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Abstract: We develop the measurement of multidimensional poverty for the case in

which the di¤erent dimensions taken into account are partitioned in several domains�an

issue with crucial implications for the identi�cation and aggregation of the poor which has

been neglected in the literature. First, we introduce a general method to identify the poor

that makes room for the non-trivial interactions that might exist between dimensions de-

pending on the domains they belong to. Consistent with the former, we then present a

new aggregation method that allows for the possibility of having domain-speci�c elasticities

of substitution among pairs of dimensions. Our empirical �ndings using 48 Demographic

and Health Surveys across the developing world suggest that when considering the alterna-

tive identi�cation and aggregation methodologies proposed here, the set of households that

are identi�ed as poor and the corresponding multidimensional poverty levels can di¤er to a

considerable extent with respect to currently existing approaches.
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1. Introduction

Who is poor and who is not poor? How poor are the poor? These are the fundamental

�identi�cation�and �aggregation�questions suggested by Amartya Sen that must be addressed

before any poverty eradication program can be implemented (Sen 1976). While the answer

to these questions has been quite satisfactorily addressed when poverty is measured in the

space of income distributions (after the seminal contribution by Sen in 1976 the literature

on income poverty measurement is huge and is based on a very solid footing � see, for

instance, Chakravarty 2009 for a recent survey on the topic), matters become much more

complicated when the poverty status and its levels are determined using several dimensions

at the same time. When well-being is conceptualized using both monetary and non-monetary

attributes and the corresponding poverty measures are multidimensional (see Bourguignon

and Chakravarty 2003, Alkire and Foster 2011 and Alkire et al 2015 for a motivation of the

approach), it is customary to partition the variables composing such measures in mutually

exclusive domains (e.g: the domains of �Health�, �Education�or �Standard of Living�, with

several variables within each domain). Such partition aims at imposing certain coherence

and structure to the variables one is dealing with by clustering them in conceptually related

areas. Our main concern here is that the separation of variables across domains in currently

existing multidimensional poverty measures is merely nominal and, contrary to what one

might a priori expect, has no implications whatsoever when determining: (i) who is poor

and who is not, and (ii) the corresponding poverty levels. Yet, we contend that these

two exercises are strongly in�uenced by the domains partition, which implicitly imposes a

hierarchical structure between variables �with the variables belonging to the same (resp.

alternative) domain being more similar (resp. dissimilar) among themselves �that has been

sistematically ignored in current approaches to multidimensional poverty measurement. In
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this paper we introduce a �exible framework where the separation of variables in multiple

domains plays a central role both in the �identi�cation�and �aggregation�steps.

Assuming one is able to de�ne dimension-speci�c poverty thresholds to determine whether

individuals are deprived or not in the corresponding dimensions (that is: when one works

in the deprivation space2 ), there are currently three well-known approaches for the identi-

�cation of the poor in a multi-attribute framework. According to the �union approach�, an

individual is said to be multidimensionally poor if there is at least one dimension in which

the person is deprived. At the other extreme, the �intersection approach� states that an

individual is �poor�if s/he is deprived in all dimensions simultaneously. Respectively, these

approaches are likely to over-estimate and under-estimate the set of individuals that should

be considered as �poor�, particularly when the number of dimensions considered is large.

While the union approach might include individuals that are only deprived in one relatively

unimportant dimension among many, the intersection approach might fail to identify those

individuals that are experiencing extensive but not universal deprivation. A natural alter-

native suggested by Alkire and Foster (2011) (which is inspired by the work of Atkinson

2003) is to use an intermediate cuto¤ level that lies somewhere between the two extremes.

According to the so-called �intermediate approach�, an individual is poor if the number of

dimensions in which s/he is deprived is above a given poverty threshold �denoted as k �that

is exogenously chosen by the analyst (note that both the union and intersection approaches

are particular cases of the intermediate approach). Since this counting methodology uses

2 Whenever the di¤erent dimensions are commensurable, some scholars suggest working in the attainment
space (that is: aggregate individuals�attainments into a unidimensional welfare indicator and identify them
as �poor� whenever their aggregate well-being level falls below a given poverty threshold). This is the
route advocated by Ravallion (2011) and implicitly used by Duclos et al (2006). As argued by Alkire and
Foster (2011) and many others, a key conceptual drawback of viewing multidimensional poverty through a
unidimensional lens is the loss of information on the dimension-speci�c shortfalls. In addition, the problem
of identi�cation of the poor becomes trivial in the unidimensional setting, so it will not be considered in this
paper.
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deprivation thresholds within dimensions and an overall poverty threshold k across dimen-

sions, it has been denoted as the �dual cuto¤�identi�cation method �also referred to in the

literature as the �counting approach�, the �AF identi�cation method�, or the �AF method�.

There is much to praise in the dual cuto¤method and there are several factors that have

contributed to its widespread acceptance and implementation �indeed, it is the state-of-the-

art methodology currently employed by researchers, policy-makers and institutions around

the world to identify the poor in multidimensional settings.3 These factors include (i) its

�exibility to accommodate many reasonable alternatives lying between the � admittedly

extreme � �union� and �intersection�perspectives, (ii) the possibility of incorporating the

ordinal data that commonly arise in multidimensional settings and (iii) its plasticity in

adapting to alternative contexts where di¤erent variables are available.

However, since the use of the dual cuto¤ method is becoming so predominant it is also

important to highlight some of its limitations. The counting approach that underlies the

AF identi�cation method is a procedure that, roughly speaking, adds up the number of de-

privations across dimensions to decide whether the individuals experiencing them should be

considered poor or not. While this is re�ective of the current state of the literature, such ag-

gregation exercises are a crude way of proceeding that sidestep many of the subtle and more

qualitative considerations that have to be incorporated when deciding what combinations of

deprivations should be included in the identi�cation of the poor. Inter alia, currently existing

identi�cation methods fail to take into consideration the hierarchical structure of multidi-
3 To illustrate: the AF method is currently being implemented by the governments of Bhutan, Brazil, Chile,
China, Colombia, El Salvador, Malaysia, Mexico or the Philippines to complement their income poverty
measures, with many other countries to follow soon, and the United Nations Development Program (UNDP)
has since 2010 annually published the worldwide distribution of the Multidimensional Poverty Index �which
is based on the AF method. The book �Multidimensional Poverty Measurement and Analysis�, published in
2015 by Oxford University Press, describes in detail the AF method and its applications and will further
contribute to settle and reinforce the global di¤usion of the approach.
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mensional poverty indices, where di¤erent variables are nested within mutually exclusive

domains. Such partitions imply some degree of similarity between variables within the same

domain and some degree of dissimilarity with respect to those belonging to di¤erent domains,

an issue that has a bearing on the ways to identify the poor in multidimensional settings.

The �exible framework introduced in this paper �containing the counting approach as a

particular case �takes into account the domains structure and allows modelling previously

unexplored ways of identifying the multidimensionally poor. In addition, our approach gives

ample room to model non-trivial compensation patterns taking place between deprived and

non-deprived attributes either belonging to the same or to the di¤erent domains in which

composite indices are typically partitioned (see sections 2 and 3 for the formal de�nitions).

As a consequence, our approach allows introducing di¤erent levels of complementarity /

substitutability between di¤erent groups of variables when measuring poverty levels �an

improvement with respect to the measurement strategies introduced so far in multidimen-

sional poverty. An obvious �yet crucial �implication of our results is that the set of poor

individuals targeted by the dual cuto¤method and the other criteria proposed in this paper

do not necessarily coincide, an issue that over- or under-represents certain sectors of the

population as potential bene�ciaries of poverty eradication programs worldwide and which

generates very di¤erent estimates in the aggregate levels of multidimensional poverty.

Another attractive feature of the AF method is the alleged possibility of knowing the con-

tribution of each dimension to overall poverty levels once the identi�cation step is over (see

Alkire and Foster 2011: 481-482). According to this model, it is possible to conclude that

deprivations in variable Vi have contributed to overall multidimensional poverty levels by,

e.g., vi% �thereby giving an apparently clear and appealing message to researchers or policy-

makers aiming to identify the single most important dimension that contributes to poverty
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so as to eradicate it in the most e¤ective way. We argue that this dimension-decomposability

approach might give a misleading picture of the ways in which multidimensional poverty

is articulated because it disregards the joint patterns of deprivation that individuals must

experience in order to classify them as poor. We suggest complementing the potentially mis-

leading dimension-decomposability property by another decomposability property �referred

to as �pro�le decomposability�� that is naturally derived from the identi�cation method

suggested in this paper. Pro�le decomposability is superior to its dimension-wise counter-

part in informing about the structure of multidimensional poverty and in conveying clearer

and more focused messages to those working toward its eradication. The rest of the article

is organized as follows. The next section introduces notation and formally describes the

problem. Section 3 discusses new methods to identify the multidimensionally poor in a mul-

tiple domain context and Section 4 discusses the implications that such methods have for

poverty measurement. Section 5 presents two empirical applications illustrating our results

and Section 6 provides some concluding remarks. The proofs are relegated to the appendix.

2. Notation and De�nitions

We introduce some notation that are used in the rest of the paper. Let N be the set of indi-

viduals4 and D the set of dimensions (also referred to as �attributes�) under consideration,

with n := jN j � 1; d := jDj � 2. For any natural number G � bjDj =2c, let �D;G denote

the set of partitions of D into G exhaustive and mutually exclusive groups D1; : : : ; DG (i.e.:

Di \ Dj = ;8i 6= j and D =

g=G[
g=1

Dg) where each group has at least two members (i.e.:

dg := jDgj � 28g). A generic element of �D;G is denoted as (D1; : : : ; DG). Throughout

this paper, let X := f0; 1g. For any natural number m 2 N, let Xm denote the set of

4 The word �individuals�refers to the basic unit of analysis �even if such unit involves households or other
aggregates.
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m�dimensional vectors whose elements can either be 0 or 1, that is Xm := f0; 1gm. Given

any vector x = (x1; : : : ; xm) 2 Xm, the number
P
xi will be denoted as the size of x. Let

�m : Xm ! 2f1;:::;mg be the function that for any x = (x1; : : : ; xm) 2 Xm assigns the set

of dimensions within f1; : : : ;mg for which xi = 1. The inverse function of �m (denoted as

��1m ) converts any subset S � f1; : : : ;mg into the m�dimensional vector in Xm whose i�th

element is equal to 1 if i 2 S and 0 otherwise. To illustrate: if d = 5, one can de�ne the

partition of D = f1; : : : ; 5g into D1 = f1; 2g and D2 = f3; 4; 5g. Then (D1; D2) 2 �D;2,

��15 (D1) = (11000) and ��15 (D2) = (00111). Rq;Rq+;R
q
++ are the q�dimensional Euclidean

space and its nonnegative and strictly positive counterpart respectively. Let a = (a1; : : : ; ad)

be a d�dimensional vector of positive numbers summing up to 1, whose jth coordinate aj

is interpreted as the normalized weight associated with dimension j. The set of all possible

d�dimensional weigthing schemes summing up to 1 is called the d�dimensional simplex,

and will be denoted by �d (i.e.: �d =
�
(a1; : : : ; ad) 2 Rd+j

P
i ai = 1

	
). [0; 1] is the closed

interval of real numbers between 0 and 1.

The achievement of individual i in attribute j will be denoted by yij. The results in

this paper are independent of the measurement scale of our attributes: They can either be

ordinal or cardinal. Therefore, the range of values of yij, denoted as Ij, can either be the set

of non-negative real numbers R+ (an almost universal assumption in both unidimensional

and multidimensional cardinal poverty measurement) or a discrete subset of it. The vector

yi = (yi1; : : : ; yid) 2 I1� � � � � Id contains individual i�s achievements across dimensions and

is called the achievement vector. In this context, an achievement matrix M is a n�d matrix

containing the achievement vectors of n individuals in the di¤erent rows. The set of all n�d

achievement matrices is denoted asMn�d. More generally, we de�neM :=
[
n2N

[
d2N

Mn�d:

For each attribute j we consider a poverty threshold zj representing a minimum attainment in

7



that attribute that is needed for subsistence �which in this paper we consider as exogenously

given. The vector of dimension-speci�c poverty thresholds is denoted by z = (z1; : : : ; zd) 2

I1 � � � � � Id. Whenever yij � zj, we say that individual i is deprived in attribute j.

In this context, amultidimensional poverty index f is a non-trivial function that converts

an elementM from the space of achievement matricesM and a vector of dimension-speci�c

deprivation thresholds z (with as many elements as the number of columns in M) into

a real number f(M ; z) indicating the extent of poverty in the corresponding distribution.

According to Sen (1976), when de�ning a speci�c multidimensional poverty index f one

should �rst identify who is poor and who is not and then aggregate the information about

the extent of deprivation of the poor. In the remainder of this section we will deal with the

issue of identi�cation, leaving until section 4 the issue of aggregation.

Following Bourguignon and Chakravarty (2003), an identi�cation function � : (I1 � � � � � Id)�

(I1 � � � � � Id) ! f0; 1g is a non-trivial mapping from individual i�s achievement vector yi

and the poverty thresholds vector z to an indicator variable in such a way that �(yi; z) = 1

if person i is multidimensionally poor and �(yi; z) = 0 if person i is not multidimensionally

poor. For analytical clarity, it will be convenient to write the identi�cation function � as the

composite � = �b � �w, with

�w : (I1 � � � � � Id)� (I1 � � � � � Id)! Xd (1)

and

�b : Xd ! f0; 1g : (2)

The function �w converts the achievement vector yi and the vector of poverty thresholds

z into a d�dimensional vector of 0s and 1s indicating whether individual i is deprived

or not in the di¤erent dimensions taken into account (where 1 denotes deprivation and 0
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non-deprivation). Such object is called individual�s i deprivation pro�le, and is denoted

as xi = (xi1; : : : ; xid); with xij 2 f0; 1g. The set Xd contains all possible combinations of

deprivations/non-deprivations across d dimensions, and we refer to it as the set of depriva-

tion pro�les. Its generic members are denoted as x = (x1; : : : ; xd); with xj 2 f0; 1g indicating

the deprivation status in dimension j. Therefore, the pro�le (0; :::; 0) corresponds to some-

one who is not deprived in any dimension and (1; :::; 1) to someone who is deprived in all

dimensions. Clearly,
��Xd

�� = 2d. By construction, �w only considers the deprivation status
of individuals within dimensions according to the criterion introduced in the previous para-

graph. On the other hand, the function �b identi�es who is multidimensionally poor and who

is not on the basis of individuals�list of deprivations between dimensions. Therefore �w and

�b are referred to as within- and between-dimension identi�cation functions, respectively. In

this paper, we consider �w as exogenously given,5 and we focus on the di¤erent ways in

which �b can be de�ned. Given the set of deprivation pro�les Xd and any between-dimension

identi�cation function �b : Xd ! f0; 1g, we derive the partition Xd = Pd tRd, where

Pd :=
�
x 2 Xdj�b(x) = 1

	
=
�
�b
��1

(1) (3)

and

Rd :=
�
x 2 Xdj�b(x) = 0

	
=
�
�b
��1

(0) = XdnPd: (4)

Whenever an individual experiences a combination of deprivations like those included in

Pd (resp. Rd), that individual is identi�ed as poor (resp. non-poor) according to �b. For

this reason, we refer to Pd (resp. Rd) as a set of poor pro�les (resp. non-poor pro�les).

Since there is a one-to-one correspondence between �sets of poor pro�les� and �sets of

5 Implicitly, this assumes that we are working in the space of deprivations (i.e.: taking into account the
dimension-speci�c gaps between attainments and the corresponding poverty threshold �see footnote #4).
The alternative approach advocated by Ravallion (2011) of working in the space of attainments is not followed
in this paper because the collapse of multivariate distributions into unidimensional ones trivially simpli�es
the problem of identi�cation of the poor.
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between-dimensions identi�cation functions�(see equation (3)), we use both sets of objects

interchangeably when no confusion arises. For any x 2 Xd; let Nx � N denote the set of

individuals experiencing deprivations as described in x. Clearly,
[
x2Xd

Nx = N . The number

of elements in Nx is denoted as nx. For any set of poor pro�les Pd � Xd let Q(Pd) :=

fi 2 N j�w(yi; z) 2 Pdg =
[
x2Pd

Nx be the set of individuals considered poor according to Pd.

The number of �Pd�poor�individuals is de�ned as q := jQ(Pd)j =
X
x2Pd

nx.

The elements of Xd can be partially ordered by �, the partial order6 generated by

vector dominance in Xd � Xd. That is: For any x;y 2 Xd, x � y if and only if xi � yi

for all i 2 f1; : : : ; dg. When this happens, we say that y vector-dominates x. Observe that

when a given deprivation pro�le x is vector-dominated by another deprivation pro�le y (i.e.:

when x � y), we might reasonably say that the state of a¤airs represented by the former

is better than the one represented by the latter. Let Z be any subset of Xd. On the one

hand, the up-set of Z (denoted as Z") is de�ned as Z" := fx 2 Xdj9z 2 Z s.t. z � xg

(i.e.: it is the set of deprivation pro�les vector-dominating at least one member of Z). On

the other hand, the set of undominating elements of Z (denoted as U(Z)) is de�ned as

U(Z) := fx 2 Zj@y 2 Znfxg s.t. y � xg (i.e.: it is the set of elements in Z that do not

vector-dominate any other element in Z). By construction, if x 2 U(Pd) and y 2 Xd is such

that y � x, then y 2 Rd. In words: for a given set of poor pro�les Pd, the members of U(Pd)

are the elements representing the least deprived situation among the poor.

For any natural number m 2 N, let � : Xm �Xm ! f1; : : : ;mg be a function such that

for any x;y 2 Xm, �(x;y) � f1; : : : ;mg is the set of dimensions where x is deprived but y
6 A partial order over a set S is a binary relation � which, for any a; b; c 2 S, satis�es the following
conditions: (i) a � a (Re�exivity); (ii) If a � b and b � a then a = b (Antisymmetry); (iii) If a � b and
b � c then a � c (Transitivity).
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is not (i.e: when i 2 �(x;y) then xi = 1 and yi = 0). The following technical Lemma will

be used when presenting the main results of the paper.

Lemma 1: For any natural number m 2 N, let Z be any subset of Xm with jU(Z)j � 2

and let x;y 2 U(Z) denote two of its elements, with x 6= y. One has that �(x;y) 6= ; and

�(y;x) 6= ;.

Proof : See the appendix.

To clarify ideas, it is useful to graph the Hasse diagram corresponding to the set Xd

(whose elements are the nodes of the diagram) and the partial order � (represented by the

edges between nodes). The di¤erent deprivation pro�les (i.e.: the nodes) are ordered in rows

depending on the number of deprivations they contain: The �rst row includes the pro�le

with no deprivations, the second one the pro�les with at most one deprivation, and so on.

In these diagrams, it is useful to distinguish whether the di¤erent nodes belong to Pd or Rd.

In Figure 1 we show two examples of Hasse diagrams for the case d = 4 that will be useful

to illustrate other sections of the paper. In the �rst one (Fig. 1a), the set of poor pro�les is

P 14 = f1100, 1010, 1001, 0110, 0101, 0011, 1110, 1101, 1011, 0111, 1111g and in the second

one (Fig. 1b) P 24 = f1100, 1011, 1110, 1101, 1111g. Observe that U(P 14 ) = f1100, 1010,

1001, 0110, 0101, 0011g; U(P 24 ) = f1100, 1011g:

[[[Figure 1a,b]]]

2.1 The dual cuto¤ identi�cation method

The identi�cation function suggested by Alkire and Foster (2011), based on the counting

approach and denoted as �C;a;k, can be written as the composite �C;a;k = �
b
C;a;k � �w, where
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�bC;a;k is in turn de�ned as the composite �
b
C;a;k = �k � ca, with

ca : X
d ! [0; 1] (5)

and

�k : [0; 1]! f0; 1g : (6)

For any x 2 Xd, the function ca is de�ned as ca(x) =
Pj=d

j=1 ajxj, that is: ca simply counts

the weighted proportion of deprivations experienced by someone with deprivation pro�le x.

Following the terminology of Alkire and Foster (2011), ca(x) is referred to as deprivation

score. Lastly, for any s 2 [0; 1] and for any k 2 (0; 1], �k is de�ned as

�k(s) =

8><>: 1 if s � k

0 if s < k

9>=>; : (7)

The �k�ca function takes a value of 1 whenever the weighted proportion of deprivations attains

a certain threshold k (which is exogenously given) and a value of 0 otherwise. Summing up,

the dual cuto¤ identi�cation method �C;a;k is de�ned as a composite of three functions

(I1 � � � � � Id)� (I1 � � � � � Id)
�w�! Xd ca�! [0; 1]

�k�! f0; 1g (8)

that identi�es individual i as being �poor�whenever the deprivation score associated with the

deprivation pro�le �w(yi; z) is not lower than k (the poverty threshold across dimensions)

and as �non-poor�otherwise. Parameter k indicates the proportion of weighted deprivations

a person needs to experience in order to be considered multidimensionally poor. Therefore,

the sets of �C-poor�and �non-C-poor�pro�les can be written as

Pd;C(a;k) : =

(
x 2 Xdj

j=dP
j=1

ajxj � k
)

(9)

Rd;C(a;k) : =

(
x 2 Xdj

j=dP
j=1

ajxj < k

)
: (10)
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The higher the value of k, the more di¢ cult it is that an individual ends up being classi�ed

as poor. When k � minj aj, �C;a;k corresponds to the union identi�cation approach, and when

k = 1, �C;a;k is equivalent to the intersection approach. The Hasse diagrams shown in Figures

1a and 1b illustrate examples of sets of poor pro�les Pd;C(a;k) for certain combinations of d; a

and k. In Figure 1a, we have chosen d = 4; a1 = a2 = a3 = a4 = 1=4 and k = 1=2 and in

Figure 1b, d = 4; a1 = 1=2; a2 = 1=4; a3 = 1=8; a4 = 1=8 and k = 3=4. If one chooses equal

weights, whenever a deprivation pro�le belongs to Pd;C(a;k), all other deprivation pro�les in

the same row are included in Pd;C(a;k) as well (see Fig. 1a). Alternatively, when the weights

are allowed to be di¤erent it is possible that not all members of the same row are included

in Pd;C(a;k) (see Fig. 1b).

3. Identifying the poor: Beyond the counting approach

Roughly, the AF method is a procedure stipulating that if the number of deprivations expe-

rienced by an individual exceeds a certain threshold, that individual should be considered

poor �irrespective of the speci�c combination of deprivations contributing to the count. The

main aim of this section is to go beyond this counting approach suggesting more general and

less stringent identi�cation procedures that are better equipped to capture the subtelties

and intrincacies involved in such a delicate matter. Initially, we assume that all variables

belong to a single domain but later (from section 3.1 onwards) we consider the more general

case where variables are partitioned across several domains.

Among all potential partitions of Xd into the disjoint sets Pd and Rd (i.e., when identi-

fying what deprivation pro�les should fall into the �poor�or �non-poor�categories), not all

possibilities are meaningful. Whenever a certain x belongs to Pd, one would expect that

those deprivation pro�les y containing at least the same set of deprivations as those in x
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should also be included in Pd. That is: if an individual i is labeled as poor, another individ-

ual j experiencing deprivations at least in the same dimensions as those where i experiences

deprivations, and possibly in others, should also be labeled as poor. Formally, it seems

reasonable to impose that the set of poor pro�les Pd should respect the partial order �

generated by vector dominance, that is:

De�nition: A set of poor pro�les Pd satis�es the Consistency Condition (CC) if and

only if for any x 2 Pd and any y 2 x", then y 2 Pd.

In terms of the corresponding between-dimension identi�cation functions7 (i.e.: in terms

of �b), the Consistency Condition stipulates that for any x;y 2 Xd with x � y, one must

have �b(x) � �b(y). Because of its logical solidity, we posit that the class of between

dimension identi�cation functions satisfying CC should be the universe of reference from

which identi�cation functions should be drawn8 . Indeed, the incorporation of identi�cation

functions not satisfying CC seems extremely hard to justify on logical and ethical grounds.

We denote by Pd the set of all sets of poor pro�les Pd satisfying CC. Given their relevance

for this paper, we now characterize the elements of Pd.

Proposition 1. One has that Pd 2 Pd , (U (Pd))
" = Pd.

Proof : See the appendix.

According to Proposition 1, the set of poor pro�les satisfying CC are the sets that

coincide with the up-set of their undominating elements. This implies that the sets of poor

7 Given the one-to-one correspondence between �poor pro�les�and �between-dimension identi�cation func-
tions�, we will interchangeably use the expressions �Pd satis�es CC�and ��b satis�es CC�.
8 The Consistency Condition is reminiscent of the so-called �poverty consistency�property introduced by
Lasso de la Vega (2010) in the context of the counting approach (see section 2.1). According to that author,
an identi�cation function is �poverty consistent�if, when identifying a person with a deprivation score equal
to s as poor, it also considers as poor anybody whose deprivation score count is at least as high as s. Clearly,
the Consistency Condition proposed here is more general than the �poverty consistency�property.
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pro�les Pd satisfying CC are univocally characterized and represented by the corresponding

subsets of undominating elements U (Pd). When choosing a sensible set of poor pro�les Pd,

the subsets U (Pd) are particularly important because their elements determine the least

deprived conditions that individuals should experience in order to be considered as poor.

Indeed, the sets U (Pd) can be thought as a generalization of the concept of a poverty line to

the multidimensional context (i.e.: they determine the boundary separating the poor from

the non-poor). For this reason, the sets U (Pd) obtained from the di¤erent Pd 2 Pd are

referred to as the sets of boundary pro�les, and are denoted as Z. As a consequence of

Proposition 1, we say that Pd is the same as fZ"gZ2Z , that is: Any poor pro�le Pd 2 Pd

corresponds to the up-set of some Z belonging to Z and vice-versa. Since Z contains the

undominating elements of the sets of poor pro�les satisfying CC, it can be written as

Z :=
�
Z � Xdj8x 2 Z;@y 2 Znfxg s.t. y � x

	
: (11)

That is: Z contains all subsets of Xd such that any two of its members never vector-

dominate one another (in particular, it contains all singletons of Xd).

What can be said about the dual cuto¤ method in this broader identi�cation context?

The sets of poor pro�les Pd;C(a;k) generated by the dual cuto¤method satisfy the Consistency

Condition for any a 2 �d and any k 2 (0; 1] (i.e., Pd;C(a;k) 2 Pd because, whenever x � y,

one clearly has that �bC;a;k(x) � �bC;a;k(y)). However, the following result proves that Pd

contains other elements that cannot be generated via the dual cuto¤ method.

Theorem 1: For any d � 2 let Cd be the set of all sets of poor pro�les generated by the

counting approach, that is: Cd :=
�
Pd;C(a;k)

	
a2�d;k2(0;1]

. Then, if d 2 f2; 3g, Cd = Pd. For

any d � 4; Cd  Pd:

Proof : See the appendix.
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Theorem 1 stipulates that the set of sets of poor pro�les generated by the dual cuto¤

identi�cation method is strictly included within the set of sets of poor pro�les satisfying CC

whenever the number of dimensions taken into account is greater than 3. This implies that

the counting approach underlying the AF method leaves aside certain sets of poor pro�les

Pd belonging to Pd that might represent a sensible way of deciding who is poor and who is

not. In the following section we describe a wide class of sets of poor pro�les belonging to Pd

that the AF method fails to identify.

3.1 Identi�cation of the poor in a multiple domain context

Consider the following hypothetical example taken from Alkire and Foster (2011: 483), where

the multidimensional poverty levels of individuals are assessed with the following variables:

V1 = �Income�, V2 = �Years of Schooling�, V3 = �Self-assessed Health� and V4 = �Health

insurance�(that is: d = 4). Assume that, for each variable, there is a threshold below which

individuals should be considered deprived (in the case of V4, an individual is deprived if

s/he has no health insurance). In this framework, one might say that V1 and V2 capture

alternative aspects of a broader domain one might call �Capacity to make a living�(denoted

as D1) while V3 and V4 capture di¤erent aspects within the domain of �Health �(denoted

as D2). When deciding who is poor and who is not, one might reasonably argue that if

someone is only deprived in V1, then she should not be identi�ed as �poor�because her high

level of education might somehow compensate and potentially o¤er some alternatives for the

current lack of income in the capacity to make a living. If someone is only deprived in V2,

then he might not be identi�ed as �poor�because his lack of education can be compensated

by his high level of income. Here, one might say that in order to be identi�ed as �poor�, an

individual should experience deprivations at least in V1 and V2 simultaneously �something

which would severly hinder that individual�s capacity to make a decent living. Analogously,
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one could argue that an individual is poor whenever she experiences deprivations in at least

V3 and V4 simultaneously (an alarming circumstance for that individual�s health), but not

poor if she only experiences deprivation in one of the two variables separately (good self-

assessed health might somehow compensate for the lack of health insurance and vice-versa).

Lastly, one could also argue that when an individual is only deprived in one variable within

D1 and in one variable within D2, then that individual should not be identi�ed as �poor�

because the variable within each domain where that individual attains a good achievement

somehow compensates for the deprivation experienced in the other variable. For instance:

an individual deprived in V2 and V3 only might not be classi�ed as poor because her high

income and health insurance might compensate in a way for her low levels of education and

low self-assessed health respectively. Formally, all the previous arguments are summarized

stating that the set of poor pro�les P �4 = f1100, 0011, 1110, 1101, 1011, 0111, 1111g can be a

reasonable choice when deciding who is poor and who is not for the case d = 4 (to illustrate,

the Hasse diagram corresponding to P �4 is shown in Figure 2a; observe that U(P
�
4 ) = f1100,

0011g). Interestingly, it is straightforward to check that while P �4 satis�es the Consistency

Condition (i.e.: P �4 2 P4), P �4 does not belong to C4 for any a 2 �4 and any k 2 (0; 1]

(see Theorem 2 for a proof of this statement). In other words: No matter what weighting

scheme a or what deprivation score threshold k we choose, the AF identi�cation method

never generates a set of poor pro�les like P �4 .

The set P �4 identi�es as poor those individuals that are either �completely� deprived

in D1 or in D2 (i.e: experiencing deprivations in the corresponding two constituent vari-

ables), but it does not identify as poor those individuals that are �partially� deprived in

both domains simultaneously (i.e: experiencing deprivation in only one variable within each

domain). Alternatively, one might be interested in targeting those individuals experiencing
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some deprivations both in D1 and D2, even if they are not completely deprived in any of the

two. Since these individuals experience some level of deprivation in all life domains consid-

ered in this example, it also seems reasonable to de�ne a poverty pro�le to identify them.

Using the notation introduced in this paper, such pro�le would be written as P ��4 = f1010,

1001, 0110, 0101, 1110, 1101, 1011, 0111, 1111g (see illustration in Figure 2b; observe that

U(P ��4 ) = f1010, 1001, 0110, 0101g). Again, even if P ��4 satis�es the Consistency Condition,

it turns out that there is no weighting scheme a and any deprivation score threshold k such

that P ��4 belongs to C4 (see the proof of Theorem 2).

[[[Figure 2a + 2b]]]

As the two preceding examples suggest, the counting approach seems ill-suited to identify

the poor in those settings where the di¤erent variables we are taking into account are nested

within mutually exclusive domains and where there might be non-trivial compensation pat-

terns between deprived and non-deprived variables depending on whether they belong to

the same domain or not. Indeed, we show below that the counting approach fails to identify

the poor in virtually any setting where the variables are nested within multiple domains

and the identi�cation functions explicitly take into consideration such partition. In order

to push forward the intuitions laid out in the previous two examples it becomes necessary

to formalize what it means �being deprived in a given domain�and how this relates to the

identi�cation of the multidimensionally poor. For that purpose we will now introduce some

further notation and de�nitions.

From now onwards, we assume that the set of variables D of size d is partitioned into G

domains (D1; : : : ; DG) with at least two variables within each domain (dg := jDgj � 28g), i.e:
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(D1; : : : ; DG) 2 �D;G. In addition, we assume that there are at least two domains, i.e: G � 2

(so far we have been implicitly working as if there was one domain only). Since (D1; : : : ; DG)

is a partition of D, a deprivation pro�le x = (x1; : : : ; xd) 2 Xd can be rewritten without loss

of generality as (x1; : : : ;xg; : : : ;xG) := (x11; : : : ; x1d1 ; : : : ; xg1; : : : ; xgdg ; : : : ; xG1; : : : ; xGdG),

where xg = (xg1; : : : ; xgdg) 2 Xdg and xgv 2 f0; 1g indicates the deprivation status in

variable v within domain g. Formally, we denote by � : Xd ! Xd1� : : :�XdG the one-to-one

function that transforms any deprivation pro�le x into (x1; : : : ;xG). Clearly, d =
P

g dg.

Now, how does one identify those individuals deprived in domain Dg and, more generally,

those who are multidimensionally poor? Loosely speaking, an individual is deprived in

domain Dg when the deprivations she experiences are �large enough�to prevent enjoying a

decent living in that sphere of life. Deciding what bundles of deprivations are su¢ cient to

prevent enjoying such a �decent living�is again a complex and elusive matter that is formally

performed by the following function

�wg : X
dg ! f0; 1g: (12)

�wg converts the vector xg = (xg1; : : : ; xgdg) into a 0 or a 1 indicating whether someone

experiencing such deprivations pattern in domain Dg should be considered to be deprived

in that domain or not (with a value of 1 meaning �deprivation in that domain�). Extending

the domain deprivation de�nition to all domains D1; : : : ; DG we obtain

�!G =
�
�w1 ; : : : ; �

w
g ; : : : ; �

w
G

�
: Xd1 � : : :�XdG ! XG: (13)

The function �!G converts the vector (x1; : : : ;xg; : : : ;xG) into a G�dimensional vector

of 0s and 1s indicating the deprivation status of individuals across domains. Formally, the

vector (�w1 (x1); : : : ; �
w
G(xG)) 2 XG will be denoted as domain deprivation pro�le. Lastly, one
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must decide whether an individual experiencing a certain domain deprivation pro�le should

be identi�ed as �multidimensionally poor�or not. For that purpose, we consider the function

�bG : X
G ! f0; 1g (14)

with a value of 1 indicating that the corresponding individual has been identi�ed as mul-

tidimensionally poor. To sum up, in the multiple domain context the between dimension

identi�cation function �b introduced in (2) can be rewritten as a composite of three functions

�b = �bG � �!G � �, as illustrated in the following diagram:

Xd �b�! f0; 1g

# � " �bG

Xd1 � : : :�XdG
�!G�! XG

In words: to decide whether an individual is multidimensionally poor we take three steps:

(i) Consider the partition of variables across domains (�); (ii) Examine whether individuals

are deprived or not within those domains (�!G); and (ii) Examine whether individuals are

deprived across domains (�bG). Because of the way in which they have been de�ned, �
!
G and

�bG are referred to as within- and between-domain identi�cation functions respectively. From

the previous de�nitions we can naturally derive the following sets

Pw;gdg
:=
�
xg 2 Xdg j�wg (xg) = 1

	
=
�
�wg
��1

(1) (15)

Rw;gdg :=
�
xg 2 Xdg j�wg (xg) = 0

	
=
�
�wg
��1

(0) = XdgnPw;gdg
(16)

P bG :=
�
v 2 XGj�bG(v) = 1

	
=
�
�bG
��1

(1) (17)

and

RbG :=
�
v 2 XGj�bG(v) = 0

	
=
�
�bG
��1

(0) = XGnP bG: (18)
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These are the analogues of the sets of poor and non-poor pro�les shown in (3) and (4) adapted

to the context of within- and between-domain deprivation (as is clear, whenever there is only

one domain, equations (15) and (16) reduce to equations (3) and (4) respectively). The set

Pw;gdg
(resp. Rw;gdg ) indicates what combinations of deprivations should one experience to be

considered as being deprived (resp. non-deprived) in domain Dg. On the other hand, P bG

(resp. RbG) contain the combination of domain deprivations one should experience to be

considered as being multidimensionally poor (resp. non-poor). Since the vector dominance

order� can be de�ned both within and across domains (i.e: both inXdg�Xdg andXG�XG),

the Consistency Condition (CC) will be imposed as well when de�ning the sets Pw;gdg
and

P bG. That is: whenever xg 2 P
w;g
dg

(resp. v = (v1; : : : ; vG) 2 P bG) and yg 2 x"g (resp. t =

(t1; : : : ; tG) 2 v"), then yg 2 Pw;gdg
(resp. t 2 P bG). Analogously, the notion of �undominating

elements� can be de�ned as well both in the within- and between-domain contexts (i.e.:

U(Pw;gdg
) := fxg 2 Pw;gdg

j@yg 2 Pw;gdg
�fxgg s.t. yg � xgg and U(P bG) := fv 2 P bGj@t 2

P bG�fvg s.t. t � vg). While the choice of Pw;gdg
and P bG determine who is poor and who

is not poor within and between domains, the elements of U(Pw;gdg
) and U(P bG) determine

the least deprived conditions that individuals should experience to be considered deprived

within and between domains respectively.

Examples: As an illustration, we are going to rewrite the sets of poor pro�les P �4 ; P
��
4

with which we started this section using the multiple domains terminology we have just

introduced. In those examples there are two domains (D1 and D2) with two variables each

(V1; V2 and V3; V4 respectively). For P �4 one has that P
w;1
d1

= Pw;2d2
= f11g (i.e: one has

to be deprived in both variables to be deprived in the corresponding domain) while P bG =

f10; 01; 11g (i.e: it su¢ ces to be deprived in one domain to be considered multidimensionally

poor). On the other hand, for P ��4 one has that Pw;1d1
= Pw;2d2

= f10; 01; 11g (i.e: it su¢ ces
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to be deprived in one variable only to be deprived in the corresponding domain) while

P bG = f11g (i.e: one has to be deprived in both domains to be considered multidimensionally

poor).

The following results determine how does the counting approach fare in the multiple

domain context proposed in this paper.

Proposition 2: Let (D1; : : : ; DG) 2 �D;G. When U(P bG) and the U(P
w;g
dg
) are singletons

8g 2 f1; : : : ; Gg, there exists some a 2 �d and some k 2 (0; 1] such that Pd;AF (a;k) coincides

with the set of poor pro�les generated by the di¤erent Pw;gdg
and P bG.

Proof : See the appendix.

This result basically states that when the within- and between-domain deprivation func-

tions (�!G and �
b
G) are very �simple�, the counting approach is still valid as a method to

identify the poor in a multiple domain context. The fact that U(P bG) and the di¤erent

U(Pw;1d1
); : : : ; U(Pw;GdG

) only contain one element implies that the set of dimensions D can be

split in two groups: (i) those which are essential for assessing multidimensional poverty9

and (ii) those which are subsidiary to the former (i.e: when an individual is only deprived

in the dimensions of the second group, she is not considered to be multidimensionally poor).

When this happens, the counting approach still works because it su¢ ces to give a su¢ ciently

large weight to the dimensions included in the �rst group (see the proof of Proposition 2).

However, the following result shows that this is no longer the case when �!G and �
b
G have a

slightly richer structure and depart from the trivial case.

Theorem 2: Let (D1; : : : ; DG) 2 �D;G. Consider the following sets of conditions
9 To identify these dimensions it su¢ ces to look at the non-zero elements of the vectors in U(P bG) and the
di¤erent U(Pw;1d1

); : : : ; U(Pw;GdG
).
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(i) Assume that
��U(P bG)�� � 2. There exists a pair of elements p;q 2 U(P bG) (p 6= q) such

that the following happens: if g1 2 �(p;q) and g2 2 �(q;p) (where �(p;q) and �(q;p) are

the elements referred to in Lemma 1), then there exist xg1 2 U(P
w;g1
dg1

);xg2 2 U(P
w;g2
dg2

) withPv=dg1
v=1 xg1v > 1;

Pv=dg2
v=1 xg2v > 1:

(ii) Assume that in P bG there exists an element xG with j�G(xG)j � 2 such that for at

least two domains g1; g2 2 �G(xG) one has that
���U(Pw;g1dg1

)
��� � 2 and ���U(Pw;g2dg2

)
��� � 2.

Whenever (i) or (ii) hold, there is no weighting scheme a and any deprivation score

threshold k such that Pd;C(a;k) coincides with the set of poor pro�les generated by the di¤erent

Pw;gdg
and P bG.

Proof : See the appendix.

Theorem 2 shows that under very mild restrictions, the counting approach is essentially

unable to identify the multidimensionally poor in the multiple domain context suggested

in this paper. Condition (i) presents a scenario where there are at least two groups of

domains in which individuals have to experience deprivation to be considered multidimen-

sionally poor. In addition, it requires that in order to be considered deprived within some

of these domains, individuals have to experience deprivations in more than one variable si-

multaneously. Essentially, this is a generalization of the set of poor pro�les P �4 adapted to

the multiple domain context. On the other hand, condition (ii) presents a scenario where

individuals have to experience deprivation in at least two domains simultaneously to be con-

sidered multidimensionally poor but where deprivation needs not to be universal within at

least two of these domains (i.e: individuals are not required to be deprived in all variables

to be considered deprived within those domains). This generalizes the set of poor pro�les

P ��4 to the multiple domain context.
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Rather than piling up deprivations irrespective of the domains to which they belong, in

this paper we suggest taking these domains into account when identifying the poor. Selecting

the appropriate combination of within- and between-domain identi�cation functions (i.e: �!G

and �bG) there is ample room to generate poor identi�cation functions that can accomodate

non-trivial patterns of compensation that might exist between deprived and non-deprived

attributes belonging to the same or alternative domains �a possibility that is not feasible

when one relies on the counting approach only.

3.2 The generalized counting approach

Despite the limitations of the counting approach highlighted in theorem 2, it can be naturally

extended to the multi-domain framework in the following way. When constructing the

within-domain identi�cation functions, one might decide that an individual must at least

experience mg deprivations within domain Dg in order to be deprived in that domain (with

mg � dg). Analogously, in order to be identi�ed as multidimensionally poor, an individual

must be deprived in at least M domains (M � G). Rather than having a single poverty

threshold across all dimensions (k 2 (0; 1]) as in the classical counting approach, here we need

to specify one threshold within each domain (mg) and an overall threshold across domains

(M). This natural way of extending the counting approach to the multiple domain context

will be referred to as �generalized counting approach�10 . The speci�cation of the thresholds

vector (m1; : : : ;mG;M) will univocally indicate what combination of thresholds will be used

within and across domains. The choice of the thresholds vector (1; : : : ; 1; 1) is equivalent

to the �classical�(i.e: single domain context) union approach, while the thresholds vector

10When generalizing the counting approach, one could of course introduce di¤erent weights within the
dimensions of a given domain and di¤erent weights between domains to generate the corresponding within-
and between-domain deprivation scores. Since this would further complicate notations but give no additional
insights we have kept the simpler weightless version.
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(d1; : : : ; dG;G) leads to the �classical�intersection approach.

The generalized counting approach allows great �exibility when modelling non-trivial

tradeo¤s between deprived and non-deprived attributes either belonging to the same or to

alternative domains. While it is by no means the only way of identifying the multidimen-

sionally poor � the class of CC identi�cation functions is broader than that � it has the

advantage of being simple to understand and implement. Indeed, both P �4 and P
��
4 can be

described as members of the generalized counting approach in a context where there are two

domains and two variables within each domain. While P �4 uses the intersection approach

within domains and the union approach between domains (i.e: it is characterized by the

thresholds vector (2; 2; 1)), P ��4 uses the union approach within domains and the intersection

approach between domains (i.e: it is characterized by the thresholds vector (1; 1; 2)). The

following corollary of Theorem 2 basically illustrates the limitations of the classical counting

approach vis-à-vis its generalized counterpart.

Corollary 1: Assume we are using the generalized counting approach to identify the

multidimensionally poor via the thresholds vector (m1; : : : ;mG;M). Consider the following

sets of conditions

(i) Let M < G and let there be at least two domains g1; g2 2 f1; : : : ; Gg with mg1 � 2

and mg2 � 2.

(ii) Let M = G and let there be at least two domains g1; g2 2 f1; : : : ; Gg with mg1 < dg1

and mg2 < dg2.

It turns out that the classical counting approach fails to generate the same set of poor

pro�les as the ones generated by the generalized counting approach described in (i) and (ii).

Proof : See the appendix.
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Corollary 1 clearly shows the limitations of the classical counting approach in the multiple

domains framework. Essentially, it is only when the union or intersection approaches are used

both within and across domains (i.e: either (1; : : : 1; 1) or (d1; : : : ; dG;G)) that the classical

counting approach is still valid to identify the multidimensionally poor in the multiple domain

context.

4. How poor are the poor?

So far we have been discussing how the partition of dimensions within domains a¤ects the

identi�cation of the poor. We are now going to explore the implications of the multiple

domains approach for the �agregation step��where the information about the poor is sum-

marized into a single number. Basically we suggest aggregating information about the poor

in a way that is naturally linked with the identi�cation method presented in the previous

section. For that purpose, we start with some basic de�nitions and measures that are quite

standard in the poverty measurement literature and then proceed with the new measures

proposed in this paper (see section 4.1).

In most of this section it will prove useful to express our measures in terms of deprivations

rather than achievements. When an individual i is deprived in attribute j, there are several

ways of capturing the extent of that deprivation, usually referred to as �deprivation shortfall�

or �deprivation gap�. For the purposes of this paper, it will su¢ ce11 to consider the following

de�nition of individual�s i deprivation gap in dimension j:


cij :=Max

��
zj � yij
zj

�c
; 0

�
; (19)

11Other de�nitions of the deprivation gaps are also feasible (see Table 1 in Permanyer 2014 for other exam-
ples). However, since alternative de�nitions do not alter the �ndings of the paper, we have chosen the one
that is more commonly used in the literature for the sake of concreteness and simplicity.
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where c � 0. Observe that 
cij is well-de�ned for any c � 0 whenever yij is measured in

a cardinal scale. When this happens, 
cij 2 [0; 1]. In particular, when c = 1, 
1ij is the

so-called normalized deprivation gap, which measures in a [0; 1] scale the distance between a

given achievement yij and the corresponding poverty line zj. However, when yij is measured

in an ordinal scale, 
cij is only meaningful when c = 0. In that case, 
0ij = 1 whenever

yij � zj, while 
0ij = 0 otherwise. For an individual i, we de�ne the corresponding vector

of deprivations gaps as 
ci := (

c
i1; : : : ; 


c
id). Observe that when c = 0, 


0
i := (


0
i1; : : : ; 


0
id)

corresponds to individual�s i deprivation pro�le xi = (xi1; : : : ; xid) 2 Xd; with xij 2 f0; 1g.

When considering one domain only (G = 1), there are several methods of aggregating

information to construct a multidimensional poverty index (see Permanyer (2014:4) for a

review of di¤erent aggregation procedures in that context). We now present some of them

adapted to the identi�cation methods suggested in the previous section. Because of its

popularity we start considering the multidimensional headcount ratio H and then proceed

with the family of multidimensional poverty indices M� suggested by Alkire and Foster

(2011), which is currently being used in the construction of UNDP�s MPI. Assume that

individuals are identi�ed as poor if they experience a combination of deprivations like those

included in the set of poor pro�les Pd (with Pd 2 Pd). Then

H(Pd) :=
1

n

X
i2Q(Pd)

1 =
1

n

X
x2Pd

nx =
q

n
: (20)

The index H(Pd) is simply the share of individuals that are multidimensionally poor

according to the set of poor pro�les Pd. On the other hand, the family of poverty indices

suggested by Alkire and Foster (2011) can be written as

M�(Pd) :=
1

n

X
i2Q(Pd)

ca(

�
i ): (21)
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Essentially,M�(Pd) is an average of the deprivation gaps 
�ij across dimensions and across

the set of individuals that are multidimensionally poor according to Pd. When � = 0,M0(Pd)

is called the �adjusted headcount ratio�and it can be used with cardinal or ordinal variables12

. However, when � > 0;M�(Pd) is only well de�ned for cardinal variables. In particular,

M1(Pd) and M2(Pd) are named �adjusted poverty gap�and �adjusted FGT measure�respec-

tively. Observe that whenever Pd = Pd;C(a;k) for some a = (a1; : : : ; ad) 2 �d; k 2 (0; 1]

(i.e: Pd 2 Cd), the measures H(Pd) and M�(Pd) coincide exactly with the original identi�-

cation and aggregation measures proposed by Alkire and Foster (2011). Otherwise, when

Pd 2 PdnCd, H(Pd) and M�(Pd) can be seen as slight generalizations of the former. It turns

out that the M�(Pd) measures can be seen as members of the following general class of

functions

��(Pd) =
1

n

X
i2Q(Pd)

 
dX
j=1

aj(

c
ij)
�

!1=�
; (22)

where � > 0. This measure estimates individuals�poverty levels averaging the corresponding

deprivation gaps vector 
ci using a weighted generalized mean of order �.
13 Clearly, when

� = 1, �1(Pd) = Mc(Pd). Interestingly, ��(Pd) can also be seen as a member of the class of

multidimensional poverty indices proposed by Bourguignon and Chakravarty (2003). While

the original measure was de�ned under the assumption that the poor were identi�ed via the

union approach, the new measure shown in (22) has been adapted to incorporate the more

general identi�cation functions embodied in Pd. The choice of di¤erent values for � allows

modelling di¤erent elasticities of substitution between pairs of deprivations. However �as

highlighted by Bourguignon and Chakravarty (2003:40) �such elasticity of substitution is

12Interestingly, M0(Pd) can also be written in the following alternative ways:
1
n

X
i2Q(Pd)

ca(�
w(yi; z)) =

1
n

X
i2Q(Pd)

ca(

0
i ) =

1
n

X
x2Pd

nxca(x):

13The class of weighted generalized means is well-known and has been widely used in welfare analysis. Higher
values of � give more importance to the upper tails of the distribution and vice versa. In the limit, as � !1
(resp. � ! �1) the generalized mean converges towards the maximum (resp. minimum) of the distribution.
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the same across all pairs of deprivations, a restriction that in most occasions might not be

very realistic. In a recent contribution, Lasso de la Vega and Urrutia (2011) axiomatically

characterize the family of poverty measures �� under the assumption that the poor are

identi�ed using the union approach14 .

4.1 Measuring poverty in a multiple domains context

From now on, we assume that the number of domains we are taking into account can

be greater than one (G � 1), with each domain Dg containing dg variables. In order to

introduce our new poverty measures, we need to relabel individual�s i deprivation gaps

vector 
ci = (
ci1; : : : ; 

c
id) to identify the speci�c domains where the di¤erent deprivations

belong to. Without loss of generality we can rewrite 
ci as (

c
i1; : : : ;


c
ig; : : : ;


c
iG), where


cig = (

c
ig1; : : : ; 


c
igdg
) is the vector of deprivation gaps in domain Dg for each g 2 f1; : : : ; Gg.

Hence 
cigv is individual�s i deprivation gap in variable v belonging to domain g. Like all

existing multidimensional poverty measures (see Permanyer 2014:4) we posit that overall

poverty is the average of individuals�poverty levels15 . In order to estimate individuals�

poverty levels we suggest a two-step procedure. In the �rst step we aggregate individuals�

deprivations within domains only. In the second one, we aggregate the previous quantities

across domains. For obvious reasons, we call this the domain-�rst two-stage aggregation

method. Formally, the method can be de�ned as follows.

14Such characterization states that a multidimensional poverty index has the form shown in equation (22)
if and only it satis�es the axioms of Continuity, Monotonicity, Weak dimension separability, Homotheticity,
Subgroup decomposability and Normalization. Continuity ensures that the poverty measure is continuous in
its arguments. Monotonicity requires the poverty measure to increase with its arguments. Weak dimension
separability stipulates that the e¤ect of any attribute on the deprivation level can be determined indepen-
dently from the values of the other attributes. Homotheticity imposes that a common proportional change
in all the individual�s deprivations in all the attributes will not a¤ect the ordering of the social deprivations.
Subgroup decomposability states that overall poverty is equal to the population weighted average of the sub-
group poverty levels. Normalization imposes that the poverty index should be bounded between zero and
one. The detailed de�nitions are given in Lasso de la Vega and Urrutia (2011).
15This is a consequence of the Subgroup Decomposability axiom, which states that overall poverty is equal
to the population weighted average of the subgroup-speci�c poverty levels (see Foster and Shorrocks 1991).
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Domain-�rst two-stage aggregation. There exist functions � : [0; 1]G ! [0; 1] and 'g :

[0; 1]dg ! [0; 1] for each g 2 f1; : : : ; Gg such that, for all sets of poor pro�les Pd 2 Pd,

multidimensional poverty can be measured as

1

n

X
i2Q(Pd)

�
�
'1(


c
i11; : : : ; 


c
i1d1
); : : : ; 'G(


c
iG1; : : : ; 


c
iGdG

)
�
: (23)

Clarly, 'g are the domain-speci�c aggregation functions (which are allowed to vary across

domains) while � is the across-domains aggregation function. Whenever individual i is poor,

her poverty level is measured as �
�
'1(


c
i11; : : : ; 


c
i1d1
); : : : ; 'G(


c
iG1; : : : ; 


c
iGdG

)
�
. Proceeding

in this way, we are making room for the possibility of having pairs of variables that are

complements or substitutes depending on whether they belong to the same or alternative

domains. When deciding what aggregators 'g, � should be included in the previous equation,

it is natural to choose the same functional form as in equation (22). In that case, the following

multidimensional poverty measure obtains:

��(Pd) :=
1

n

X
i2Q(Pd)

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(

c
igv)

�g

#�=�g1A1=�

; (24)

where � = (�; �1; : : : ; �G) 2 RG+1++ ; ag� :=
Pv=dg

v=1 agv; wgv := agv=ag�. Clearly, when G = 1,

equation (24) reduces to equation (22). The new poverty measure depends on parameter

� (governing the complementarity or substitutability across domains) and the di¤erent �g

(governing the complementarity or substitutability between attributes within domain Dg).

As is clear, whenever � = �1 = : : : = �G the �G�domain measure���(Pd) is equivalent to

the �1�domain measure���(Pd) shown in equation (22), so all pairs of deprivations have the

same elasticity of substitution. However, when one departs from that trivial case the levels

of complementarity / substitutability between deprivations in the poverty measure ��(Pd)

vary across domains16 . More speci�cally, we have the following result.
16
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Proposition 3: Consider the multidimensional poverty measure ��(Pd). (i) For any

domain Dg (g 2 f1; : : : ; Gg), two attributes u; v belonging to that domain (i.e: u; v 2 Dg)

are complements whenever �g < minf1; �g: On the other hand, the same two attributes are

substitutes whenever �g > maxf1; �g. (ii) Assume now the two attributes u; v belong to

di¤erent domains Dg; Dh (g; h 2 f1; : : : ; Gg). Then u; v are complements whenever � < 1

and substitutes when � > 1.

Proof of Proposition 3: See the Appendix.

Such �exibility allows having poverty measures with di¤erent pairs of attributes being

complements or substitutes depending on the domain they belong to. In the empirical

section we will illustrate how this possibility can make a di¤erence in our assessments of

multidimensional poverty levels.

4.2 Pro�le decomposability

An attractive characteristic of the Multidimensional Poverty Index suggested by Alkire and

Foster (2011) is its purported ability to assess the contribution of each dimension to the

values of the index. Once the identi�cation step is over, the additive separability of the index

allows decomposing its values according to the percent contribution of its basic constituents,

a property referred to as �dimensional decomposability�. Clearly, this property is motivated

by the desire of facilitating the design of the most e¤ective poverty eradication strategy.

Despite the apparent simplicity and intuitive appeal behind dimensional decomposability,

we contend that the property is re�ective of an identi�cation procedure in which deprivations

across dimensions are freely interchangeable as long as they add up to the corresponding

In this paper we use the standard ALEP de�nition of complementarity / substitutability. That is: when
the cross partial derivative of the individual poverty function is positive (resp. negative), the attributes are
considered complements (resp. substitutes).

31



deprivation score. Because of the way in which it is de�ned, dimensional decomposability

disregards the complex patterns in which dimensions are interwoven to generate the partition

of deprivation pro�les (Xd) into poor and non-poor pro�les (Pd and Rd). In other words, it

does not take into account the possibility that deprivations in some dimensions might have

to be experienced jointly with deprivations in other dimensions if someone is to be identi�ed

as being multidimensionally poor. After performing a dimensional decomposability exercise,

policy makers have incentives to focus on reducing deprivations in the dimension that con-

tributes the most to multidimensional poverty levels �e.g., Vi. However, the reduction of

deprivations in Vi might require entirely di¤erent policies if those deprivations are jointly

experienced with deprivations in Vj, or with deprivations in Vl. Therefore, we suggest com-

plementing dimension decomposability by another decomposability property that is in line

with the identi�cation method suggested in this paper.

The set of deprivation pro�les naturally generates a partition of the population under

study, N , into
��Xd

�� = 2d groups (each individual i is assigned via �w to the corresponding
element in Xd on the basis of her achievement vector yi). For any x 2 Xd let Mx denote

the achievement matrix corresponding to the set of individuals experiencing deprivations

as in x (i.e., Nx). The multidimensional poverty level corresponding to the members of Nx

is written as f(Mx; z). According to the axiom of Subgroup decomposability (see footnote

#15),

f(M ; z) =
X
x2Xd

nx
n
f(Mx; z) (25)

The percent contribution of the members of Nx to overall poverty levels is thus calculated

as

Cx = 100
�nx
n
f(Mx; z)

�
=f(M ; z): (26)
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Clearly,
X
x2Xd

Cx = 100. The exercise of breaking down overall poverty into the set of

contributions fCxgx2Xd is referred to as pro�le decomposability. We contend that pro�le

decomposability conveys a clearer message than its dimension-wise counterpart with respect

to understanding the articulation of multidimensional poverty. Since the di¤erent popula-

tion subgroups in fNxgx2Xd might require pro�le-speci�c anti-poverty strategies (i.e., anti-

poverty strategies speci�cally crafted for them), pro�le decomposability can be particularly

informative for the design of e¢ cient poverty erradication programs.

5. Empirical illustrations

In this section we present two empirical examples to illustrate the di¤erences between the

new identi�cation and aggregation methods suggested in this paper and the ones used in

standard multidimensional poverty measures. The �rst example uses data from the United

States and the second one focuses on 48 countries from the developing world.

5.1 United States

In order to illustrate the usefulness of their multidimensional poverty measures, Alkire and

Foster (2011) presented an empirical example using the 2004 National Health Interview

Survey from the US. In that exercise, the authors used the following four variables to assess

multidimensional poverty levels among adults aged 19 and above: V1 = �Income measured in

poverty line increments and grouped into 15 categories�, V2 = �Years of Schooling�, V3 = �Self-

assessed Health�and V4 = �Health insurance�. The dimension-speci�c deprivation thresholds

were de�ned as follows. A person is deprived in V1 if she lives in a household falling below

the standard income poverty line, in V2 if he lacks a high school diploma, in V3 if she reports

�fair�or �poor�health and in V4 if he lacks health insurance. The population is partitioned

into four groups (Hispanic/Latino, (Non-Hispanic) White, (Non-Hispanic) African American
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/ Black and Others) and the sample size is n =45884.

To identify poor individuals, Alkire and Foster basically use the dual cuto¤ method

assuming equal weights across dimensions (i.e.: a1 = a2 = a3 = a4 = 1=4) and a deprivation

threshold k = 1=2.17 This way, whenever an individual is deprived in at least two dimensions

(any), she will be considered poor. With the notation introduced in this paper, this generates

the set of poor pro�les P 14 = f1100, 1010, 1001, 0110, 0101, 0011, 1110, 1101, 1011, 0111,

1111g.18 However, if one is willing to allow for the role of compensation within domains (see

section 3.1), there are good reasons to argue that in order to be considered poor an individual

has to experience deprivation at least in V1 and V2 or in V3 and V4 simultaneously, therefore

generating the set of poor pro�les P �4 = f1100, 0011, 1110, 1101, 1011, 0111, 1111g. Since

P �4 can never be generated via the classical counting identi�cation method, it is informative

to compare the poverty levels derived from it with the poverty levels reported by Alkire and

Foster (2011) when using P 14 .
19

We start reporting the shares of individuals that are coherently identi�ed as poor or non-

poor according to P 14 and P
�
4 together with the shares of individuals that are misclassi�ed

according to the two criteria across the four racial groups (see Table 1). Since P �4 � P 14 ,

the set of individuals that are coherently identi�ed as poor by the two methods corresponds

to the set of individuals with deprivation pro�les x belonging to P �4 (their percentages are

reported in column A). The individuals that are coherently identi�ed as non-poor by the

two methods must have a deprivation pro�le belonging to f0000, 1000, 0100, 0010, 0001g
17At the end of the exercise, they show alternative results when choosing k 2 f1=4; 1=2; 3=4; 1g:
18To strictly follow the notation introduced in this paper, this set of poor pro�les should be written as
P4;C((1=4;1=4;1=4;1=4);1=2). For the sake of simplicity, we simply write P 14 .
19It would also be possible to perform the same illustrative exercise using the other set of poor pro-
�les that can not be generated via the counting approach mentioned in section 3.1 (i.e: P ��4 =
f1010,1001,0110,0101,1110,1101,1011,0111,1111g: However, since this does not yield particularly interest-
ing insights, we have kept the illustration short using P �4 only.
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(their percentages are reported in column B). The individuals that are identi�ed as poor by

P 14 but as non-poor by P
�
4 are the ones with deprivation pro�les in f1010, 1001, 0110, 0101g

(the respective percentages are reported in column C). As shown in the last row of Table

1, the shares of individuals that are coherently identi�ed as poor and non-poor are 7.1%

and 83.9%, respectively. The share of individuals that are misclassi�ed according to the two

identi�cation methods is 9%, and is particularly high among Hispanics (20%). In Table 1

we also show the values of two multidimensional poverty indices resulting from alternative

identi�cation methods. One of them is the multidimensional headcount ratioH (see equation

(20)) and the other one is the adjusted headcount ratio M0 proposed by Alkire and Foster

(2011) (see equation (21)). In Columns D and E we show the values of H when using P 14

and P �4 as identi�cation methods respectively, while the analogous results corresponding to

M0 are shown in Columns F and G. The values of the headcount index vary substantially

between P 14 and P
�
4 : They more than halve the original levels (since P

�
4 � P 14 , the values of

H are necessarily smaller). A similar pattern is observed when computing the values of M0:

When moving from P 14 to P
�
4 the values of the adjusted heacount ratio more than halve.

We observe no changes between multidimensional poverty rankings when moving from one

identi�cation method to the other. However, the set of people that could potentially be the

target of anti-poverty programs varies substantially across methods.

[[[Table 1]]]

We turn now to the issue of decomposability. According to dimension decomposability,

the values of M0 can be broken down by the contribution of the four variables taken into

account.20 More speci�cally, we write M0 =
P

j Hj=d, where Hj is the share of the

20See Table 2 in Alkire and Foster 2011 for the speci�c results.
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respective population that is both poor (according to the AF identi�cation method using

P 14 ) and deprived in variable j. However, among the people that are both �AF-poor�and

deprived in variable j, there is a subgroup of individuals that are not poor according to

the identi�cation method P �4 . To compute the relative size of this subgroup for the case

where j = 1 (i.e.: in the case of V1 = �Income�) we simply need to compute the following

quantity: (N1010 + N1001)=(N1100 + N1010 + N1001 + N1110 + N1101 + N1011 + N1111). The

respective denominator contains all individuals that are �AF-poor�and deprived in terms

of income while the numerator counts how many of them are considered to be non-poor

according to P �4 . That would be the share of people contributing to H1 that are mistargeted

according to P �4 . In Table 2 we show the percentage of mis-targeted individuals for the four

variables taken into account across the di¤erent racial groups. The presence of mis-targeted

individuals is quite substantial, on many occasions with values above 50%. This suggests

that the alternative methods discussed in this section identify groups of individuals di¤ering

to a great extent.

[[[Table 2]]]

We conclude this empirical illustration with the results of the pro�le decomposability

exercise suggested in section 4.2. In Table 3 we show the multidimensional poverty levels (as

measured with M0; they are reported in the third column) corresponding to each group Nx

for the di¤erent x 2 P �4 and the corresponding contribution to overall poverty (Cx, shown in

the fourth column). The shares of the di¤erent groups Nx are reported in the second column.

The deprivation pro�le experienced by the largest share of individuals is 1110 (that is: those

having health insurance but deprived in all other variables) and the one experienced by the

smallest share of individuals is 1011 (i.e., those having a high school diploma but deprived
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in all other variables). As expected, the groups experiencing more deprivations tend to be

poorer, so their contribution to overall poverty levels is higher. This is the reason why even if

the set of individuals experiencing deprivation in income and education only are four times

more numerous than those individuals deprived in all dimensions (N1100=N = 1:68% and

N1111=N = 0:43%), the contribution of the former to overall poverty levels is barely twice

that of the latter (C1100 = 19:44% vs. C1111 = 8:33%).

[[[Table 3]]]

5.2 Developing World

Since 2010, the UNDP presents the values of the Multidimensional Poverty Index (MPI) on

a yearly basis to rank more than a hundred countries in terms of multidimensional poverty

levels (see Alkire and Santos 2010). The UNDP�s MPI mainly draws from three sources of

data: the Demographic and Health Surveys (DHS), the Multiple Indicators Cluster Survey

and the World Health Survey. In order to avoid the potential comparability problems arising

from the use of alternative sources of data, in this paper we focus our attention on 48 out

of the 50 DHS used in the construction of the 2014 MPI 21 (totaling n=761,909 households,

which are the basic units of analysis). The MPI is a hierarchically structured index of

multidimensional poverty, with ten variables partitioned in three domains: �Health� (H),

�Education�(E) and �Standard of Living�(S). In Table 4 we show the variables included in

21The DHS for Nicaragua 2012 and Tajikistan 2012 were not accessible to the authors of this paper. The
remaining 48 countries included in the dataset and the year/s in which the DHS was taken are: Albania
2008/2009; Armenia 2010; Azerbaijan 2006; Bangladesh 2011; Benin 2006; Bolivia 2008; Burkina Faso
2010; Burundi 2010; Cambodia 2010; Cameroon 2011; Colombia 2010; Congo 2011/2012; Cote d�Ivoire
2011/2012; Dominican Republic 2007; Egypt 2008; Ethiopia 2011; Gabon 2012; Guinea 2005; Guyana
2009; Haiti 2012; Honduras 2011/2012; India 2005/2006; Indonesia 2012; Jordan 2009; Kenya 2008/2009;
Lesotho 2009; Liberia 2007; Madagascar 2008/2009; Malawi 2010; Maldives 2009; Mali 2006; Moldova 2005;
Mozambique 2011; Namibia 2006/2007; Nepal 2011; Niger 2012; Pakistan 2012/2013; Peru 2012; Philippines
2008; Rwanda 2010; Sao Tome and Principe 2008/2009; Senegal 2010/2011; Tanzania 2010; Timor-Leste
2009/2010; Uganda 2011; Ukraine 2007; Zambia 2007 and Zimbabwe 2010/2011.
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each domain. The �Health�and �Education�domains are composed of two variables each:

One referring to adults and the other to children in the corresponding household. The six

variables in the �Standard of Living�domain include several household characteristics. In

Table 4, we also show the conditions that must be met in order to consider a household

deprived in the corresponding variable. Lastly, the table also shows the weight that the AF

method assigns to each variable.

[[[Table 4]]]

In this section we are going to compare how the new identi�cation and aggregation

methods suggested in this paper fare vis-à-vis currently existing measures. To do that,

we will separate our analysis in two parts. In the �rst part, we will compare alternative

identi�cation methods keeping the aggregation method constant. In the second one, we

will �x the identi�cation method and compare alternative aggregation methods (see below).

Before starting, we perform a validation check to assess the quality and soundness of the

48-country dataset created for this section of the paper. More speci�cally, we compare the

o¢ cial UNDP�s 2014 MPI value, restricted to the 48 countries whose MPI values where

estimated using DHS, with the MPI values obtained using the Alkire and Foster (2011) M0

index applied to this dataset. Unsurprisingly, both sets of measures give highly consistent

results. As shown in Figure 3 both measures tend to rank countries in a strongly linear

fashion: The correlation coe¢ cient is as high as 0:94. The di¤erential treatment of missing

values and some slight di¤erences in the de�nition of the Nutrition variable22 explain the

22In the o¢ cial MPI, a household is deprived in the nutrition variable if any adult or child for whom there
is nutritional information is malnourished. In the MPI measure constructed in this paper, the nutritional
information has only been collected for the adult household members.
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di¤erences observed between both measures. These results suggest that the dataset we use

is of reasonable quality.

[[[Figure 3]]]

New identi�cation methods

To decide whether a household should be identi�ed as poor or not, the MPI uses the AF

method with the weights shown in Table 4. The three domains are equally weighted at 1=3,

with a deprivation threshold of k = 1=3. This way, a household experiencing deprivation

in one of the Health variables and in one of the Education variables (each with a weight of

1=6) is identi�ed as poor. Analogously, a household experiencing deprivation in any one of

the Health or Education variables and in any three of the Standard of Living variables is

identi�ed as poor. However, if one has reasons to consider that the lack of deprivation in some

variables within some domain could somehow compensate for the deprivations experienced

in the other variables of that domain, then the AF identi�cation method is not the most

appropriate (for instance: one might argue that the deprivation experienced by parents

might somehow be compensated by the lack of deprivation of the children or vice versa).

If this were the case, one might prefer to de�ne a houshold as being poor whenever the

corresponding deprivation pro�le belongs to the set of poor pro�les P �10 = f1100000000,

0011000000, 0000111111g". Observe that in order to be considered multidimensionally poor

according to P �10, a household must be deprived in all variables of at least one domain. Since

one might argue that requiring a household to be deprived in all six �Standard of Living�

indicators to be considered as poor is too stringent a condition, one could also relax this

assumption and de�ne another set of poor pro�les, Q�10, as follows. A �Q
�
10�poor household�
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must be deprived in two variables in at least one of the domains of �Health�and �Education�

(i.e.: U(Q�10) � f1100000000, 0011000000g) or it must be deprived in at least four of the

six variables comprising the �Standard of Living�domain. Because of the way in which it

is de�ned, Q�10 can be seen as a mixed case between P
�
10 and the counting approach. While

both P �10 and Q
�
10 satisfy the Consistency Condition, neither of them can be generated via

the counting identi�cation method (i.e: P �10; Q
�
10 2 P10nC10, see Theorem 2). Since both

illustrate reasonable criteria to identify poor households, in this section we compare how

they perform vis-à-vis the dual cuto¤method (keeping the same aggregation method for all

of them).

In the �rst three columns of Table 5 we present the country values of Alkire and Fos-

ter�s poverty index M0(Pd) shown in equation (21) under three di¤erent poor identi�cation

functions: (i) The �classical�dual cuto¤ method that weights the three domains of the MPI

equally at 1=3 and uses a deprivation threshold of k = 1=3; (ii) P �10 and (iii) Q
�
10. We de-

note them as M0(P10;C((1=3;1=3;1=3);1=3));M0(P
�
10) and M0(Q

�
10); respectively. As can be seen,

the values of the di¤erent M0 go in the same direction for the three cases: Countries with

low or high poverty levels coincide substantially. The correlation coe¢ cient between the

48 values of M0(P10;C((1=3;1=3;1=3);1=3)) and M0(P
�
10) and the correlation coe¢ cient between

the 48 values of M0(P10;C((1=3;1=3;1=3);1=3)) and M0(Q
�
10) are very high: 0:95 and 0:98; respec-

tively. Since these correlation coe¢ cients implicitly depend on the weights used for each

domain w = (w1; w2; w3) 2 �3 and the deprivation threshold k 2 (0; 1], they are denoted

as rC;P �10((w1; w2; w3); k) and rC;Q�10((w1; w2; w3); k); respectively. Therefore, we can write

rC;P �10((1=3; 1=3; 1=3); 1=3) = 0:95, and rC;Q�10((1=3; 1=3; 1=3); 1=3) = 0:98.

Even if the three measures tend to rank countries in a highly consistent way, it turns

out that the corresponding poor identi�cation functions operate in a distinct manner. In
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Table 5 we show for each country the percentage of households where the AF-method and

P �10 disagree (i.e., we quantify the share of households that are misclassi�ed as �poor� or

�non-poor�according to the P10;C((1=3;1=3;1=3);1=3)-method and P �10). Since these percentages

implicitly depend on the weights that are used for each domain w = (w1; w2; w3) 2 �3

and the deprivation threshold k 2 (0; 1], we denote them as mC;P �10;l((w1; w2; w3); k), where

l indexes the 48 countries taken into account. It turns out that the degree of disagreement

between both identi�cation methods is substantial: Averaging across countries (i.e., comput-

ing mC;P �10((1=3; 1=3; 1=3); 1=3) :=
Pl=48

l=1 mC;P �10;l((1=3; 1=3; 1=3); 1=3)=48), we �nd that 24%

of households are classi�ed inconsistently between the two criteria. In some countries the per-

centage of disagreement is greater than 50%. Repeating the same exercise comparing the AF-

method with Q�10, we obtain a cross-country average of mC;Q�10((1=3; 1=3; 1=3); 1=3) = 13% of

misclassi�ed households. The size of these percentages implies that the potential bene�cia-

ries of poverty alleviation programs can di¤er dramatically when choosing one identi�cation

method or the other.

[[[Table 5]]]

In Table 5 we have compared the performance of P �10 and Q
�
10 with the �o¢ cial�AF-

method that weights the three domains of the MPI equally at 1=3 and uses k = 1=3. In this

context, one might wonder whether the results shown in Table 5 are highly dependent on

the speci�c choice of these parameters or if they are robust to other speci�cations. Since

the dual cuto¤ method does not a priori impose any restrictions on the choice of weights

w or the deprivation threshold k, we complete our comparative analysis allowing these

parameters to take all possible values within their respective domains. In other words, we

compare the performance of P �10 and Q
�
10 with the dual cuto¤method considering all possible
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weighting schemes for the three domains of the MPI23 , and under any deprivation threshold

k 2 (0; 1]. It turns out that, even if the correlation coe¢ cients rC;P �10((w1; w2; w3); k) and

rC;Q�10((w1; w2; w3); k) tend to be very high, they never reach the value of 1 (a consequence

of the fact that neither P �10 nor Q
�
10 belong to C10). The average of rC;P �10((w1; w2; w3); k) and

rC;Q�10((w1; w2; w3); k) across the entire domain �3 � (0; 1] equal 0.91 and 0.89 respectively.

From this analysis, we conclude that the identi�cation methods P �10 and Q
�
10 tend to rank

countries in the same direction as the dual cuto¤ method does.

The fact that M0(P10;C((w1;w2;w3);k));M0(P
�
10) and M0(Q

�
10) tend to rank countries sim-

ilarly does not necessarily imply that the three methods agree when deciding whether a

given household should be considered �poor�or �non-poor�. Since neither P �10 nor Q
�
10 be-

long to C10, it turns out that there is always some degree of disagreement, so all values of

mC;P �10((w1; w2; w3); k) and mC;Q�10((w1; w2; w3); k) are strictly positive. Indeed, the average

value ofmC;P �10((w1; w2; w3); k) andmC;Q�10((w1; w2; w3); k) across the entire domain�3�(0; 1]

equal 27% and 32% respectively (i.e: around one third of the households are misclassi�ed).

From these analyses we can conclude that the level of disagreement between the identi�cation

functions considered here are generally quite substantial, a result with strong implications

for the identi�cation of the potential bene�ciaries of poverty eradication programs.

New aggregation methods

We are now going to compare the performance of the new aggregation methods suggested

in this paper vis-à-vis currently existing approaches in multidimensional poverty measure-

ment. In this context, we are particularly interested in investigating the extent to which

23To simplify matters, we allow all possible weights across domains only (i.e.: not across all 10 indicators).
Once a weight is assigned to each domain, we assume that all indicators within that domain are weighted
equally.
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the new aggregation methods allowing domain-speci�c elasticities of substitution di¤er with

respect to the traditional methods imposing �xed elasticities of substitution across all pairs

of variables. When performing these comparisons, we will use the same identi�cation meth-

ods overall to ensure that the observed changes are solely attributable to the changes in

aggregation methods. More speci�cally, we will compare the values of ��(Pd) vis-à-vis

the values of M0(Pd) for di¤erent values of � = (�; �1; �2; �3) 2 R4++ while keeping �xed

Pd = P10;C((1=3;1=3;1=3);1=3) (which is the set of poor pro�les used in the original de�nition of

UNDP�s MPI �see Table 4) for both cases.

As is clear from equations (21), (22) and (24), the measure M0(Pd) is a particular case

of ��(Pd) that obtains when one chooses � = (1; 1; 1; 1). In this case, the di¤erent pairs of

variables are neither complements nor substitutes (according to Alkire and Foster (2011:485),

M� is �neutral�in that individuals�poverty functions have vanishing cross partial derivatives

for the pairs of variables in which they are deprived). Yet, there might be good reasons to

argue that some pairs of variables should be substitutes (e.g: those within the Standard of

Living domain) and other pairs complements (e.g: those within the Health and Education

domains). According to Proposition 3, one possible way of accomplishing this is by choosing

the vector of parameters �� = (2; 3; 3; 0:5) in ��(Pd) (in this case, since �
� > 1 we are

also assuming complementarity between pairs of variables belonging to di¤erent domains).

The values of this new index of multidimensional poverty for the 48 countries considered

in this section are shown in Table 5. It turns out that the correlation coe¢ cient between

the 48 values of M0(Pd) and those of ���(Pd) is extremely high: 0:99. Since the correlation

coe¢ cient between the 48 values of M0(Pd) and those of ��(Pd) depend on �, it will be

written as r(�) (hence r(2; 3; 3; 0:5) = 0:99).
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Even if M0(Pd) and ���(Pd) tend to rank countries pretty much in the same way, the

extent of multidimensional poverty arising from both measures can be substantially di¤erent.

To illustrate this point, for any � 2 R4++ we de�ne the following indicator:

�(�) =
100

48

l=48X
l=1

����1� ��(Pd)l
M0(Pd)l

���� ; (27)

where l indexes the 48 countries considered in this section. Clearly, �(�) averages the relative

di¤erence (in absolute value) between the values of M0(Pd) and ��(Pd) across the 48 coun-

tries, so it gives an idea of the extent of dissimilarity that exists between both measures.

As is clear, �(�) = 0 whenever the two measures are exactly the same and it is strictly

positive otherwise. For the case at hand, it turns out that �(��) = 36:5%. In words: when

switching from the values ofM0(Pd) to those of ���(Pd), the values of the former change, on

average, a 36.5% from their original level (in the last column of Table 5 we show the values

of 100j1� (��(Pd)=M0(Pd))j for each of the 48 countries considered here).

Since there does not seem to be a standard procedure for determining the extent of

complementarity and substitutability across poverty dimensions, the choice of the parameters

(�; �1; �2; �3) might be somehow arbitrary. While we have chosen �
� for illustrative purposes,

there might be many other reasonable choices as well. For this reason, we will explore the

behavior of �(�) when � can freely move within �, a �reasonably large� subset of R4++.

Given the unbounded nature of R4++, we restict our attention to the bounded case where

� = (0; 3]4, i.e: when � and the �i can not be larger than 3.24 In Figure 4 we plot the

values of �(�) when � 2 (0; 3]4. As can be seen, the extent of multidimensional poverty

can di¤er to a large extent depending on the values of �. By continuity, since �(�) = 0

when � = (1; 1; 1; 1), the values of �(�) approach 0 as � approaches (1; 1; 1; 1). At the other

extreme, for many values of � 2 � that are farther appart from (1; 1; 1; 1), �(�) can take
24Other choices of � are certainly feasible, but the results they o¤er are not particularly insightful.
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values well over 50% (e.g: see some of the regions in the plots of the �rst and last rows

respectively). The average of �(�) over the entire domain � is 28.7%, thus showing that the

alternative aggregation procedures suggested here can generate substantially di¤erent levels

of multidimensional poverty. Interestingly, the average of r(�) across the entire domain

(0; 3]4 is 0.99. Therefore, while ��(Pd) tends to rank countries in the same way as M0(Pd)

does, the values of the former can di¤er to a considerable extent with respect to the latter.

[[[Figure 4]]]

Summing up, we have seen that when considering the alternative identi�cation or aggre-

gation methodologies suggested here, the set of housholds that are identi�ed as poor and the

corresponding multidimensional poverty levels can di¤er to a considerable extent with re-

spect to currently existing approaches. Presumably, such di¤erences would be even larger if

we considered a multidimensional poverty measure incorporating our new identi�cation and

aggregation methods (that is: something like ��(Qd), with Qd 2 PdnCd and � 6= (1; 1; 1; 1)),

an issue we have not investigated in this paper.

6. Discussion and concluding remarks

The success of any poverty eradication program crucially depends on its ability to identify

who is poor and who is not. In this paper, we have shown that the state-of-the-art method-

ology that is pervasively used to identify the poor in multidimensional contexts, the dual

cuto¤ or AF method (Alkire and Foster 2011), is a basic method that precludes many of

the subtle and complex considerations that should be incorporated in such consequential

decisions. One of the main �ndings of this work is that the simplicity of the counting ap-

proach that underlies the dual cuto¤ method �an algorithm-like approach that counts the
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number of deprivations experienced by individuals to decide about their poverty status �

comes at a high price because it precludes the possibility of generating �poor-identi�cation

rules�that are sensitive to potential interactions between the sets of dimensions taken into

account. Depending on the nature of the variables considered, it could be the case that one

might want the lack of deprivation in some dimension X to compensate for the deprivation

experienced in some dimension Y but not in Z. If one is willing to allow for the possibility of

such compensation phenomena within or between certain domains, there is reason to make

room for the more sophisticated identi�cation and aggregation methods proposed in this pa-

per. We contend that such patterns of dimension-speci�c interactions naturally arise when

multidimensional indices are hierarchically structured in exhaustive and mutually exclusive

domains, as is increasingly the case in all areas of the social sciences.

To overcome the limitations of the dual cuto¤method, we have suggested a much broader

and less stringent identi�cation method based on the so-called Consistency Condition (which

contains the former approach as a particular case). The conditions imposed under CC are

�exible enough to allow capturing the intertwined relationships between groups of variables

one might observe in diverse empirical applications. In addition, the measurement frame-

work suggested in this paper allows introducing alternative levels of complementarity or

substitutability between pairs of variables depending on the domain they belong to when

assessing poverty levels�an improvement with respect to the current state of the literature,

which assumes the same degree of complementarity or substitutability across dimensions.

An attractive characteristic of the dual cuto¤ method is its purported ability to explain

the contribution of each dimension to the overall values of the poverty index (a property

known as �dimensional decomposability�). However, this property implicitly ignores the in-

teraction patterns existing between dimensions (that is, the fact that deprivations in some
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dimensions must be experienced jointly with deprivations in other dimensions if someone

is to be identi�ed as being multidimensionally poor). Decision-makers guided by �dimen-

sional decomposability�have incentives to allocate resources to reduce deprivations in the

dimension contributing the most to overall poverty levels (say, X), irrespective of the huge

di¤erence it may make to experience deprivations in X jointly with deprivations in Y rather

than experiencing deprivations in X and Z. We suggest complementing �dimensional decom-

posability�with �pro�le decomposability�, another property that is naturally derived from

the CC identi�cation methods suggested in this paper and which conveys a clearer mes-

sage to understand the articulation of multidimensional poverty. More speci�cally, �pro�le

decomposability�explicitly accounts for patterns of joint deprivation, so it is particularly

useful for the design of �pro�le-speci�c anti-poverty strategies�, i.e: anti-poverty strategies

speci�cally crafted for a group experiencing a certain pattern of multiple deprivations.

The ideas introduced in this paper allow modelling in previously unexplored ways crucial

aspects related to the identi�cation and aggregation of the multidimensionally poor. Yet,

when it comes to empirically implement them one must face di¢ cult questions forcing ana-

lysts and policy makers to re�ect upon the meaning of being multiply deprived in di¤erent

contexts (e.g: ¿how to choose the sets of poor pro�les Pd?, ¿How to determine the degree of

complementarity / substitutability across and within domains?). These questions are highly

context-speci�c, so each serious empirical study should attempt to �nd its own answers when

implementing its multidimensional poverty measures. In the empirical section of the paper

we investigate the performance of the new identi�cation and aggregation methodologies in

two separate illustrative examples. The �rst uses data from the US in 2004, and the second

uses data from 48 Demographic and Health Surveys collected around 2010. In both cases

we reach similar conclusions. It turns out that the dual cuto¤ method and the alterna-
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tive CC methods that can not be generated via the AF methodology tend to consistently

rank the populations compared in terms of poverty levels. In other words: the populations

experiencing high or low poverty levels using both identi�cation methods coincide substan-

tially. Even if the relative position of the populations that are being compared does not

change substantially, what does substantially change is the corresponding level of poverty

observed under alternative identi�cation methods. The percentage of households that are

inconsistenly identi�ed as �poor�according to both criteria is considerably high (for the 48

developing countries example, it is around 30%). In addition, the extent of multidimen-

sional poverty can be substantially di¤erent when considering the alternative aggregation

methods suggested here. We reiterate that these di¤erences can have enormous implications

for the identi�cation of the potential bene�ciaries of poverty eradication programs and the

assessment of the extent of their poverty levels.

The ideas introduced in this paper can be extended in several interesting directions,

among which we highight the following two. (i) Enlarge the hierarchical structure of the

multidimensional poverty indices we are dealing with to include more �nely-grained par-

titions beyond the one discussed here (for instance: each domain might be partitioned in

several sub-domains, and so on). Clearly, the identi�cation and aggregation ideas introduced

here can be straightforwardly applied to those more complicated structures as well. (ii) Ap-

ply the domain-�rst two-stage aggregation method in the space of achievements (rather than

deprivations as in (23)) to generate multidimensional indices of well-being. This way, as-

suming the di¤erent well-being indicators are partitioned in G � 1 domains, the following

class of �multiple domain well-being indices�can be de�ned

W (Y ) :=
1

n

nX
i=1

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(yigv)
�g

#�=�g1A1=�

; (28)
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where yigv denotes individual i achievement level in the variable v that belongs to domain

g. The application of this approach can be very fruitful in multidimensional welfare analysis

as it allows introducing domain-speci�c elasticities of substitution and improve many of

the limitations of currently existing �single-domain�composite indices of well-being (see, for

instance, Ravallion (2012) in his criticism against the Human Development Index).

To the extent that the success of micro level anti-poverty programs depends on targeting

the right individuals and properly assessing their deprivation levels, and that current inter-

national cooperation, development, and aid programs are guided by the macro level results

derived from the corresponding measures, the issues analyzed in this paper have practical

and �nancial implications for the design of e¤ective poverty eradication strategies. Having

recently reached the Millennium Development Goals (MDGs) target year, many scholars

and policy-makers are currently engaged in an intense debate about what kind of headline

poverty indicator should be the most appropriate to guide poverty eradication strategies in

the post-2015 global development agenda. Like its predecessor, the �rst of the so-called Sus-

tainable Development Goals (the SDGs) aims to �End Poverty in all its forms everywhere�.

This is a good moment to take stock and re�ect before uncritically extending use of the

dual cuto¤ method. Other procedures, such as the ones suggested here, exist to identify

recipients and assess their poverty levels under one of the greatest international endeavours

of our time to eradicate poverty.

7. Appendix

Proof of Lemma 1: Consider any pair x;y 2 Xm of distinct elements in U(Z). Assume

�(x;y) = ;. If this were the case, it would mean that y would vector dominate x, which

is a contradiction since both x;y 2 U(Z). Therefore, one must have that �(x;y) 6= ;.
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Analogously, one must also have that �(y;x) 6= ;.

Q.E.D.

Proof of Proposition 1: We start with the �if�part of the proof. Assume Pd � Xd

satis�es the CC condition. We have to prove that (U (Pd))
" = Pd.

1) We start proving (U (Pd))
" � Pd. Take x 2 (U (Pd))

". Then, there exists some

z 2 U(Pd) such that z � x (if x 2 U(Pd), then z = x). Since U (Pd) � Pd, z 2 Pd. In

addition, since x 2 z" and Pd 2 Pd, one can conclude that x 2 Pd.

2) We now prove (U (Pd))
" � Pd. Take x 2 Pd. If it turns out that x 2 U(Pd) then we

are done. If x =2 U(Pd) then there must exist some y 2 Pdnfxg such that y � x. Now,

if y 2 U(Pd) � Pd then x 2 y". Since Pd 2 Pd, one can conclude that x 2 (U (Pd))".

Otherwise, if y =2 U(Pd) then we can proceed iteratively until reaching an element belonging

to U(Pd). That is: since Xd is �nite (
��Xd

�� = 2d) there must exist a �nite sequence of vector
dominations zi � zi+1 from some element z1 2 U(Pd) up to x (i.e.: z1 � z2 : : : � zn � x),

so that x 2 z1". Since Pd 2 Pd, one can conclude that x 2 (U (Pd))".

This proves the �if�part of the proposition. The �only if�part of the proof goes as follows.

Assume Pd is a subset of Xd such that (U (Pd))
" = Pd. We have to prove that Pd 2 Pd. Take

any x 2 Pd. Since (U (Pd))" = Pd we can say that x 2 z" for some z 2 U(Pd). Consider

now any y 2 x". By the transitivity of � one has that y 2 z". Since (U (Pd))" = Pd, we can

conclude that y 2 Pd.

Q.E.D.

Proof of Theorem 1: We start showing that when d 2 f2; 3g, Cd = Pd. By de�nition,

every element in Cd automatically belongs to Pd. Therefore, we only need to show that
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for every element Pd in Pd there exists some weighting scheme a 2 �d and a deprivation

threshold k such that Pd;C(a;k) = Pd. In Tables A1 and A2 we show the list of all possible

elements of Pd and an example of the corresponding weights and deprivation thresholds such

that Pd;C(a;k) = Pd for the cases d = 2 and d = 3 respectively (the weights and deprivation

thresholds are not unique, but it su¢ ces to show at least one solution).

Table A1 for d = 2

P2 2 P2 a k

{10,11} (3=4; 1=4) 3=4

{01,11} (1=4; 3=4) 3=4

{11} (1=2; 1=2) 3=4

Table A2 for d = 3
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P3 2 P3 a k

{100,110,101,111} (2=3; 1=6; 1=6) 2=3

{010,110,011,111} (1=6; 2=3; 1=6) 2=3

{001,101,011,111 (1=6; 1=6; 2=3) 2=3

{100,010,110,101,011,111} (2=5; 2=5; 1=5) 2=5

{100,001,110,101,011,111} (2=5; 1=5; 2=5) 2=5

{010,001,110,101,011,111} (1=5; 2=5; 2=5) 2=5

{100,010,001,110,101,011,111} (1=3; 1=3; 1=3) 1=3

{100,011,110,101,111} (1=2; 1=4; 1=4) 1=2

{010,101,110,011,111} (1=4; 1=2; 1=4) 1=2

{001,110,101,011,111} (1=4; 1=4; 1=2) 1=2

{110,111} (2=5; 2=5; 1=5) 4=5

{101,111} (2=5; 1=5; 2=5) 4=5

{011,111} (1=5; 2=5; 2=5) 4=5

{110,101,111} (1=2; 1=4; 1=4) 3=4

{110,011,111} (1=4; 1=2; 1=4) 3=4

{101,011,111} (1=4; 1=4; 1=2) 3=4

{111} (1=3; 1=3; 1=3) 3=4

This proves that C2 = P2 and C3 = P3. Now, let d � 4: We will prove that Cd � Pd:

Consider a set of poor pro�les P �d 2 Pd such that U(P �d ) = f��1d (D1); : : : ; �
�1
d (DG)g, with

(D1; : : : ; DG) 2 �D;G for some 2 � G � bjDj=2c and jDgj = dg � 28g 2 f1; : : : ; Gg (recall

that for any natural number m 2 N, �m : Xm ! 2f1;:::;mg is de�ned as �m(x) = fi 2

f1; : : : ;mgjxi = 1g for all x = (x1; : : : ; xm) 2 Xm). We will denote the elements of the

weighting vector a as agv, where g 2 f1; : : : ; Gg indexes the member of the partition Dg to
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which the weight belongs and v 2 f1; : : : ; dgg indexes the members within domain Dg. Since

(D1; : : : ; DG) is a partition of the set of dimensions D, all the elements of a can be written

as agv for some g and some v. Clearly,
g=GX
g=1

v=dgX
v=1

agv = 1. Without loss of generality, we will

assume that within each domain Dg the weights are sorted in a non-ascending order, i.e.:

agv � agv+1 for all g 2 f1; : : : ; Gg and all v 2 f1; : : : ; dg � 1g.

We need to show that there does not exist any weighting scheme a 2 �d and deprivation

threshold k 2 (0; 1] such that Pd;C(a;k) = P �d . For that purpose, we will assume the contrary

to arrive at a contradiction. If we assume that there exists some a 2 �d and k 2 (0; 1] such

that Pd;C(a;k) = P �d , then one must have

v=dgX
v=1

agv � k (A1)

for all g 2 f1; : : : ; Gg. By de�nition, if an individual is deprived in all but one dimensions

within each domain, s/he should not be considered as being poor according to P �d . Therefore,

one must have that
g=GX
g=1

v=dg�1X
v=1

agv < k: (A2)

According to (A1), one can say that

v=dg�1X
v=1

agv � k � agdg (A3)

for all g 2 f1; : : : ; Gg. Plugging (A3) into (A2) G times (one per group) one has that

Gk �
g=GX
g=1

agdg < k; (A4)

which can be rewritten as

(G� 1)k <
g=GX
g=1

agdg : (A5)
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Since a 2 �d and because of (A2), one has that

g=GX
g=1

v=dg�1X
v=1

agv = 1�
g=GX
g=1

agdg < k: (A6)

Inserting (A6) into (A5) one has that

(G� 1)
 
1�

g=GX
g=1

agdg

!
< (G� 1)k <

g=GX
g=1

agdg : (A7)

Comparing the extreme ends in (A7) and manipulating algebraically one deduces that

G� 1
G

<

g=GX
g=1

agdg (A8)

must hold. Since the weights are written in a non-ascending order, using (A8) we obtain

1 � 2
�
G� 1
G

�
<

g=GX
g=1

(agdg + agdg�1) � 1 (A9)

which is a contradiction. Therefore, we must conclude that it is not possible to �nd a

weighting scheme a 2 �d and a deprivation threshold k 2 (0; 1] such that Pd;C(a;k) = P �d (i.e:

P �d 2 PdnCd).

Q.E.D.

Proof of Proposition 2: Recall that, given the partition ofD inG domains (D1; : : : ; DG) 2

�D;G, we can rewrite without loss of generality any deprivation pro�le x = (x1; : : : ; xd) 2 Xd

as (x1; : : : ;xg; : : : ;xG) := (x11; : : : ; x1d1 ; : : : ; xg1; : : : ; xgdg ; : : : ; xG1; : : : ; xGdG). That is: any

dimension j 2 D can be uniquely re-labeled using two indices: g 2 f1; : : : ; Gg (to index the

domain it belongs to) and v 2 f1; : : : ; dgg (indexing the variables within domain Dg).

Since U(P bG) and the U(P
w;g
dg
) are singletons 8g 2 f1; : : : ; Gg, we will write U(P bG) = u =

(u1; : : : ; uG) and U(P
w;g
dg
) = xg = (xg1; : : : ; xgdg) for some u 2 XG;xg 2 Xdg . When this

happens, we can partition the set of dimensions D in two groups A and B. In A, we have the
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dimensions j 2 D indexed by g 2 �G(u) and v 2 � dg(xg) while in B we have the remaining

ones. The variables in A are the ones which are essential for assessing multidimensional

poverty (i.e: the ones identi�ed by the 1s in u and the xg) and those in B are subsidiary to

the former. Let n1 := jAj; n2 := jBj, which are assumed to be �xed throughout the proof.

Clearly, n1 + n2 = d.

We are now going to prove that there exists some a 2 �d and some k 2 (0; 1] such that

Pd;C(a;k) coincides with the set of poor pro�les generated by the di¤erent P
w;g
dg

and P bG. For

simplicity, we attach the same weight (a1) to all variables included in A, and the same weight

a2 to the remaining variables. According to the counting approach, it is enough to show

that there exist some a1; a2 2 [0; 1] and some k 2 (0; 1] such that:

n1a1 � k (A10)

(n1 � 1)a1 + n2a2 < k (A11)

n1a1 + n2a2 = 1 (A12)

Condition (A10) states that when an individual is deprived in all dimensions included in

A, then he is multidimensionally poor. Condition (A11) states that when an individual is

not deprived in all dimensions included in A, then she is not multidimensionally poor (even

if she is deprived in all variables included in B). Condition (A12) is simply a normalization

restriction stating that the sum of the weights attached to the di¤erent variables must add

up to 1. If these three conditions are satis�ed, we will have expressed the sets of poor pro�les

generated by the di¤erent Pw;gdg
and P bG via the counting approach.

According to (A12), a2 can be rewritten as (1 � n1a1)=n2. Plugging this expression in

(A11) and after basic algebraic manipulation one obtains

1� a1 < k (A13)
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Putting together (A10) and (A13) one has that 1� a1 < k � n1a1, which implies

a1 > 1=(1 + n1) (A14)

One implication of (A12) is that

a1 � 1=n1 (A15)

Imposing (A14) and (A15), one has that 1=(1 + n1) < a1 � 1=n1. These two inequalities

are clearly satis�ed if one chooses the following value for a1 :

a�1 := (1=(1 + n1) + 1=n1) =2 = (2n1 + 1)=(2n1(n1 + 1)) (A16)

Imposing (A13) one has that 1 � a�1 < k � 1. Analogously, these two inequalities are

satis�ed choosing the following value for k:

k� := ((1� a�1) + 1) =2 = (4n21 + 2n1 � 1)=(4n1(n1 + 1)) (A17)

Finally, imposing (A12) one has that

a�2 := (1� n1a�1)=n2 (A18)

Since the values a�1; a
�
2; k

� satisfy the conditions (A10), (A11) and (A12), we have been

able to �nd a weighting scheme a and a deprivation score threshold k generating the same

set of poor pro�les as the one generated by the di¤erent Pw;gdg
and P bG, so we are done.

Q.E.D.

Proof of Theorem 2: To prove the two parts of the theorem ((i) and (ii)) we will follow

the same strategy: we start assuming that there is a weighting scheme a and a deprivation

score threshold k such that Pd;C(a;k) coincides with the set of poor pro�les generated by the

di¤erent Pw;gdg
and P bG to arrive at a contradiction. As before, given the partition of D in G
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domains (D1; : : : ; DG) 2 �D;G, we will denote the elements of the weighting vector a as agv,

where g 2 f1; : : : ; Gg indexes the member of the partition Dg to which the weight belongs

and v 2 f1; : : : ; dgg indexes the members within domain Dg. Again, we can assume without

loss of generality that within each domain Dg the weights are sorted in a non-ascending

order, i.e.: agv � agv+1 for all g 2 f1; : : : ; Gg and all v 2 f1; : : : ; dg � 1g.

Let�s start with the set of conditions stated in (i) and let p = (p1; : : : ; pG);q = (q1; : : : ; qG) 2

U(P bG) (p 6= q) be the two elements referred to therein. On the basis of these two vectors,

we will now consider the following partition of the domains f1; : : : ; Gg into four groups:

H1; H2; H3 and H4: In H1, we have the domains g 2 f1; : : : ; Gg in which pg = 1 and qg = 0.

H2 contains the domains in which pg = 0 and qg = 1. Lastly, H3 and H4 contain the domains

in which pg = 1; qg = 1 and pg = 0; qg = 0 respectively. Since p;q 2 U(P bG), H1 and H2

must be non-empty (see Lemma 1).

For each domain Dg we consider an element xg 2 U(Pw;gdg
) with mg ones and dg � mg

zeroes. Without loss of generality, we assume that the mg ones are the �rst elements of xg,

with the last dg�mg positions being zeroes. By the conditions stated in (i), there must exist

at least one domain g1 2 H1 with mg1 � 2 and at least one domain g2 2 H2 with mg2 � 2.

If we assume that there exists some a 2 �d and k 2 (0; 1] such that Pd;C(a;k) corresponds to

the set of poor pro�les generated by the di¤erent Pw;gdg
and P bG, then the following conditions

must hold:

ag11+ag12+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=1

agv+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=2

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv � k

(A19)

ag21+ag22+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=1

agv+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=2

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv � k

(A20)
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Equation (A19) states the condition that must be satis�ed by the weights vector a and

the deprivation score threshold k if one wants an individual that is deprived in the dimensions

indexed by p and the di¤erent xg to be considered as multidimensionally poor. Therefore,

such individual must be deprived in all the domains included in H1 and H3 but non-deprived

in those included in H2 and H4. Analogously, equation (A20) does the same for the dimen-

sions indexed by q and the di¤erent xg. In that case, individuals are deprived in all the

domains included in H2 and H3 but non-deprived in those included in H1 and H4.

So far, we have presented the conditions to identify those who are multidimensionally

poor: let us now impose conditions to identify those who are not. Consider the vector

p0 = (p01; : : : ; p
0
G) de�ned as follows: p

0
g1
= 0 and p0g = pg for all domains g 6= g1. Since,

by de�nition pg1 = 1, and p 2 U(P bG), it turns out that p0 2 RbG. Therefore, the following

inequalities must hold:

ag11+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=1

agv+ag21+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=2

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A21)

ag11+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=1

agv+ag22+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=2

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A22)

ag12+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=1

agv+ag21+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=2

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A23)

ag12+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=1

agv+ag22+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=2

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A24)

Analogously, we can also construct the vector q0 = (q01; : : : ; q
0
G) de�ned as follows: q

0
g2
= 0

and q0g = qg for all domains g 6= g2. Again, since qg1 = 1, and q 2 U(P bG), it turns out that
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q0 2 RbG. Therefore, the following inequalities must hold:

ag11+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=2

agv+ag21+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=1

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A25)

ag11+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=2

agv+ag22+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=1

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A26)

ag12+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=2

agv+ag21+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=1

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A27)

ag12+

v=mg1X
v=3

ag1v+
X
g2H1
g 6=g1

v=mgX
v=2

agv+ag22+

v=mg2X
v=3

ag2v+
X
g2H2
g 6=g2

v=mgX
v=1

agv+
X
g2H3

v=mgX
v=1

agv+
X
g2H4

v=mgX
v=2

agv < k

(A28)

If one de�nes

k0 := k�

0BB@v=mg1X
v=3

ag1v +

v=mg2X
v=3

ag2v +
X
g2H1
g 6=g1

v=mgX
v=1

agv +
X
g2H2
g 6=g2

v=mgX
v=2

agv +
X
g2H3

v=mgX
v=1

agv +
X
g2H4

v=mgX
v=2

agv

1CCA
(A29)

k00 := k�

0BB@v=mg1X
v=3

ag1v +

v=mg2X
v=3

ag2v +
X
g2H1
g 6=g1

v=mgX
v=2

agv +
X
g2H2
g 6=g2

v=mgX
v=1

agv +
X
g2H3

v=mgX
v=1

agv +
X
g2H4

v=mgX
v=2

agv

1CCA
(A30)

the inequalities (A19)-(A24) can be rewritten as8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ag11 + ag12 � k0

ag21 + ag22 � k00

ag11 + ag21 < k
0

ag11 + ag22 < k
0

ag12 + ag21 < k
0

ag12 + ag22 < k
0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(A31)
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Analogously, inequalities (A19), (A20), (A25)-(A28) can be rewritten as8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ag11 + ag12 � k0

ag21 + ag22 � k00

ag11 + ag21 < k
00

ag11 + ag22 < k
00

ag12 + ag21 < k
00

ag12 + ag22 < k
00

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(A32)

When comparing k0 and k00, one must either have (a) k0 � k00 or (b) k0 � k00. Assume

that k0 � k00. When this happens, the inequalities system (A31) can be rewritten as8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ag11 + ag12 � k0

ag21 + ag22 � k0

ag11 + ag21 < k
0

ag11 + ag22 < k
0

ag12 + ag21 < k
0

ag12 + ag22 < k
0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(A33)

It is trivial to show that the inequalities system shown in (A33) does not have feasible

solutions. In the �rst inequality of the system, either ag11 or ag12 must be greater or equal

than k0=2. The same goes for ag21; ag22 in the second inequality of the system: at least one of

them must be greater or equal than k0=2. Picking the largest elements between ag11; ag12 and

ag21; ag22 and adding them up results in a number that is greater or equal than k0, therefore

contradicting at least one of the four last inequalities of the system. In case (b) (k0 � k00),

the same reasoning applies for the inequalities system shown in (A32). We have reached

the contradiction we were looking for, so the classical counting approach can not generate

the same set of poor pro�les as the ones generated by the generalized counting approach as
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described in (i).

Let us now consider case (ii). Without loss of generality, let us assume that the two

domains g1; g2 2 �G(xG) for which
���U(Pw;g1dg1

)
��� � 2 and ���U(Pw;g2dg2

)
��� � 2 are g1 = 1 and g2 = 2.

Let s = (s1; : : : ; sd1); t = (t1; : : : ; td1) 2 U(P
w;1
d1
) (s 6= t) be two of the elements belonging to

U(Pw;1d1
). On the basis of these two vectors, we will now consider the following partition of

f1; : : : ; d1g into four groups: H1
1 ; H

1
2 ; H

1
3 andH

1
4 : InH

1
1 , we have the variables v 2 f1; : : : ; d1g

in which sv = 1 and tv = 0. H1
2 contains the domains in which sv = 0 and tv = 1. Lastly,

H1
3 and H

1
4 contain the domains in which sv = 1; tv = 1 and sv = 0; tv = 0 respectively.

Since s; t 2 U(Pw;1d1
), H1

1 and H
1
2 must be non-empty (see Lemma 1). We can now repeat

the same for U(Pw;2d2
). Let s0 = (s01; : : : ; s

0
d1
); t0 = (t01; : : : ; t

0
d1
) 2 U(Pw;2d2

) (s0 6= t0) be two of

its members. Again, this leads to the partition of f1; : : : ; d2g into four groups: H2
1 ; H

2
2 ; H

2
3

and H2
4 : Now, in H

2
1 , we have the variables v 2 f1; : : : ; d2g in which s0v = 1 and t0v = 0. H2

2

contains the domains in which s0v = 0 and t
0
v = 1. Lastly, H

2
3 and H

2
4 contain the domains

in which s0v = 1; t
0
v = 1 and s

0
v = 0; t

0
v = 0 respectively. Since s

0; t0 2 U(Pw;2d2
), H2

1 and H
2
2

must be non-empty.

For the other domains Dg besides D1 and D2 (i.e: g 2 f3; : : : ; Gg), we consider an

element yg = (yg1; : : : ; ygdg) 2 U(P
w;g
dg
). If we assume that there exists some a 2 �d and

k 2 (0; 1] such that Pd;C(a;k) corresponds to the set of poor pro�les generated by the conditions

presented in (ii), then the following conditions must hold:X
v2H1

1

a1v +
X
v2H1

3

a1v +
X
v2H2

1

a2v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv � k (A34)

X
v2H1

1

a1v +
X
v2H1

3

a1v +
X
v2H2

2

a2v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv � k (A35)

X
v2H1

2

a1v +
X
v2H1

3

a1v +
X
v2H2

1

a2v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv � k (A36)
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X
v2H1

2

a1v +
X
v2H1

3

a1v +
X
v2H2

2

a2v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv � k (A37)

Inequality (A34) states the condition that must be satis�ed by the weights vector a and

the deprivation score threshold k if one wants an individual that is deprived in the variables

included in H1
1 and H

1
3 for domain D1 and in the variables included in H2

1 and H
2
3 for domain

D2 (plus the corresponding deprivations in the other domains) to be considered as multidi-

mensionally poor. Equations (A35),(A36) and (A37) do the same for other combinations of

deprivations within domains D1 and D2. Consider now the following G�dimensional binary

vectors: u = (1 0 1 : : : 1), u0 = (0 1 1 : : : 1): Since u;u0 2 RbG, the following inequalities must

hold: X
v2H1

1

a1v +
X
v2H1

2

a1v +
X
v2H1

3

a1v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv < k (A38)

X
v2H1

3

a1v +
X
v2H2

1

a2v +
X
v2H2

2

a2v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv < k (A39)

Inequality (A38) imposes that when an individual is only deprived in the variables in-

cluded in H2
3 for domain D2, the she should not be considered as multidimensionally poor.

Analogously, inequality (A39) imposes that those individuals that are only deprived in the

variables included in H1
3 for domain D1 should be neither considered as being multidimen-

sionally poor. De�ning

k0 := k �

0@X
v2H1

3

a1v +
X
v2H2

3

a2v +
X

g2�G(xG)

X
v2�dg (yg)

agv

1A (A40)
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the inequalities (A34)-(A39) ca be rewritten as8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

A11 + A21 � k0

A11 + A22 � k0

A12 + A21 � k0

A12 + A22 � k0

A11 + A12 < k
0

A21 + A22 < k
0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(A41)

where A11 :=
X
v2H1

1

a1v, A12 :=
X
v2H1

2

a1v, A21 :=
X
v2H2

1

a2v, A22 :=
X
v2H2

2

a2v. Again, it it trivial

to prove that the inequalities system shown in (A41) does not have feasible solutions. In the

second to last inequality of the system, either A11 or A12 must be smaller than k0=2. The

same goes for A21; A22 in the last inequality of the system: at least one of them must be

smaller than k0=2. Picking the smallest elements between A11; A12 and A21; A22 and adding

them up results in a number that is smaller than k0, therefore contradicting at least one of

the four �rst inequalities of the system. We have reached the contradiction we were looking

for, so the classical counting approach can not generate the same set of poor pro�les as the

ones generated by the generalized counting approach as described in (ii). This concludes the

proof of the theorem.

Q.E.D.

Proof of Corollary 1: This corollary is a quasi-immediate consequence of Theorem 2.

We simply need to show that when conditions (i) and (ii) in Corollary 1 are satis�ed, then

the corresponding conditions (i) and (ii) in Theorem 2 are satis�ed as well, so the result

applies automatically.

Condition (i): In the generalized counting approach characterized by the thresholds
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vector (m1; : : : ;mG;M), the elements of U(P bG) are all possibleG�dimensional binary vectors

withM ones andG�M zeroes. Therefore, wheneverM < G andG � 2, U(P bG)must at least

have two elements, so the �rst assumption is satis�ed. Since there are at least two domains

g1; g2 2 f1; : : : ; Gg including elements of size greater than one (mg1 � 2 and mg2 � 2), the

second assumption is satis�ed as well, so the set of conditions (i) established in Theorem 2

applies.

Condition (ii): When M = G, one clearly has that P bG = f(1 : : : 1)g, so the �rst as-

sumption in Theorem 2 part (ii) is satis�ed. Since there are at least two domains g1; g2 2

f1; : : : ; Gg with mg1 < dg1 ;mg2 < dg2 and one has that dg1 � 2; dg2 � 2, then one must

necessarily have that
���U(Pw;g1dg1

)
��� � 2;

���U(Pw;g2dg2
)
��� � 2. Therefore, the set of conditions (ii)

established in Theorem 2 applies as well, so we are done.

Q.E.D.

Proof of Proposition 3: Let

�� :=

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(

c
gv)

�g

#�=�g1A1=�

(A42)

be the individual level poverty function corresponding to (24). Therefore, one has that

@��
@
cgv

=

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(

c
gv)

�g

#�=�g1A
1
�
�1 "

dgX
v=1

wgv(

c
gv)

�g

# �
�g
�1

wgv(

c
gv)

�g�1 (A43)

After several algebraic manipulations it is easy to show that

@2��
@
cgv@


c
gu

�

24(1� �) dgX
v=1

wgv(

c
gv)

�g

!�=�g
+ (� � �g)

0@g=GX
g=1

"
dgX
v=1

wgv(

c
gv)

�g

#�=�g1A35 (A44)

The last expression can be rearranged and written as follows:

@2��
@
cgv@


c
gu

�

24(1� �g) dgX
v=1

wgv(

c
gv)

�g

!�=�g
+ (� � �g)

0@ h=GX
h=1;h 6=g

"
dgX
v=1

whv(

c
hv)

�h

#�=�h1A35
(A45)
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Therefore, one can basically say that

@2��
@
cgv@


c
gu

� A(1� �g) +B(� � �g) (A46)

for some real constants A;B > 0. Hence, whenever �g < minf1; �g, (@2��) =
�
@
cgv@


c
gu

�
> 0,

so the attributes u; v belonging to the same domain are complements. On the other hand,

whenever �g > maxf1; �g, (@2��) =
�
@
cgv@


c
gu

�
< 0, so the attributes u; v belonging to the

same domain are substitutes. This proves part (i). For part (ii), we need to compute

(@2��) =
�
@
cgv@


c
hu

�
. After algebraic manipulations it can be shown that

@2��
@
cgv@


c
hu

� (1� �)

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(

c
gv)

�g

#�=�g1A
1
�
�2 "

dhX
u=1

whu(

c
hu)

�g

# �
�h

whu(

c
hu)

�h�1

(A47)

From the previous equation we can say that

@2��
@
cgv@


c
hu

� C(1� �) (A48)

for some real constant C > 0. Therefore, whenever � < 1, (@2��) =
�
@
cgv@


c
hu

�
> 0, so the

attributes u; v belonging to di¤erent domains are complements. Analogously, when � > 1,

(@2��) =
�
@
cgv@


c
hu

�
< 0, so the attributes u; v belonging to di¤erent domains are substitutes.

This proves part (ii).

Q.E.D.
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Figures 

 

Figure 1a (top), 1b (bottom). Two examples of sets of poor profiles for the partially ordered set 

(X4,≼). The shaded circles in the top and bottom panels are the members of 𝑃4
1 and 𝑃4

2 

respectively.  



 

Figure 2a (top) ,2b (bottom). Two examples of sets of poor profiles for the partially ordered set 

(X4,≼). The shaded circles in the top and bottom panels are the members of 𝑃4
∗ and 𝑃4

∗∗ 

respectively.  



 
Figure 3. Comparison of UNDP’s official values of the MPI (horizontal axis) with the 

multidimensional poverty values M0 estimated in this paper (vertical axis). Country labels 

follow the ISO-3166 coding scheme. The solid line corresponds to the least squares best linear 

fit. Source: Author’s calculations using UNDP and DHS data. 
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 Figure 4. Values and level contours of the distance function δ(θ) when θ =(θ, θ1, θ2, θ3)∈(0,3]
4
. 

In each square, the horizontal and vertical axes show the values of θ1 and θ2 respectively. 

Source: Author’s calculations using DHS data. 

 

Tables 

 

 

(A) (B) (C) (D) (E) (F) (G) 

Group PP RR RP 𝐻(𝑃4
1) 𝐻(𝑃4

∗) 𝑀0(𝑃4
1) 𝑀0(𝑃4

∗) 

Hispanic 17.5% 62.4% 20.1% 0.345 0.143 0.202 0.097 

Non-his White 3.4% 91.2% 5.3% 0.084 0.031 0.047 0.02 

Non-his Black 10.3% 79.2% 10.4% 0.201 0.093 0.117 0.06 

Others 4.6% 88.9% 6.6% 0.107 0.044 0.058 0.027 

Total 7.1% 83.9% 9.0% 0.128 0.052 0.073 0.033 

Table 1. Comparison of 𝑃4
1-poverty and 𝑃4

∗-poverty for different ethnic/racial groups in the US. 

Source: Author’s calculations using the 2004 US National Health Interview Survey. 



 

Variables Hispanic Non-his White Non-his Black Others Total 

Income 26.10% 46.96% 38.01% 50.00% 35.97% 

Educ 48.85% 57.40% 36.96% 50.39% 49.77% 

Health_Insurance 57.84% 55.47% 53.90% 60.87% 56.76% 

Self-assessed Health 39.33% 56.90% 47.03% 55.32% 49.44% 

Table 2. Percentage of ‘mistargeted individuals’ for the different variables and the different 

population subgroups. Source: Author’s calculations using the 2004 US National Health 

Interview Survey. 

 

𝑥 ∈ 𝑃4
∗ 100𝑛𝒙/𝑁 𝑓(𝑀𝒙; 𝑧) 𝐶𝒙 

1100 1.68% 0.42 19.44% 

0011 0.87% 0.46 11.11% 

1110 1.79% 0.6 22.22% 

1101 1.34% 0.5 25% 

1011 0.41% 0.49 5.56% 

0111 0.61% 0.49 8.33% 

1111 0.43% 0.7 8.33% 

Table 3. Profile decomposability of 𝑃4
∗-poverty. Source: Author’s calculations using the 2004 

US National Health Interview Survey. 

 

Dimensions of 

poverty 
Indicator Deprived if… Weight 

Education 

Years of Schooling 
No household member has completed 

five years of schooling. 
1/6 

Child School Attendance  
Any school aged child is not attending 

school up to class 8. 
1/6 

Health 

Child Mortality  Any child has died in the family. 1/6 

Nutrition 
Any adult for whom there is nutritional 

information is malnourished. 
1/6 

Living Standard 

Electricity  The household has no electricity. 1/18 

Improved Sanitation 

The household’s sanitation facility is not 

improved (according to MDG 

guidelines), or it is improved but shared 

with other households. 

1/18 

Improved Drinking Water 

The household does not have access to 

improved drinking water (according to 

MDG guidelines) or safe drinking water 

is more than a 30-minute walk from 

home, roundtrip. 

1/18 

Flooring 
The household has a dirt, sand or dung 

floor. 
1/18 

Cooking Fuel 
The household cooks with dung, wood or 

charcoal. 
1/18 

Assets ownership 

The household does not own more than 

one radio, TV, telephone, bike, motorbike 

or refrigerator and does not own a car or 

truck. 

1/18 

Table 4. Dimensions, indicators, deprivation cutoffs and weights on the MPI. Source: Own 

elaboration. 



Country 𝑀0(𝐴𝐹) 𝑀0(𝑃10
∗ ) 𝑀0(𝑄10

∗ ) Π𝜃∗(𝐴𝐹) 𝑚𝑖(𝑃10
∗ ) 𝑚𝑖(𝑄10

∗ ) δ(θ)i 

Albania 0.010 0.002 0.003 0.015 1.96 1.19 56.74 

Armenia 0.007 0 0 0.013 2.07 0.72 78.21 

Azerbaijan 0.031 0.008 0.012 0.045 6.05 3.25 45.15 

Bangladesh 0.354 0.135 0.291 0.447 49.55 15.08 26.52 

Benin 0.384 0.202 0.363 0.478 41.49 14.21 24.63 

Bolivia 0.113 0.036 0.099 0.157 18.50 11.96 38.48 

Burkina Faso 0.46 0.296 0.413 0.558 37.56 8.13 21.26 

Burundi 0.433 0.191 0.422 0.539 53.89 14.33 24.47 

Cambodia 0.368 0.18 0.365 0.485 41.79 18.12 31.89 

Cameroon 0.195 0.09 0.196 0.254 24.25 17.01 30.48 

Colombia 0.039 0.011 0.02 0.058 7.42 3.97 48.09 

Congo 0.247 0.087 0.21 0.338 37.08 19.58 36.86 

Cote Ivoire 0.293 0.143 0.236 0.380 36.26 12.46 29.62 

Dominic. Rep 0.034 0.007 0.019 0.049 7.18 3.65 43.25 

Egypt 0.031 0.01 0.013 0.045 5.37 3.28 44.61 

Ethiopia 0.513 0.36 0.501 0.629 32.53 9.11 22.53 

Gabon 0.085 0.017 0.048 0.126 17.17 9.39 47.79 

Guinea 0.435 0.266 0.391 0.526 37.09 9.94 21.08 

Guyana 0.035 0.004 0.027 0.050 7.79 6.08 43.03 

Haiti 0.335 0.171 0.308 0.439 38.47 17.92 30.74 

Honduras 0.164 0.043 0.141 0.221 30.28 17.66 35.26 

India 0.294 0.137 0.258 0.373 35.81 10.07 26.71 

Indonesia 0.141 0.019 0.092 0.195 31.01 11.65 38.35 

Jordan 0.039 0.004 0.004 0.070 10.06 3.84 78.80 

Kenya 0.234 0.095 0.255 0.314 32.03 25.41 34.02 

Lesotho 0.141 0.049 0.17 0.199 22.34 26.70 40.77 

Liberia 0.441 0.253 0.45 0.560 40.48 16.39 27.16 

Madagascar 0.377 0.268 0.393 0.498 24.36 17.85 32.20 

Malawi 0.269 0.088 0.298 0.354 41.74 29.11 31.56 

Maldives 0.064 0.022 0.024 0.099 10.79 8.50 56.08 

Mali 0.495 0.321 0.457 0.599 37.65 9.33 21.05 

Moldova 0.097 0.037 0.044 0.154 16.52 7.44 58.81 

Mozambique 0.488 0.296 0.456 0.609 39.87 12.58 24.89 

Namibia 0.197 0.075 0.209 0.267 27.95 19.89 35.10 

Nepal 0.277 0.123 0.221 0.358 36.89 11.41 29.15 

Niger 0.524 0.373 0.516 0.640 31.45 8.05 22.13 

Pakistan 0.24 0.098 0.159 0.319 34.14 13.80 33.27 

Peru 0.054 0.009 0.047 0.075 11.28 7.25 40.25 

Philippines 0.116 0.023 0.087 0.161 23.13 10.29 39.02 

Rwanda 0.376 0.145 0.373 0.479 52.52 16.91 27.31 

Sao Tome & Pr 0.186 0.04 0.183 0.250 35.88 15.85 33.89 

Senegal 0.272 0.157 0.232 0.347 26.97 10.80 27.54 

Tanzania 0.376 0.129 0.342 0.488 54.70 18.39 29.90 

Timor-Leste 0.341 0.184 0.33 0.449 35.34 19.71 31.82 

Uganda 0.376 0.147 0.348 0.484 50.77 19.75 28.78 

Ukraine 0.002 0 0 0.003 0.54 0.17 54.66 

Zambia 0.325 0.158 0.334 0.434 36.89 22.96 33.54 

Zimbabwe 0.283 0.076 0.224 0.386 47.30 18.05 36.43 

Table 5. Poverty measures 𝑀0(𝐴𝐹), 𝑀0(𝑃10
∗ ), 𝑀0(𝑄10

∗ ), Π𝜃∗(𝐴𝐹) (θ
*
=(2,3,3,0.5)), 

percentage of misclassified households using alternative identification criteria and 

values of δ(θ
*
) i for 48 countries. Source: Author’s calculations using DHS data.   
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