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We study the role of nonlinear effects in a classical one-dimensional model of a conducting electron–ion system.
In particular we investigate the excitations of strongly nonlinear deformed phonons (cnoidal waves, solitons)
on electric currents. We show that in a nonlinear lattice a new type of dynamic bound states of solitons and
electrons (”solectrons”) may be formed. In our simulations we use Langevin dynamics with N = 10 ions
and periodic boundary conditions. The electron-ion interaction is modelled by screened Coulomb forces with
appropriate cut-off at small distance; the ion-ion interaction is approximated by an exponential repulsion. Under
the influence of a weak external electrical field, the charged particles and ”solectrons” yield a stochastic current
in the direction of the field. We study several mechanisms to generate and maintain the ”solectrons”. Then
we show how the system develops driven ionic solitons moving opposite to the field. Since the extra current
driven by the solitons is (nearly) independent on the external field we find a strongly nonlinear current field
characteristics corresponding for small fields to a highly conducting state.
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1 Introduction

We study here the influence of nonlinear ionic excitations on the electric conductivity of dense plasmas. For
simplicity we restrict our investigation to one-dimensional (1D) systems. The first theory of conductivity in
electron-ion systems is due to Drude (1900). His ”ansatz” is based on the assumption that the electrons, as well
as the ions, are subject to friction forces and form in external fields a stationary current. For a survey of the
recent state of art in the transport theory in dense Coulombic systems as e.g. solids and dense plasmas we refer
to [1–3]. It has been shown that different elementary excitations like plasmons, phonons, polarons, and excitons,
determine in one way ore another electric conduction [1]. Of special interest is the influence of bound states on
conductance [2, 3]. Less studied are the effects of nonlinear excitations, in particular soliton effects. Recall that
the soliton concept, and the coinage of the word soliton, originates from plasma physics and in particular from
the pioneering work of Zabusky and Kruskal (1965) on solitons in a collisionless plasma [4]. Far more recent
studies are devoted to the one-dimensional case (see Refs. [5–9]). Here we are interested in analyzing dynamic
bound states, created by deep local potential minima due non-linear excitations. We study the role of dynamic
bound states between electrons and solitons (called ”solectrons”) [10, 11]. These bound states are metastable in
equilibrium systems and may lead to nonlinear conductance effects if appropriately maintained under nonequi-
librium conditions. The 1D system studied here consists of two types of charged masses (caricatures of ”ions”
and ”electrons”) which are moving on a line (it could be considered as a wire) with periodic boundary conditions
(alternatively we can speak about a ring) according to classical Langevin dynamics. The 1D-lattice bearing the
charges is imbedded into a 3D-medium which creates dissipative and screening effects and is the carrier of the
field lines. Therefore the interaction of the charges is 3D-Coulombic. Note the similarity with a polymer strand
carrying charges imbedded into a dielectric medium [9,12]. Following the pioneering work of Toda [13], studies
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of one-dimensional nonlinear lattices have significantly contributed to the understanding of nonlinear excitations
in various physical systems [14, 15]. Of special interest is the coupling of finite size nonlinear rings to a heat
bath and properties of the resulting excitation spectra [16–18]. The thermal excitations in ring chains with Morse
potentials (akin to the Lennard-Jones) and small particle number N were investigated in [19]. Here we report
on new results on electrical transport under the influence of external fields [10, 11] and hence situations far from
equilibrium. As shown earlier, we may drive a nonlinear lattice away from equilibrium by applying dissipative
forces [20–22] and excite ”dissipative solitons” [23–27]. Another concept which plays an important role in our
problem, is that of active Brownian motion [28, 29].

2 Interactions and electron-ion dynamics

Let us stay on the same classical level as the Drude theory and start with Langevin equations for N electrons (mass
me, charge −e) and N ions (mass m, charge +e) moving on a chain of length L = Nσ with me � m with
periodic boundary conditions. We assume that the lattice is imbedded into a surrounding reservoir which creates
screening, friction and noise. Take the N electrons located at the positions yj moving in the nonuniform, and,
in general, time-dependent electric field generated by the positive ions located at xk and by the other electrons.
The effective interaction between two electrons at yi and yj (distance: rij = |yi − yj |) is modelled by the
quantum-statistical (screened) pseudo-potential of Kelbg-Deutsch type [30]

Uee(rij) =
e2

rij
[exp[−κrij − exp[−αrij ]] (1)

The quantum effects are expressed by one constant α which is in a first-order approximation given by [30]

α = (
√

π/λ) + (kT/e2) ln 2, λ = �/
√

mekT (2)

Further κ is the screening parameter, which is in our model a constant defined by the medium in which the lattice
is imbedded. We assume here κ � 1/σ, where σ is the average equilibrium distance between the electrons. To
simplify the simulations we linearize the exponential factors

Uee(rij) = e2
[
(α − κ) − r

2
(α2 − κ2)

]
if rij < re (3)

Uee(rij) = 0 if rij > re = 2/(α + κ) (4)

Due to the quantum effects (Heisenberg- and Pauli-effects), the electron-electron interaction is rather weak [30]
and may be neglected in many cases. The electron-ion interaction is described by an appropriate pseudo-potential
V (rjk) with finite value at small distance [31] including also screening:

Uei(rjk) = V (rjk) − eek

rjk
(exp[−κrjk] − 1) , rjk = |yj − xk| (5)

Again we use a linear approximation leading to a shifted bare potential

Uei(rjk) = − eek√
r2
jk + h2

+ eekκ if rjk < r0, (6)

Uei = 0 if rjk > r0 =
3
2
σ, κ−2 =

9
4
σ2 + h2. (7)

This potential is of finite range and finite strength and has a minimum value Umin = eek(κ − 1/h), where
h � σ/2 is a free parameter which determines the short-range cut-off. Accordingly, the electrons would be able
to transit from one to the other side of an ion and yield an electron current opposite to the ion current. Let us
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consider an electron between 2 ions ek at distance R. If the electron is shifted by the distance x from the center,
it feels the potential (κ = 0)

U(x) =
−2eek

R

[
1√

(1 + 2x/R)2 + 4(h/R)2
+

1√
(1 − 2x/R)2 + 4(h/R)2

]
(8)

If the ions are far apart, the local minimum generated by a pair of nearby ions is at the position of the nearest
ion (Fig. 1). However if the electron is somewhere between a pair of ions with much reduced distance, the local
potential created by the ions may offer a minimum, depending on the distance of the two ions, and the electrons
may feel the local compression of the ions (Fig. 1). The depth of the minimum is

U(0) = − 4eek√
R2 + 4h2

(9)

-4.5

-4

-3.5

-3

-2.5

-2

-0.4 -0.2 0 0.2 0.4

~
U

(x
/R

)

x/R

h/R=0.3

0.5

0.6

0.7

0.8

Fig. 1 Effective potential U(x)/(e2/R) acting on an elec-
tron placed between two nearby lattice particles as a func-
tion of the lattice spacing R, the relative deviation from the
center x/R and the parameter H = h/R. For small H the
minima are near to the lattice particles. As H grows, for
example because R is small due to a local compression,
the maximum in the center yields to a minimum midway
between the two lattice particles, which may give rise to a
local bound state.

For the electron dynamics we assume

dvj

dt
+

∑
k

∂(Uei(yj , xk) + Uee(yj , yk))
me∂yj

= − eE

me
− γe0vj +

√
2De ξk(t) (10)

The evolution of the electrons is considered passive (γe0 > 0, positive damping for all velocities) and ξ(t) denotes
a Gaussian white noise. The corresponding stochastic forces

√
2De ξj(t), model a surrounding heat bath obeying

a fluctuation-dissipation theorem. Due to the large difference of the masses (m � 103me), the friction acting on
the electron is small relative to the friction acting on the ions meγe � mγ0. The character of the dynamics of an
electron strongly depends on h and on the positions of the nearest ions. For instance: (i) If h � 0.5σ, then if ions
are at equilibrium distances, the resulting potential is nearly flat. If the ions are compressed to about 20 percent of
the previous distance, the resulting potential shows a trap in the center between the two ions, (ii) If h � 0.3σ, then
if the ions are at equilibrium positions, the potential minima are shifted to their location. Therefore by varying the
compression and the parameter h we are able to shift the potential minimum (the favorite place for the electron)
either to the place of the lattice centers (h � 0.3σ) or we can create a flat profile, which generates minima only
for strong (soliton-like) compressions (Fig. 1).
The heavy ions have their own evolution independent of that of the light electrons. We use adiabatic approxima-
tion. Then for the lattice we consider N identical Brownian point-particles with masses m and charges +e located
on the line with periodic boundary conditions. The particles are described by coordinates xk(t) and velocities
vk(t), k = 1, . . . , N .

xk+N = xk + L. (11)

The interaction between two neighbour lattice particles located at xi and xi+1 is given by

Uii(ri) = U
′
ii(ri) +

e2

|ri| exp[−κ|ri|] (12)

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



278 A. Chetverikov, W. Ebeling, and M.G. Velarde: Nonlinear ionic excitations, ...

with ri = xi+1 − xi. Here U
′

models a short range repulsion of the ion cores and κ is the Debye screening
parameter. Due to the repulsive forces, the ions form in equilibrium an equidistant lattice, the equilibrium distance
σ will serve as the unit length in our analysis. The motion of the lattice particles is essentially a nonlinear
oscillation around the equilibrium distances. Thus we can approximate the lattice interaction (12) by a two-
parameter exponential approximation

UT
ii (ri) =

a

b
exp(−b(ri − σ)) (13)

This exponential pair potential was studied in detail by Toda [13]. The parameters of this potential are the
mean distance σ > 0, the stiffness b of the lattice repulsion and the amplitude a. Toda’s potential yields an
exactly solvable model, in two extreme limits it reduces to the hard sphere interaction and to harmonic forces,
respectively. We see from Taylor expansions of eq.(13) and from Fig. 2 that ω2

0 = ab/m corresponds to the
basic oscillation frequency, and that ab2 controls the anharmonicity of the forces. The lattice dynamics is in
first approximation harmonic (Fig. 2), corresponding to oscillations with the frequency ω0 =

√
ab/m. In the

harmonic aproximation, the characteristic excitations are phonons. Note that in the present context, the deviations
from the harmonicity are very essential. Toda studied the nonlinear dynamics of the exponential lattice in detail
and provided analytical solutions which generalize the phonon concept. Todas solutions are expressed by elliptic
functions (cnoidal waves) which replace the trigonometric functions (phonons) known from linear theory [13].
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Fig. 2 The effective potential acting on an ion oscillating
between two fixed neighbours at distance 2σ in compari-
son with the harmonic approximation. The minimum cor-
responds to the equilibrium configuration of the central ion.

Beside the earlier described interaction forces we introduce an external electric force eE acting on the ion
charges ei = +e. Further - this is an essential feature of our model - we introduce a velocity-dependent force
F (vk) which describes dissipative effects, passive as well as active dissipative interactions with the reservoir, and
corresponding stochastic sources. Then the evolution of the ions is given by the Langevin equations

d

dt
vk +

∑
j

∂Uii

m∂xk
+

∑
j

∂Uie

m∂xk
=

1
m

(eE + F (vk)) +
√

2D ξk(t), (14)

governing the stochastic motion of the kth ion on the ring. The stochastic forces
√

2D ξk(t) also model a sur-
rounding heat bath (Gaussian white noise). In the passive case the force F (v) = −mγ0v describes the standard
friction acting on the ions from the side of the surrounding heat bath. We assume again the validity of the Einstein
relation D = kBTγ0/m [17], where T is the temperature of the heat bath. For the dissipative forces we shall
follow Rayleigh and use a model which admits input of energy into the system:

F (vk) = mγ0(µ − v2
k/v2

d) vk. (15)

In the case µ = −1 and vd → ∞ we come back to the passive Stokes case. With µ > 0 there is energy input from
the surrounding medium. The quantity µ is the bifurcation parameter of our problem (µ = 0 means no friction,
µ > 0 models negative friction). The balance for the total energy of the ionic subsystem reads

dEion

dt
= mγ0

∑
k

(µ − v2
k/v2

d)v2
k + m

√
2D

∑
k

vkξ. (16)
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The sign of the first term on the r.h.s. is crucial for the energy balance as for µ > 0 the energy input may drive the
system far away from equilibrium [21,29]. The effects of active friction force were investigated in [11,21,29] to
model active Brownian particles that carry refillable energy depots (internal degrees of freedom). For the passive
regime µ < 0 the deterministic dynamics has a single attractor at v = 0. Without noise all particles come to rest
at v = 0. For µ > 0 the point v = 0 becomes unstable but we have now two additional zeros at

v = ±v0 = vd
√

µ (17)

These two velocities are the new attractors of the free deterministic motion if µ > 0.

3 Results of computer simulations

The differential equations (7) and (14) have been integrated by means of a fourth-order Runge-Kutta algorithm
adapted for solving stochastic problems [32]. We used σ as the length unit and 1/ω0 = (m/ab)1/2 as the time
unit. The electric field strength is measured in units E0 = v0meγe0/e and the energy (temperature) in units
U0 = abσ2 = mω2

0σ
2. In all simulations we set e2/(mσ) = 0.2U0. All computations start with the initial state

of equal distances between ions. The initial velocities of the ions were randomly taken from a normal distribution
with amplitude vin. This corresponds to an initial temperature Tin = v2 and a Maxwell distribution of the
velocities. We may assume that the initial temperature was reached by a heat shock applied to the lattice. Each
electron was placed midway between two ions. The motions of ions and electrons occur in different time scales.
Heavy ions are not affected practically by light electrons and electrons move on the background of the Coulomb
potential landscape created by the ions. The dynamics of the ion ring with Toda interactions leads to soliton-like
excitations. Typical solitonic excitations correspond to local compressions moving along the ring. Fig. 3 shows
a characteristic landscape of the electric field created by the ion configuration at certain time instant. We see a
rather deep potential well moving right to left or left to right along the lattice. The light electron may be captured
in this dynamic potential well and may follow the soliton dynamics.
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Fig. 3 Typical landscape of the local electric field
created by the solitonic excitation. The minimum
corresponds to a local compression of ions which
means an enhanced charge density.

In our simulations the integration step is chosen to describe correctly the fastest component of the process, the
oscillations of the electrons in the potential well.
We are interested here in regimes where solitonic excitations are generated in the ion plasma. As we have
shown in earlier work, most solitons are generated around some characteristic temperature defining the soliton-
generating region [18]. In this region besides other excitations many solitons are generated. In order to investigate
this effect we start with the case without electric field E = 0, and no friction forces F (v) = 0. In order to generate
many solitons we applied sudden heating and quenching (Fig. 4). Hence we used a Gaussian distribution of the
ion velocities corresponding to a high-temperature Maxwellian as initial condition of the order of kBTin � 0.1 (in
units of the energy of harmonic oscillations with amplitude σ). This is near to the critical temperature kBTcr �
0.16, where we are in the soliton-generating region [18]. Then we quench to a low temperature. Some solitons
survive since they have a higher lifetime than most other excitations. Looking at the trajectories we observe the
expected nonlinear soliton-like excitations that decay after a time of the order trel � 1/γ0 (Figs. 4 and 5).
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Fig. 4 Metastable soliton excitations in the 1D- ion sys-
tem. As a result of quenching of an initial state with
T (0) � 0.1 � Ttr the trajectories of 10 ions generate
left to right and right to left running solitons. A soliton is a
local excitation which is detected by the slope of the wavy
trajectories of the ions representing subsequent excitations
of the ions. The local compression is running from one
ion pair to the next. Note that there is no mean ion motion
(E = 0). (Parameter values: γ0 = γe0 = 0.00045/ω0 ,
unit of time on the abscissa, 1/(

√
5ω0).).
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Fig. 5 Electron-ion 1D lattice system without external
field. As a result of quenching of an initial state with
T (0) � 0.1 the trajectories of 10 ions generate solitons.
As in Fig. 4 the soliton is a running local excitation which
is detected by the slope of the wavy trajectories of the ions.
The local compression is running from one ion pair to the
next. Here an electron has been captured by the soliton and
forms with it a dynamic bound state (solectron). During
this time interval the electronic trajectory is parallel to the
”tangent” also providing the solitonic velocity. (Parame-
ter values: γ0 = γe0 = 0.00045/ω0 , unit of time on the
abscissa, 1/(

√
5ω0), unit of length on the ordinate, σ).

Metastable nonlinear excitations of the lattice exist also under equilibrium conditions [18].
In order to maintain the solitonic excitations for a longer time interval we applied the active Rayleigh friction in
the period after heating and quenching. Then the soliton regime becomes a stable attractor of motion [19,20,22].
The driven ionic solitons appear moving opposite to the field. The electrons which are coupled to the ions form
dynamic bound states with the solitons (”solectrons”).
Recall that for the passive regime µ < 0 the deterministic dynamics has a single attractor at v = 0. Without noise
all particles come to rest at v = 0. Recall that for µ > 0 the state v = 0 becomes unstable and we get the new
stable states

v = ±v0 = v1
√

µ (18)

The simulations presented below correspond to the Rayleigh approximation with µ = 0.25, vd = 1, m/me =
1000, and γ0 = γe0 = 0.5/ω0.
Since the electrons search for the deepest nearby minimum of the potential, they will be most of the time located
near to local ion clouds. This is a dynamic phenomenon, the lattice particles participating in the local compression
are changing all the time. Hence, the electrons have always new partners for forming the ”solectron”.
Three stages appear: In the first one the initial state tends to one of N + 1 attractors [20]. The maximal average
velocity among the running waves corresponds to the excitation with one local compression on the ring. The
attractor, reached by the system without noise and external field, is defined mainly by the value vin given by the
initial conditions. With increasing vin, k-solitonic waves may be excited with increasing k. There exists always
a favourite attractor for a given value vin. For our case the initial conditions leads preferentially to the one-
soliton attractor. In the absence of the field both directions have equal probability, the field breaks the symmetry.
The value of the cut-off distance in Eq. (5) is h = 0.3σ. In this case the difference between the maximum in the
electron-ion interaction force and the corresponding value for an electron and an ion being away from the electron
more than 1.5σ is less than a factor of 10. To simplify, the parameters of both Toda and Coulomb potentials, of
the Rayleigh force, the friction coefficients, both masses and charges of particles were held fixed. The initial
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velocities vin, the values of the external field and the electronic temperature Te are varied in different runs.
In Fig.6 we show a computer simulation of the evolution of 10 lattice particles creating one dissipative soliton
which moves in opposite direction. After a transient time interval, most of the electrons are coupled to the soliton
and move approximately with the soliton velocity in the direction opposite to the ions. In the driven case (µ > 0)
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Fig. 6 Electron-ion 1D-lattice including an extrernal field.
Trajectories of 10 lattice particles moving left to right cre-
ating one fast dissipative soliton moving in opposite direc-
tion and trajectories of 10 electrons captured in part by
the soliton which is maintained due to the energy input
(µ = 0.25).

the ions make a drift following the direction of the field. Again after a transitory regime, solitonic excitations
of the ions are formed moving with velocity vsol opposite to the mean motion of the ions. As earlier indicated,
the electrons ”like” the deep potential well formed by the local compression connected with the soliton. After a
while the electron is captured by the local compressions and moves with the soliton velocity opposite to the ion
drift.

4 Influence of nonlinear exciations on the currents

The currents on the ion-electron line are determined by the electrons. The electron current density of the electrons
is given by averages of the electronic velocities, ve

j = ẏj taken over long trajectories

je = −nee
∑

j

〈ve
j 〉 (19)

Note that the currents do not depend practically on the value of the field in a wide range of values, limited both
from below and above (Fig. 7). We introduce a characteristic value of the field E0, which corresponds to that
field which would drive a free electron with friction γe0 to the velocity v0. We see a strongly nonlinear current-
field characteristics with a region of constant current (corresponding to zero differential conductivity). At very
small field values there is a gap in the current as a function of the external field. In the narrow region around
zero field we could not find reliable data from the simulations. The existence of a current gap may be considered
as a hint for the existence of rather high conductivity. For very low external fields we cannot specify in our
computations the direction of soliton propagation, they may travel in either direction. On the other hand at very
high external fields, the external forces do not allow electrons to be trapped by the dynamic potential well. In Fig.
7 the current curves for negative external fields were constructed from symmetry considerations, we confirmed
however several points on this branch by extra calculations.

5 Discussion

By computer simulations of the evolution of the electron-ion system described by Eqs. (5) and (11) we have
shown an enhancement of the currents in comparison to the Ohm-Drude current at weak electric fields. This
enhancement is due to the fact that some of the charge carriers, the ”solectrons” move with soliton velocity [13]

vsol = ω0σ
sinh χ

χ
(20)
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Fig. 7 Electron-ion stationary currents corresponding to the case of dissipative solitons stabilized by negative friction µ =
0.25, as functions of the field strength. The dashed straight line gives for comparison the linear Ohm-Drude current.

where χ is the width of the solitons, which depends on the stiffnes and the soliton energy. The stiffness parameter
χ is given by the nonlinear equation

sinh χ coshχ − χ =
1
2
b2εsol (21)

Solitons move supersonically and vsol may be rather high for large stiffness of the lattice. The formula (20) is
exact only for the conservative case and gives still a good approximation for small µ. With increasing µ the
soliton velocity approaches v0 = v1

√
µ, which depends only on the driving strength and not on the stiffness.

Therefore the region of interest (in the context of soliton enhancement effects) are large b- and small µ- values.
This underlines that the active friction is of limited relevance in this context, it is just an auxiliary factor which
indeed serves to maintain the solitons in the spirit of Lord Rayleigh’s approach.
A most interesting property of the soliton effects studied here is that the currents switch on at rather small fields
and do not depend on the electrical field in a wide region. Relevant is only the symmetry breaking by the field.
This reminds magnetization phenomena, charge transport in DNA [12] and high-T superconductivity [33]. Let
us conclude with a brief discussion about the possible influence of quantum effects on our results: The ”dynamic
bound states” described here are classical phenomena. A complete quantum theory of these effects seems to be
out of range at this moment, due to the transient character (the running) of the solitonic minima. One possible
approximation is the tight-binding model [12]. A simple estimate of quantum effects is provided by the adiabatic
approximation. This is based on the assumption that the forming of the wave functions occurs in the running
minima on a shorter time period than the shift of the minimum in time xmin(t) � vsolt. In the adiabatic approach
the quantum states may be estimated by a parabolic approximation of the solitonic minima shown e.g. in Fig. 3:

Usol(t) =
m

2
ω2

min(x − xmin(t))2 (22)

We find in this approximation the harmonic oscillator levels

εn = �ωmin

(
n +

1
2

)
(23)

which may be filled by electrons according to the Pauli principle. In the simplest case of a flat solitonic minimum
or low electronic density, just one pair of electrons with opposite spins will occupy the lowest bound state. This
way we may find a specific electron pairing effect caused by the solitonic excitations. A more detailed study of
quantum effects as well as the investigation of band structures, we leave to future investigations.

In conclusion, we have shown the significance of nonlinear collective excitations in one-dimensional plasmas
and, in particular, the possible role of soliton - electron bound states called here ”solectrons”. The authors thank
M. Alonso, D. Hennig, G. Nicolis, G. Röpke, and A.C. Scott for advice and fruitful discussions.
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