not dwell on this question here.

Finishing the analysis of thermodynamic characteris-
tics by considering the pressure dependence on density
(Fig. 6c) we may conclude that the most interesting fea-
tures of the pressure behavior are connected with having
multi-stable states near the critical density as in passive
rings. One can observe an anomalous change of pressure
values with density, only at lower temperatures relative
to the passive ring. As we limit ourselves to the study of
effects of clustering in this work, we leave the problems
connected with multi-stable states for a future study.

7 Phases in equilibrium and non-equilibrium

In addition to the above mentioned physical quantities,
we also consider the probability of cluster configura-
tions PD(k) to identify the phase state of the ensemble
studied. In accordance with earlier work [9], the cluster
distribution PD(k) is defined as the probability for find-
ing a cluster of size k in the ring at time t � 0 at the
temperature D. Accordingly, for the one-big-cluster state
PD(4) = 1, PD(k < 4) = 0, the gas-like state is that
with PD(k) > PD(k + 1). The other case is qualified as
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Fig. 6. Morse ring with N = 4, b = 1 and active friction δ = 2.
(a) Energy e and kinetic energies 2∗Tk, 2∗Th and (b) entropy
S vs. temperature D for specific volume l = 1/n = 3., and (c)
isotherms P vs. specific volume l = 1/n at D =const. Curves
in (c) for: 1-D = 0.001, 2-D = 0.1, 3-D = 1.
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Fig. 7. Cluster phase diagram for the Morse ring with param-
eters N = 4, b = 1 with both (a) passive friction (δ = 0.)
and (b) active friction (δ = 2.) The lines symbolize transitions
between different phase states: 1 - one big cluster (N-mer),
2 - small clusters (“liquid-like phase”), 3 - monomers prevail
(“gas-like phase”), 4 - multi-stable stationary states.

liquid-like state for passive particles, although it may char-
acterize, besides, the regular modes at low temperatures
in ensembles of active particles. In Figure 7a “phase di-
agram” of states identified using the numerically deter-
mined values for PD(k) is given for both a passive system
(δ = 0) and an active one (δ = 2.) with the state St3 at
low temperature and sufficiently low enough density. The
diagrams show regions with different states of an ensem-
ble with N = 4 particles in the temperature D-density
n-plane of a low-density ring (n < nc). The diagram for
the passive ensemble (see Fig. 6a and see also [10]) is
divided in three parts by two boundary curves, n(D12)
and n(D23) indicating the transitions between different
states. The states are: one-big cluster (region “1”) at low
temperatures, the gas-like one (region “3”) at high tem-
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Fig. 8. Active Morse ring with N = 4, b = 1 and l = 1/n = 3.
Noise amplitudes D12, D23 and D41 corresponding to transi-
tions between different phase states as functions of δ.

peratures and a liquid-like state (region “2”) at interme-
diate temperatures of order of the depth ε = 0.5 (in c.u.)
of the Morse potential well with b = 1. In the diagram
also a part of the region “1” at n > nc is shown which
represents the boundary n(D12) [10].

What happens when the parameter δ is increasing from
zero up? If 0 < δ < 1 the behavior is simply like that
with a smaller friction coefficient γ > 0. The transition
curves n(D12) and n(D23) are shifted to lower temper-
atures (Fig. 8) but the dynamics of particles does not
change basically. But with increasing δ new states arise
in the phase diagram left/lower (region 4) at the tran-
sition δ > 1. These states are characterized by regular
oscillations of particles on the ring or by nonlinear waves
(rotational mode). In the range 0 < δ < 1.2 the transi-
tions curves n12, D12 and n23, D23 fall down to a mini-
mum of the temperature. However when δ > 1.2 they in-
crease again. The region “1” shrinks at low densities and
at δ = 2. the phase diagram looks as at Figure 7b. The
one-big-cluster (“crystal-like state”) exists in the narrow
range of density values near nc and a very narrow temper-
ature range at low density. It is possible that it vanishes
with further increasing δ and then the system passes from
the state “4” to the state “3”. Note, that the region “4”
possesses a very complex structure because here we may
have a number of stable stationary states, correspond-
ing to different rotational and oscillatory modes. Strictly
speaking, the usual thermodynamic concepts break down
in region “4” at least near to D → 0.

8 Summary and conclusions
In this work we have provided numerical results for a
1 − d model of 4 Brownian particles with both passive
and active friction, interacting in a 1 − d box with pe-
riodic boundary conditions. We considered n.n. Morse
interactions, which are repulsive at short distances and
attracting at intermediate and long distances. Using this
type of interaction our model tends to behave similar as
a Lennard-Jones chain.
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A Morse ring can be characterized by a critical density
value nc. For n < nc clustering states (k-mers) are basic
states for the system. In combination with the possibility
for active Brownian particles to get non-thermal energy
from an external reservoir this leads to interesting effects,
when the ring is coupled to a heat bath.

The stochastic Langevin equations of motion were
numerically integrated using a suitable 4th order
Runge-Kutta method. On the basis of the numerical solu-
tions, thermodynamic quantities such as entropy, pressure
and kinetic and potential energies were calculated. In ad-
dition, the distribution of clusters was estimated from the
trajectories of particles. Also, phase diagrams for different
density and temperature values were calculated for both
passive and active particles. By analyzing the diagrams
for a finite-size Morse ring (N = 4), three different ther-
modynamic states are found for a low density ensemble of
passive particles and for the ensemble of active particles.

Due to external non-thermal pumping, the system may
be driven to far-from-equilibrium states. The numerical
results indicate that such an additional energy exchange
mechanism can select configurations of particles in the ring
at low temperature allowing in the ring only a few simple
configurations. They are the one big cluster and anti-phase
oscillations of two groups of particles (k-mers). States with
“optical” oscillations prevail in the system, and only in a
limited parametric range the noise of the bath may order
the behavior of the system exhibiting properties akin to
some kind of stochastic resonance.

A range of temperature exists in which the ensemble
transforms from the regular state with negligible influence
of the thermal bath to a weak ordered state like a gas.
The range is shifted when changing the level of external
pumping, and the lowest temperature of the transition is
found to be at the value of the parameter of pumping little
above the critical value. In conclusion we may state that
the simple system studied here, gives some insight on how
the concepts of phase state and phase transitions may be
extended to nonequilibrium.

The authors thank Jörn Dunkel, Valeri Makarov and Jürn
Schmelzer for help and for useful discussions.
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