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Abstract

The timely identi�cation of spillovers between the �nancial and sovereign sectors is
a crucial topic for preventing undergoing scenarios such as the European sovereign debt
crisis. To assess the dependence between �nancial and sovereign credit risk I employ
Delta Conditional measures, ∆CoV aR and ∆CoES. These measures are mainly used
in �nancial sector for assessing the Systemically Important Financial Institutions but
its application for analysing contagion to other sectors is almost non-existent so far.
I use a copula approach with time-varying parameters for capturing changes in the
tail dependence. The results show the importance of some measures taken by the
ECB to reduce the exposure of the sovereign credit risk to the �nancial sector and the
in�uence of the Greek referendum announcements on this relationship. I also show
that the e�ects of the policy measures in terms of spillover between sectors can be
assessed accurately using Delta Conditional measures.
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1 Introduction

Can't see the wood for the trees

English proverb

Systemic risk in biological terms can be de�ned as a possible global disaster arising from
the behaviour of a single individual of the species that coexist in the same environment.
Likewise, in economics terms, systemic risk is the threat of a system breakdown because
of short-sighted behaviour and the undervaluing of externalities. Government guarantees
and bailouts have helped to build a closer relationship between the �nancial and sovereign
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sectors triggering ultimately massive damages to the welfare state as well as political re-
actions in the form of populist movements along Europe. Since systemic risk a�ects by
nature all sectors, it should be computed not only within the �nancial system but between
the �nancial and other sectors such as the sovereign one. Comparing systemic risk with
the proverb that heads this section, Trichet (2009) said that 'systemic risk is about seeing
the wood and not only the trees'.

Since the European sovereign debt crisis, the connection between �nancial and sovereign
sector has been extensively studied. Most research on this topic has been conducted in
a Vector Autoregression (VAR) framework (Alter and Beyer (2012), Bicu and Candelon
(2012), Kok and Gross (2013),Alter and Schüler (2012), Chudik and Fratzscher (2012),
Candelon et al. (2011)). Following the VAR methodology, the impulse response function is
employed to assess the e�ect on all sectors of a shock in a given sector, which is produced
in economic distress situations. Conditional Value at Risk (CoV aR) is a cross-sector mea-
sure indicating a low quantile of benchmark returns. Therefore, CoVaR framework can
capture better the behaviour of sovereign and �nancial credit risk in distress conditions.
To date, market price-based systemic risk measures have been mainly focused on analysing
the systemic risk of a given �rm in its own sector. For instance, Reboredo and Ugolini
(2015b) employed a CoVaR framework to measure the contagion from the Greek debt crisis
to sovereign debt sector. To my knowledge, the only article focusing on the link between
sovereign and �nancial sector under CoVaR methodology is Reboredo and Ugolini (2015a).
These authors employed a vine-copula approach using as underlying debt and equity re-
turns from the end of 1999 to mid-2012. However, the chosen period leaves out the most
stressful moments for Spanish and Italian sovereign debt, the summer of 2012 when the
President of the ECB had to explicitly support the Monetary Union. Moreover, it is widely
accepted that the European sovereign debt crisis was led by a crisis of con�dence on the
institutions, consequently employing a credit risk underlying as the CDS seems more co-
herent.

This work deals with the link between European sovereign and �nancial credit risk
during the 2009-2016 period using a CoVaR framework. This methodology allows to as-
sess the change in �nancial credit risk when the sovereign sector is taking into account
and vice versa. Indeed, the Delta Conditional measures derived from CoVaR framework,
Delta Conditional Value-at-Risk (∆CoV aR) and Delta Conditional Expected Shortfall
(∆CoES), capture the credit risk dependence between sectors. Conditional measures in-
corporate directionality providing information about contagion and exposure of sovereign
credit risk to the �nancial sector. To compute conditional probabilities I employ a copula
approach due to its straightforward decomposition of the joint distribution which eases the
interpretation of the dependence between both credit risks, apart from the fact of having
lower computational cost and being less time expensive than other approaches that imply
numerical integration, such as the GARCH proposal by Girardi and Ergün (2013).

The CoVaR model approach is validated not only using backtesting but also employing
Delta Conditional measures to identify the main stress events during the analysed period.
Additionally, an event study is conducted for assessing the e�cacy of the ECB's mea-
sures considered by Lucas et al. (2013) according to the Delta Conditional measures. The
results suggest that tail dependence in the relationship between �nancial sector and pe-
ripheral sovereign credit risk implies higher values in Delta Conditional measures than core
countries, that means higher sensitivity to the �nancial system changes. ECB measures

2



had an heterogeneous e�ect on the credit link between banks and countries risk. While the
European Financial Stability Facility (EFSF) acted in fact as a contagion channel between
the sovereign and the �nancial sector, the Draghi's speech on July 26th 2012 and the dis-
closure of the details of the Outright Monetary Transactions (OMT) program reduce the
exposure of the sovereign sector to the �nancial sector, specially in peripherical countries.
These results are in line with the literature about the e�ectiveness of the ECB's policy
during the European sovereign credit crisis (Wyplosz et al. 2011, Altavilla et al. 2016).
The Greek referendum announcements from 2011 and 2015 played also an important role
in the evolution of the relationship between sovereign and �nancial credit risk. The present
article points out the possibilities of CoVaR and Delta Conditional as useful measures for
assessing spillovers between sectors in the economy as well as to evaluate the collateral
e�ect of policy choices.

The remainder of this paper is divided into �ve sections. The following section presents
the idea of the CoVaR and Delta Conditional measures. Then, Section 3 suggests the copula
approach for assessing the CoVaR measure. The data employed for the empirical applica-
tion is presented in section 4. The empirical case in section 5 includes an unconditional
and conditional backtesting, an event study and stress testing on the CoVaR, Conditional
Expected Shortfall (CoES) and Delta Conditional measures. Finally, the most relevant
results, their implications and some policy recommendations are pointed out in the con-
cluding section.

2 CoVaR background

CoVaR was introduced by Adrian and Brunnermeier (2011) as a systemic risk measure for
identifying Systemically Important Financial Institutions (SIFIs) in the �nancial sector.
The original scope of CoVaR was to measure the capital needs of the �nancial system
when a certain institution i is on distress. The question to answer was how large are the
maximum losses of the �nancial system with a β100% con�dence level in a certain time
horizon given that institution i is in the α100-th quantile of loss distribution, and CoV aR
is obtained by solving the implicit equation

Pt−1[−rm,t ≤ CoV aRm|i,t(α, β)|ri,t = −V aRi,t(α)] = β, (1)

where m stands for the �nancial sector as a whole. Concerning the subscripts in this
work, i stands for each of the European countries considered whereas m represents the
global European �nancial sector proxy in order to analyse spillovers between �nancial and
sovereign credit risk. CoV aR and V aR express required capital bu�er, consequently they
are positive values, then in Equation (1) are introduced preceded by a minus.
The level α of the conditioning event is usually �xed at α = β. α, β ∈ (0, 1) and given
that V aR is measured as a loss percentile, α and β would be close to one in a distressed
scenario. α100-th loss percentile correspond to 1 − α100-th returns percentile, so the
corresponded return percentile of V aR(α) is 1 − α. The fact of employing a conditional
event as the V aR, which is independent of the conditioning institution riskiness, allows us
to compare the results conditional to di�erent �nancial institutions. The maximum losses
with β con�dence level for the �nancial system may be di�erent for di�erent risk pro�les.
However, loses not considered in normal scenarios can trigger out a systemic event because
of the lack of liquidity, i.e., in a normal scenario the capital needs of the �nancial system
can be ful�lled by their institutions, but in a distressed scenario capital needs could suppose
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bankrupt and bailout processes. Therefore, Equation (1) is unsatisfactory for assessing the
systemic risk of a �nancial institution. Indeed, it may be enough to capture the losses
but not the loss change when the scenario for the conditioning event changes. The change
in maximum losses for the �nancial system with β100% con�dence level when �nancial
institution i changes from a normal scenario to its (1 − α)100% worst case scenario is
known as ∆CoV aR, i.e.,

∆CoV arm|i,t(β) = CoV arm|i,t(α, β)− CoV arm|i,t(0.5, β), (2)

where the normal scenario is de�ned as the median loss for �nancial �rm i.
Most systemic risk measures, such as MES or SRISK (Acharya et al. 2012, Brownlees
and Engle 2016), see systemic risk on the opposite way, i.e., measuring losses for �nancial
institution i given a stress scenario for the �nancial system. Adrian and Brunnermeier
(2011) denote the measure with shifted variables as exposure CoV aR, i.e., ∆CoV ari|m,t(β).
Exposure CoVaR is a risk management tool similar to the stress test that is useful for
tracking banks performance in a situation of systemic risk. Whereas ∆CoV aR measures
which �nancial institution contributes more to a �nancial crisis, the exposure CoVaR
measures which �nancial institution is more exposed to contagion from the �nancial sector.
A number of studies have noticed that CoVaR as de�ned by Equation (1) is not a monotonic
function of the dependence parameter and it can not be validated using backtesting (Mainik
and Schaanning 2014, Zhang 2015, Girardi and Ergün 2013). Previous drawbacks can be
overcome if the de�nition of CoVaR is slightly modi�ed, i.e.,

Pt−1[−rm,t ≤ CoV aRm|i,t(α, β)|ri,t ≤ −V aRi,t(α)] = β. (3)

Consequently, CoV aRm|i,t(α, β) expresses the maximum losses for the �nancial system
with β100% con�dence level given that �nancial �rm i is below its (1−α)100% worst case
scenario. Similarly, the ∆CoV arm|i,t(β) interpretation changes expressing the loss change
of the �nancial system with con�dence level β100% when the �nancial �rm changes from
a situation where it is below its 50% worst case scenario to being below its (1 − α)100%
worst case scenario.
Although several modi�cations for ∆CoV ar have been put forward trying to express a
change from the normal to a distress scenario , e.g., Zhang (2015) and Girardi and Ergün
(2013), it is out of the scope of this work to analyse them. Thereby, I take de�nitions of
CoV aR and ∆CoV aR choice to be closer to the original Adrian and Brunnermeier (2011)
de�nition while keeping the possibility of backtesting and dependence consistent feature,
i.e., CoV aR is a monotonic function of the dependence parameter between the variables.
Even though under Equation (3) the CoV aR properties improve, it has some limitation
given the nature of CoV aR, i.e., it looks only to a certain percentile and consequently is
not subadditive. These features can be enhanced if the Value-at-Risk dimension is moved
to a Expected Shortfall framework. The Conditional Expected Shortfall, CoESm|i,t(α, β),
measures the average losses in the �nancial system with β100% con�dence level when
�nancial �rm i is below its (1− α)100% worst case scenario, i.e.,

CoESm|i,t(α, β) =
1

1− β

∫ 1

β
CoV aRm|i,t(α, q)dq,

where CoV aRm|i,t(α, q) is given by Equation (3). ∆CoES can be computed following the
same procedure as in Equation (2).
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3 Methodology

The structure model of the CoVaR can be divided into three steps: the marginal model
structure, the copula choice and the copula time-varying parameter. The assessment of
CoV aR is straightforward given these three essential stages.

To begin with, Equation (3) can be expressed as a ratio following Bayes' theorem, i.e.,

Pt−1[rm,t < −CoV aRm|i,t(α, β)|ri,t ≤ −V aRi,t(α)] =
Pt−1[rm,t < −CoV aRm|i,t(α, β), ri,t < −V aRi,t(α)]

Pt−1[ri,t < −V aRi,t(α)]
.

Expressing the previous equation in terms of copula functions1

Pt−1[rm,t < −CoV aRm|i,t(α, β)|ri,t < −V aRi,t(α)] =
C
(
Frm,t(−CoV aRm|i,t(α, β)), Fri,t(−V aRi,t(α))

)
Fri,t(−V aRi,t(α))

=
C(um, 1− α)

1− α
. (4)

Using generator functions φ for the Archimedean copula C I get2

C(um, 1− α) = φ−1 [φ(um) + φ(1− α)] . (5)

Equation (4) can be rewritten as

φ−1 [φ(um) + φ(1− α)]

1− α
= 1− β ⇒ φ−1 [φ(um) + φ(1− α)] = (1− β)(1− α).

Solving for um

um = φ−1 [φ ((1− α)(1− β))− φ(1− α)] .

Finally the CoV aRm|i,t(α, β) is obtained as

CoV aRm|i,t(α, β) = −
[
µm,t + σm,tF

−1
ξm,t

(um,t)
]
. (6)

where µm,t is the conditional mean and σm,t is the conditional standard deviation for
the �nancial system, F−1

ξm,t
is the inverse cumulative distribution function of the �nancial

system's innovation and um,t is an uniform distributed value obtained from the copula
relationship. The assessment for CoV aRi|m,t(α, β) would be conducted following the same
procedure. Notice that CoV aR and CoES refers to losses, so high values in this indicators
mean bad news.

1Observe than although V aR is de�ned as a quantile of loss distribution, the copula framework is
employed in returns distribution. Therefore the −V aR(α) for losses, i.e., Pt−1(ri,t > −V aRi,t(α)) =
Pt−1(−ri,t < V aRi,t(α)) = α, is equivalent to V aR(1 − α) for returns, i.e., Pt−1(ri,t < V aRi,t(1 − α)) =
1− α.

2The t-Student copula is not an Archimedian copula. The t-Student copula is an implicit copula and
thus there is not a closed form for the expression C(um, 1−α). The t-Student copula can not be presented
through generator functions as the Archimedean copulas in equation (5). However there is an expression
for the conditional quantile copula. The Rotated Gumbel copula su�ers from the same drawback because
it is also not an Archimedean copula (Fengler and Okhrin, 2012).
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Marginal model. The chosen model for the marginal distributions should take into
account not only the time-varying mean and volatility but also the asymmetry and the
heavy tails in the probability distribution for the innovation. An ARMA(1,0) process with
skewed-t Student innovation meets the desired goals , i.e.,

rj,t = φj,0 + φj,1rj,t−1︸ ︷︷ ︸
µj,t

+εj,t, j = m, i (7)

with εj,t = σj,tξj,t where σ
2
j,t is the conditional variance given by a TGARCH(1,1) speci�-

cation, i.e.,

σ2
j,t = ωi + αj(1 + θj1j,t−1)ε2j,t + βjσ

2
j,t−1,

where the indicator function 1j,t−1 values 1 if εj,t < 0 and zero otherwise. The innovation
in�uence in the variance for the next period is di�erent if the analyzed return is negative
(αj + θj ) or positive (αj) . βj is the persistence parameter in past variance.
The innovations are assumed to have an univariate skewed-t distribution in order to capture
skewness and the kurtosis, i.e., ξj,t ∼ f(ξj,t; ηj , λj) where f is the probability distribution
function of the skewed-t distribution, ηj denotes the degrees of freedom and λj the asym-
metry parameter, j = i,m. Because of its properties this marginal distribution is widely
employed in the systemic risk literature3.
The density of Hansen (1994)'s skewed-t distribution is

h(ξt|η, λ) =

{
bc(1 + 1

η−2( bξt+a1−λ )2)−(η+1)/2 ξt < −a/b
bc(1 + 1

η−2( bξt+a1+λ )2)−(η+1)/2 ξt ≥ −a/b
, (8)

where 2 < η <∞ and −1 < λ < 1. The constants a, b and c are given by

a = 4cλ

(
η − 2

η − 1

)
, b =

√
1 + 3λ2 − a2, c =

Γ(η+1
2 )√

π(η − 2)Γ(η2 )
.

Note that when λ = 0 and as η →∞, Equation (8) reduces to the standard Gaussian dis-
tribution. When λ = 0 and η is �nite, we obtain the standardized symmetric-t distribution.
From Equation (8) the log-Likelihood function that should be maximized is

lnL =

T∑
t=1

log(h(ξt|η, λ))

=

T∑
t=1

[
log(bc)− η + 1

2
log

(
1 +

1

η − 2

(
bξt + a

1 + 2λ1(ξt≥−a/b) − λ

)2
)]

= T log(bc)−
T∑
t=1

η + 1

2
log

(
1 +

1

η − 2

(
bξt + a

1 + 2λ1(ξt≥−a/b) − λ

)2
)
,

where 1 is an indicator function that takes the value one if the condition between brackets
holds and zero otherwise.

3See for instance Engle et al. (2015), Karimalis and Nomikos (2014), Girardi and Ergün (2013) or
Reboredo and Ugolini (2015b)
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Copula speci�cation. The copula choice determines the relationship between a couple
of marginal distribution. A inaccurate copula choice would suppose missleading of CoV aR,
∆CoV aR, and ultimately a wrong interpretation of these values. In order to diminish that
chance a broad range of copula choices are compared using Information Criteria. The con-
sidered Information Criteria are the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC)4which are also employed by Reboredo and Ugolini (2015b)
and Karimalis and Nomikos (2014). However, a misspeci�ed marginal distribution could
also lead to a wrong copula choice. Using Pseudo Maximum- Likelihood Method (PML)
apart from the Maximum Likelihood Method (ML) allows to prevent from making this
mistake and to have a second check for the Information Criteria choice.

I consider 7 copulas that are broadly employed in �nancial studies. Each copula im-
plies di�erent tail dependence. Lower tail dependence is allowed by Clayton and Rotated
Gumbel but no upper tail dependence, whereas the opposite situation is found in Gum-
bel copula. Joe-Clayton (BB7) Student's and Clayton-Gumbel (BB1) copula allows either
upper and lower tail dependence (Table 1).

[Insert Table 1 here]

A description of the main features of the considered copulas, the uniform value obtained
for Equation (6) and the copula density function can be checked in Appendix B. Table 2
sums up the conditional quantile um and the copula density function for each copula.

[Insert Table 2 here]

Time-varying copula parameter dependence. The joint tail dependence is estab-
lished by the copula parameter. A time-varying copula parameter allows tail dependence
to change as time goes by, as a result, the model is more �exible for tracking changes in
the relationships between sovereign and �nancial credit risk. I propose the following para-
metric representation based on Karimalis and Nomikos (2014) for the Clayton, Gumbel
and Rotated Gumbel copulas

θt = Λ1

(
ω + βθt−1 + α

1

10

10∑
k=1

|ui,t−kum,t−k|

)
, (9)

where Λ1 is exp(x) for Clayton copula and (exp(x)+1) for the Gumbel in order to keep the
values in the feasible area. The evolution for the parameter δ of Frank copula is represented
by

δt = ω + βδt−1 + α
1

10

10∑
k=1

|ui,t−kum,t−k|. (10)

Regarding BB7 copula, the relationship between parameters and coe�cients of the upper
and low tail dependence is: θ = 1

log2(2−τU )
, δ = −1

log2(τL)
and τU , τL ∈ (0, 1). For the

BB1 copula I employ the formula below giving the relation between parameters and tail

dependence in Table 1, i.e., δ = 1
log2(2−τU )

and θ = − log2(2−τU )
log2(τL)

. Consequently the following

representation is proposed

τKt = Λ2

(
ωK + βKτ

K
t−1 + αK

1

10

10∑
k=1

|ui,t−kum,t−k|

)
, K = U,L

4AIC = 2k− 2 log(L̂) and BIC = log(T )k− 2 log(L̂), where L̂ is the maximized value of the likelihood
function, T is the sample data and k is the number of estimated parameters.
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where Λ2(x) ≡ (1 + exp(−x))−1 is the logistic transformation in order to keep the coe�-
cient of tail dependence between 0 and 1.
For the Student's t copula I assume that the degrees of freedom paramater is constant (El-
liott and Timmermann, 2013, p. 932 , Reboredo and Ugolini, 2016) and only the correlation

parameter, i.e., ρt, is time-varying. Equation (9) is employed where Λ1(x) ≡ 1−exp(−x)
1+exp(−x) . In

other words, the modi�ed logistic transformation allows for a value of ρt ∈ (−1, 1).
Equations (9) and (10) have a similar form to a GARCH model if we look just inside the
brackets, with a long term component, an innovation in�uence component and a past per-
sistence component. The next table provides a summary of the time-varying parameters
representation proposed for each copula.

[Insert Table 3 here]

Estimation approach The joint density function is obtained combining the marginal
probability distribution functions (fi(ri), fm(rm)) and the density copula function, i.e.,

f(r1, r2) = c(Fi(ri; θi)Fm(rm; θi); γ)fm(rm; θm)fi(ri; θi). (11)

Using Equation (11) the log-Likelihood function to be maximized is

lnL((ri, rm); γ, θi, θm) =

T∑
t=1

(log(c(Fi(ri,t; θi,t)Fm(rm,t; θm,t); γt)) + log(fm(rm,t; θm,t)) + log(fi(ri,t; θi,t)))

=

T∑
t=1

(log(c(Fi(ri,t; θi,t)Fm(rm,t; θm,t); γt)))︸ ︷︷ ︸
2nd step

+

T∑
t=1

(log(fm(rm,t; θm,t))) +

T∑
t=1

(log(fi(ri,t; θi,t)))︸ ︷︷ ︸
1st step

. (12)

I choose the Inference Functions for Margins (IFM) approach for estimating the pa-
rameters, i.e., �rst the marginal distribution parameters are estimated and later the copula
parameter as it is showed in Equation (12). As initial parameter values I take α0 = β0 = 0,
i.e., the ML optimum value for the copula parameter constant over the time.
If the marginal distribution is misspeci�ed, estimation errors are large under this approach.
To avoid them, the copula estimation is performed also taking into account the pseudo max-
imum likelihood method (PML) in which no assumption about the marginal distribution
is made. The empirical joint observations ξ̂t = (ξ̂i,t, ξ̂m,t) are transformed into so-called
pseudo-observations ût = (ûi,t, ûm,t) according to

ûk,t =
1

T + 1

T∑
s=1

1ξ̂k,s≤ξ̂k,t , k = i,m

where 1ξ̂k,s≤ξ̂k,t is an indicator function that takes a value of 1 if ξ̂k,s ≤ ξ̂k,t and zero oth-

erwise. Copula parameters are estimated via maximum likelihood estimation given these
pseudo-observations.
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4 Data

The raw data for drawing up the CoV aR measure are daily CDS quotations from Datas-
tream from May 20th, 2009 to May 13th, 2016. The total number of observations is 1691.
I use the standard credit event and the most liquid maturity, i.e., complete restructuring
event (CR) and 5-year contract Moreover, the CDS employed in this study are those which
underlying is the senior debt, given the fact that is the most traded branch of the CDS
categories. For the �nancial �rms' CDS the same type, seniority and maturity is chosen.

I consider sovereign CDS from Austria, Belgium, Denmark, France, Germany, Italy,
Netherlands and Spain. A total of 25 European bank CDS meet the criteria for the consid-
ered period, 14 being banks from the core European area whereas 11 are in the periphery.
The number of banks and their countries are: Austria (2), Belgium (1), Finland (1), France
(5), Germany (5), Italy (4), Netherland(3), Portugal (1) and Spain (3).

[Insert Table 4 here]

I employ an approach similar to the one used in Chamizo and Novales Cinca (2016) for
obtaining the returns of the �nancial system credit risk5. First of all, I construct CDS
indices for each domestic sector by taking the daily median CDS return for the �nancial
�rms in each country. After that, I build common �nancial risk index as result of choosing
the 1st PCA among the country level �nancial CDS returns6. According to Rodríguez-
Moreno and Peña (2013), the �rst principal component of a CDS portfolio is the best
systemic measure in the macro group.
As a robustness check, the equally-weighted portfolio as well as the weights given by %
GDP are also employed for building the �nancial credit risk measure. The chosen copulas
don't change under these alternative indicators. Table 5 shows the considered weight and
the alternative weights criteria for checking robustness of the �nancial system indicator.

[Insert Table 5 here]

CDS spreads are transformed in returns following Berndt and Obreja (2010) and
Ballester et al. (2016).

ri,t = −∆CDStAt(T )

= −∆CDSt
1

4

4T∑
j=1

δ

(
j

4

)
q

(
j

4

)
, (13)

where ∆CDSt(T ) is the daily change in CDS spreads with maturity T and At(T ) is the
value of a defaultable quarterly annuity over the next T years. T is equal to �ve years,
given the data of the CDS spreads. The risk-free discount factor for day t and s quarter
is δ(t, s), �tted from Euribor rates7. The risk-neutral survival probability of the bank or
government over the next s quarters can be written as q(t, s) = exp(−λt(s)) where λt is
the risk-neutral default intensity. λt is computed directly from observed CDS spreads by

5Chamizo and Novales Cinca (2016) build CDS indices for each sector by taking the median CDS spread
in a given sector each day, they obtain then a common risk factor among CDS spread using principal
component analysis. My approach is analogous building bank CDS indices by country and using CDS
returns instead of logarithmic change

6In order to avoid giving excessive weight to the most volatile country-level CDS returns, the PCA is
performed on the correlation matrix instead of the covariance matrix.

7Euribor rates are obtained from the European Money Markets Institute (EMMI) and �oored at 0%.
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λt = 4 log(1 + CDSt/4L), which is employed to assess the annuity and then, the CDS
return. L denotes the risk neutral expected loss given default (LGD), �xed at 60% for
corporate �rms and 40% for governments. It has to be pointed out that the change in CDS
spreads enters into the return procedure preceded by a minus, so an increase in credit risk,
i.e., an increase in CDS spreads, supposes a decrease in CDS returns whereas a reduction
of credit risk re�ects a rise in CDS returns.

5 Empirical results

Estimated values of the parameter λ shows a negative asymmetry for the �nancial sector
and positive for the sovereign credit risk. Spanish and Italian sovereign CDS and the Eu-
ropean �nancial index have higher degrees of freedom and more persistence of past returns
(Table 6).

[Insert Table 6 here]

AIC and BIC estimated under the likelihood obtained from the ML or PML estimation
coincide in the choice of copula (Table 7 and 8). Frank copula is selected for all the coun-
tries with the exception of Spain and Italy, which select a copula with tail dependence as
the Student t copula. The fact that PML and ML coincide in the choice of copula suggests
that the marginal distribution is not misspeci�ed.

[Insert Table 7 here]

[Insert Table 8 here]

The choice of copula is a key feature that determines the behaviour of Delta measures,
i.e., ∆CoV aR and ∆CoES, because it is where the joint tail dependence is re�ected. A
di�erent copula would suppose a di�erent tail dependence and ultimately di�erent values
of ∆CoV aR and ∆CoES. It is important to be aware of model risk. Taking into account
a comprehensive range of copulas, considering di�erent information criteria and using not
only the maximum likelihood value, but also the pseudo maximum likelihood value for the
information criterion are three ways of reducing the possibility of choosing an inaccurate
copula.

Figure 1 shows the di�erent values of CoV aR and ∆CoV aR for Italy on July 26th,
2012 using several copulas and di�erent levels of stress for the conditioning variable, i.e.,
α. ∆CoV aRItaly|m,t(α, 0.95) values are higher than ∆CoV aRm|Italy,t(α, 0.95) values which
suggests that Italy has a higher exposure to the �nancial system that the �nancial system
to Italy sovereign credit risk on July 26th, 2012, no matter what copula we are employing.
Student's t copula arises lower maximum daily credit losses with 95% con�dence level
than Frank copula for a wide con�dence level α range whether as CoV aRItaly|m,t(α, 0.95)
or CoV aRm|Italy,t(α, 0.95). In relation to ∆CoV aR values, Student's t copula has a similar
behaviour to the Gumbel copula although they have di�erent CoV aR values. The di�erent
values on α allows us to see the tail dependence in the copulas through the convex shape
of CoV aR and ∆CoV aR with the exception of Frank copula. The Frank copula shows
a linear increase as α is increasing probably due to its lack of tail dependency. The tail
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dependence of Student's t copula is clearly observed in Figure 2, where the observations
are gathered on the left bottom corner and the right top corner of the graphs, behavior
that is not shared by Frank copula.

[Insert Figure 1 here]
[Insert Figure 2 here]

The general image emerging from Figure 1 is that the Frank copula give us higher values
of CoV aR but lower values of ∆CoV aR than the Student's t copula for a wide range of α
given equal marginal features. The graphs presented in Figure 3 provide evidence about
the copula role in the CoV aR and ∆CoV aR behaviour.

[Insert Figure 3 here]

In fact, Figure 3 shows the maximum conditional quantile of institution j returns condi-
tioned to a quantile 1 − α or lower for institution l's returns with a con�dence level of
1− β, i.e.,

C(uj |ul ≤ 1− α) = 1− β

where uj , ul are the quantile of institution j and l's returns. Its focus is on the left tail
of the joint distribution of returns due to α, β ∈ (0.9, 0.995) . Conditioning to values of
1− α = 0.1 and 1− β = 0.1 the quantile for institution j, i.e., uj , under the Frank copula
is half than under Student's t copula (0.04 against 0.08), which could explain the higher
values of CoV aR under Frank copula. Given a value of 1−β = 0.1, uj changes by less than
0.01 under the Frank copula for values of 1−α between 0.005 and 0.1 while for Student's t
copula the change is almost 0.08, which could explain the higher value of ∆CoV aR under
this copula.

Overall, Figure 4 provides support to the validity of the model. CoV aRi|m,t(0.95, 0.95)
is like assessing V aRi,t(0.95) for country i under a stressed scenario in the �nancial sector,
i.e., CoV aR is a Stressed V aR. The di�erence between the unconditional V aR and the
CoV aR could been seen as a measure the relevance of the conditioning event in V aR assess-
ment. Figure 4 shows lower values for V aRi,t(0.95) than CoV aRi|m,t(0.95, 0.95) as it would
be expected due to the positive dependence between �nancial market and the sovereign sec-
tor. CoESi|m,t(0.95, 0.95) is considering more severe scenarios than CoV aRi|m,t(0.95, 0.95),
speci�cally CoES is looking beyond 95% percentile, thus CoES should have higher values
than CoV aR.Figure 5 provides a similar interpretation but shifting the conditioning and
conditioned variable, i.e., V aRm,t(0.95), CoV aRm|i,t(0.95, 0.95) and CoESm|i,t(0.95, 0.95).

Table 9 shows the estimated values for the risk measures in four di�erent days. The
maximum losses with a 95% con�dence level for each country are represented by the Value
at Risk (V aRi) The highest V aRi,t is observed in Spanish sovereign sector on May 8th,
2010, following by the Italian sovereign sector on August 2nd, 2012. If maximum losses
with 95% con�dence level for each country are assessed in a stressed scenario where the
�nancial sector is below its 5% percentile, i.e., CoV aRi|m,t, losses are higher. For the

Spanish case those losses increases from 4.05% to 5.47% on May 8th, 2010. The cost of
su�ering an extreme event in the Spanish sovereign sector if it is produced in a �nancial
crisis environment is 1.42%. For the Italian sovereign sector on August 2nd,2012, the extra
losses for su�ering a distress event when the �nancial sector is facing a fragile situation is
0.76%. On the other hand, the maximum losses for the �nancial sector with a 95% con�-
dence level given that a certain country is on distress is represented by CoV aRm|i,t. The
highest losses are obtained if the conditioning country is Belgium, followed by Denmark
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and Netherlands, all of them on May 8th, 2010. Danish �nancial authority identi�ed on
2014 six SIFIs in Denmark and Dutch �nancial regulator three banks with high systemic
risk. Belgian banks' authority pointed out six Belgian SIFIS8. ∆CoV aRi|m measures the
change in the maximum losses for the sovereign sector when the �nancial market moves
from a normal scenario to a distress one. This change implies dependency in the behaviour
of the conditional variable to the speci�c scenario for the conditioning variable. According
to ∆CoV aR, Spain and Italy are the countries that are more exposed to �nancial sector
and are more likely to produce contagion to �nancial markets. ∆CoES shows the same
behaviour than ∆CoV aR in this sense.
CoESm|i,t shows the expected losses of the �nancial sector as a whole in a distress scenario
given a crisis period on a certain country. The highest values coincide with the countries
identi�ed in ∆CoV aRm|i,t, i.e., Belgium, Denmark and Netherlands on the 8th of May 2010.

[Insert Table 9 here]

Figures 6 and 7 show a strong distinct pattern between core and periphery countries.
The behaviour of Spain and Italy is di�erent from the rest of countries having high values
with greater volatility. These ∆ measures allow us to have a clue about the contagion
and countries' exposure to the �nancial system. The �ndings concerning ∆CoV aR and
∆CoES can be really useful in order to analyse the ECB's policy e�ect during the sovereign
credit crisis.

[Insert Figure 6 here]
[Insert Figure 7 here]

5.1 Event study

November 2009 has been identi�ed as the initial point for the European sovereign debt
crisis (Bhanot et al. 2014, Reboredo and Ugolini 2015b). It is when investors became
concerned about the Greek government problems because of the announcement of an un-
expected higher de�cit.
Following Lucas et al. (2013) I distinguish two main key policy announcements during the
European sovereign credit risk crisis. On May 8th, 2010 started the European Financial
Stability Facility (EFSF) and the ECB's Securities Market Program (SMP). The second
key policy announcement began on 26th July 2012, when Draghi pledged to do "whatever
it takes" to preserve the euro, and that "it will be enough". On 2nd August 2012 it was
announced a new asset purchase program, the Outright Monetary Transactions (OMT).
The details of this program were published on the 6th September 2012.

I assess the 1st principal component of the time-series of ∆CoV aRi|m,t(β), ∆CoESi|m,t(β),
∆CoV aRm|i,t(β), ∆CoESm|i,t(β) across countries. Principal component analysis is em-
ployed due to its e�ciency for gathering volatility patterns in one indicator. As a result
four indicators for systemic risk derived from ∆ measures are obtained, two related to
contagion from countries to �nancial credit risk, i.e., ∆CoV aR1stPC

m|i,t , ∆CoES1stPC
m|i,t , and

two concerning sovereign credit risk exposure to the �nancial sector, i.e., ∆CoV aR1stPC
i|m,t ,

8For the Danish case those banks were Danske Bank, Nykredit Realkredit, Nordea Bank Danmark,
Jyske Bank, Sydbank and DLR Kredit while for the Dutch authority the most systematically important
banks were ING Bank, Rabobank and ABN AMRO. For the Belgian supervisor the most systematically
important domestic banks were KBC Groep KBC Bank NV, Bel�us Banque SA, Euroclear Bank SA and
Investeringsmaatschappij Argenta Argenta Bank
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∆CoES1stPC
i|m,t .

Lets de�ne the abnormal ∆−measurei|j,t(β), i.e., A∆−measurei|j,t(β) as

A∆−measure(β) = ∆−measurei|j,t(β)− Et−1(∆−measurei|j,t(β)), (14)

whereEt−1(∆−measurei|j,t(β)) is supposed to be a constant, i.e., Et−1(∆−measurei|j,t(β)) =
b0, and ∆−measurei|j,t(β) can be any of the four European-level systemic risk measures
built using principal component analysis.

The estimation window has a length between half a month and six month and the
length of the event window is 4 days. Using several estimation windows prevents results to
be dependant of the length of previous considered returns. Following Abad et al. (2011) I
compute a t-standard ratio for testing the zero-mean hypothesis for the cumulative abnor-
mal ∆−measurei|j,t(β), i.e., CA∆−measurei|j,τ1:τ2(β) =

∑τ2
t=τ1

A∆∆−measurei|j,t(β).
A non-parametric test, Wilcoxon signed-rank test, is employed in case normality assump-
tion is not hold for A∆−measurei|j,t(β).
The policy measures are divided in four measures or announcements.

May 8th, 2010 announcement: European Financial Stability Facility (EFSF)
and the ECB's Securities Market Program (SMP). The study event is performed
employing an event window from May 6th, 2010 to May 11th, 2010.

July 26th, 2012 announcement: Draghi's speech The study event is performed
employing an event window from July 24th, 2012 to July 30th, 2012, i.e., two business days
before and after the announcement.

August 2nd, 2012 announcement: �rst news about the Outright Monetary
Transactions (OMT) program The study event is performed employing an event
window from July 31th, 2012 to August 6th, 2012.

September 6th, 2012 announcement: disclosure of the details about the Outright
Monetary Transactions (OMT) program The study event is performed employing
an event window from September 4th, 2012 to September 10th, 2012.

[Insert Table 10 here]

There is considered that a measure had an e�ect only when the null hypothesis for both
test, parametric and non-parametric are rejected. Concerning to May 8th, 2010, the ∆
conditional measures capture a change in systemic risk between sovereign and �nancial
sectors. Indeed, Figures 4 and 5 show a peak in that date indicating a raise in contagion
and exposure of sovereign sector to �nancial sector. This result coincides with the one
obtained by Wyplosz et al. (2011). According to them, the ESFS acted as a channel of
contagion. Indeed, it change a country indebtness problem to an European general prob-
lem, consequently it was implicitly as sharing debt issues. It also supposed a contagion
channel through European banks that were highly recommended to not sell European for-
eign sovereign bonds, e.g., Greece, by their national government. When a sovereign default
occurs, it produces twice contagion to the other European sovereign credit risk. First be-
cause of the losses of the ESFS guarantees and the second due to the recapitalization of
domestic banks that were recommended to keep the exposure to defaulted country.
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The speech of Mario Draghi also seemed to have an e�ect reducing the credit exposure of
the sovereign sector to the �nancial system. In Figures 11a, 11a , 11a and 11a the same
exercise is performed at a country level, where the only country than had a signi�cant
e�ect in its exposure to the �nancial sector on July 26th, 2012 was Spain for estimation
windows above two months.
Finally the disclosure of the OMT program seemed to trigger a reduction in the exposure of
the sovereign to the �nancial sector. Speci�cally, Italy and Spain were the main countries
that reduced their exposure to the �nancial sector. Recent literature coincides in similar
results about the e�ect ofthe OMT. Altavilla et al. (2016) analysed the e�ect of the OMT
program using high-frequency data. They conclude that the OMT program implied the
reduction of the interest rate paid by the Italian and Spanish government.

The ∆ Conditional measures appear to be a good indicator for tracking the e�ective-
ness of the measures taken by the ECB as can be seen in the similar conclusion of the
event study with other articles about this topic. Nevertheless, ∆ Conditional measures
may have also power to �nd out stress moments in the sovereign debt crisis period without
laying down an speci�c event.
The top 5 most stressful days are identi�ed in terms of the highest systemic risk values
obtained in the sample. Table 12 shows that the most relevant moments for driving ex-
posure and contagion between sovereign and �nancial credit risk are the May 8th, 2010
announcement and the Greek referendum announcements. In Figure 8 the black vertical
lines that refer to those three announcements. Firstly, the May 8th, 2010 announcement
where the European Financial Stability Facility (EFSF) and the ECB's Securities Market
Program (SMP) are presented. Secondly, November 1st, 2011 is the day after the Greek
prime minister Papandreou announced his will of proposing a referendum about the bailout
conditions. Third, June 30th, 2015 the Greek government deal with problems for repaying
IMF. The same day Jeroen Dijsselbloem, the head of the Eurogroup, said that 'Greece is
in default or will be in default tomorrow morning on the IMF' 9. The Greek prime minister
Tsipras had announced a referendum three days before for the July 5th, 2015 in order to
ask to the Greek people if they should accept the third bailout conditions.

[Insert Table 12 here]
[Insert Figure 8 here]

5.2 Backtesting and stress testing

Backtesting on CoVaR. The proportion of exceedances over the threshold of the Co-
VaR should approximately equal the con�dence level and they should take place indepen-
dently, not in clusters. Consequently for checking the accuracy of the proposed model the
statistical tests for unconditional coverage from Kupiec (1995) and the conditional cov-
erage from Christo�ersen (1998) are computed. The null hypothesis of the unconditional
and conditional coverage is performed at 5% level of signi�cance under skewed-t margins
and the best �t according to the Bayesian Information Criterion (BIC).

For the conditional institution of CoV aRj|l(α, β) I built the indicator function that
values one if the past ex-post losses of l crossed the past ex-ante VaR forecast and zero

9https://www.nytimes.com/2015/07/01/world/europe/greece-alex-tsipras-debt-emergency-bailout.

html
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otherwise, i.e.,

1l,t =

{
1 if rl,t ≤ −V aRl,t(α)

0 if rl,t > −V aRl,t(α)
.

For those days t where 1l,t = 1 I use a second indicator function that values one if the past
ex-post losses of j crossed the past ex-ante CoVaR forecast and zero otherwise, i.e.,

1j|l,t =

{
1 if rj,t ≤ −CoV aRj,t(α, β)

0 if rj,t > −CoV aRj,t(α, β)
.

For this last hit sequence I have T1l,t=1 observations , i.e., the observations where rl,t ≤
−V aRl,t, where j, l = i,m.

Unconditional coverage test from Kupiec (1995). If CoV aRj|l(α, β) satis�es
the unconditional coverage property, P (1j|l,t+1 = 1) = 1 − β, i.e., the proportion of ex-
ceedances over the threshold is equal to the signi�cance level. Consequently the null and
alternative hypothesis in this test would be{

H0 : E[1j|l,t] ≡ p = 1− β,
H1 : E[1j|l,t] ≡ p 6= 1− β.

Let us de�ne X =
∑T1l,t=1

t=1 1j|l,t, then the likelihood ratio of Kupiec (1995) is given by

LR =
pX(1− p)T1l,t=1−X(

T1l,t=1−X
T1l,t=1

)T1l,t=1−X (
X

T1l,t=1

)X ,
where −2 log(LR) ∼ χ2

1 under the null hypothesis.

[Insert Table 13 here]

The results for the conditional and unconditional coverage test for CoV aRm|i,t(α, β) are
in line with the CoV aRm|i backtest results in Karimalis and Nomikos (2014) and Girardi
and Ergün (2013) with a mean p-value of 0.3418. As a consequence, the hypothesis that
the proportion of exceedances over the threshold is equal to the con�dence level in the case
of CoV aRm|i(0.95) can not be rejected that . If the same test under normality assumption
for the marginal is performed the mean p-value is below 0.05 for the CoV aRm|i(0.95) with
enough exceedances for the conditioning variable, which can be seen as an advantage of
the proposed model over the simple Gaussian model.
Table 13 shows besides the p-value, the lower and the upper bound of the non-rejection
area, i.e., the number of exceedances that are considered normal with a con�dence level of
95%, the number of exceedances and the size of the sample for assessing the backtesting.

Conditional coverage test from Christo�ersen (1998). If the CoV aRj|l(α, β)
satis�es the conditional coverage property, Pt(1j|l,t+1 = 1) = 1− β. Given the assumption
that 1j|l,t follows a �rst-order Markov sequence with transition probability matrix

P1 =

[
1− p01 p01

1− p11 p11

]
,
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where pk,q indicate the probability of having in t+1 1j|l,t+1 = q conditional to the scenario
on t where 1j|l,t = k with q, k = 0, 1. If the conditional coverage property is satis�ed,
the probability of a exception in t+1 doesn't depend on the fact of having an exception
on t, i.e., Pt(1j|l,t+1 = 1) = P (1j|l,t+1 = 1). In conclusion, the null and the alternative
hypothesis are {

H0 : E[1j|l,t] ≡ p = p01 = p11,

H1 : E[1j|l,t] ≡ p 6= p01 = p11,

Given the fact that there are T1l,t=1 observations, a total of T1l,t=1 − 1 ≡ T pair1l,t=1 pair of
observations can be obtained. The sample of pair of observations can be divided in four
subsamples, i.e.,

T pair,00
1l,t=1 + T pair,01

1l,t=1 + T pair,10
1l,t=1 + T pair,11

1l,t=1 = T pair1l,t=1,

where the superscripts indicate that if there was an exceedance in t − 1 and t and the
subscript indicate that all the observations hold rl,t+1 ≤ −V aRl,t+1.
De�ning

p̂01 =
T pair,01
1l,t=1

T pair,00
1l,t=1 + T pair,01

1l,t=1

,

and

p̂11 =
T pair,11
1l,t=1

T pair,10
1l,t=1 + T pair,11

1l,t=1

,

H0 holds if p̂01 ≈ p̂11, as a consequence the probability of having an exceedance in t + 1
could be de�ned without taking into account the scenario in t, i.e.,

p̂ =
T pair,01
1l,t=1 + T pair,11

1l,t=1

T pair,00
1l,t=1 + T pair,01

1l,t=1 + T pair,10
1l,t=1 + T pair,11

1l,t=1

.

The likelihood ratio of Christo�ersen (1998) is employed, i.e.,

LR =

(
p̂

p̂01

)T pair,011l,t=1
(
p̂

p̂11

)T pair,111l,t=1

(
1− p̂

1− p̂01

)T pair,001l,t=1
(

1− p̂
1− p̂11

)T pair,101l,t=1

,

where −2 log(LR) ∼ χ2
1. The frequency with which consecutive exceedances are observed

may be few due to the fact that they are rare events, as a consequence the power of this
test is limited.
Table 14 shows, besides the p-value, the distribution of the pair of sample observations in
order to detect possible clusters in the exceedances. The mean p-value for CoV aRi|m,t(α, β)
and for CoV aRm|i,t(α, β) is respectively 0.2479 and 0.3525. Consequently the null hypoth-
esis of independence of the exceedances can not be rejected.

[Insert Table 14 here
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Stress testing CoVaR. The stress testing exercise can be performed taking into account
di�erent con�dence levels for the CoV aR, i.e., di�erent values of β. In that way the CoV aR
is assessed under di�erent scenarios. In particular the following �gures identify the CoV aR
in two selected days (May 10th, 2010 and July 26th,2012) from β = 0.99 to 0.5.

[Insert Figure 9 here]
[Insert Figure 11 here]

On the one hand, the CoV aRi|m,t(α, β) and CoV aRm|i,t(α, β) are monotonic increasing
functions of the con�dence level β and the di�erence of CoVaR based on β leads to a
di�erent sort of institutions than based on α, i.e., ∆CoV aRi|m(β = 0.95) = CoV aRi|m(α =
0.95, β = 0.95) − CoV aRi|m(α = 0.5, β = 0.95) 6= CoV aRi|m(α = 0.95, β = 0.95) −
CoV aRi|m(α = 0.95, β = 0.5). For instance, Italy and Spain have the smallest value of
CoV aRi|m(α = 0.95β = 0.95)−CoV aRi|m(α = 0.95β = 0.5) and CoV aRm|i(α = 0.95β =
0.95)−CoV aRm|i(α = 0.95β = 0.5) but they are on the top of the classi�cation following
∆CoV aRi|m(β = 0.95) and ∆CoV aRm|i(β = 0.95). The reading of these �gures can also
be informative about the distress that could be expected in each moment t. For example,
in the top Figure 11, i.e., CoV aRi|m(β), with a 90% of con�dence (β = 0.90), given that
the �nancial sector is below the 5% worst case scenario (α = 0.95), the sovereign credit
risk for Spain will not experience daily losses higher than 2.25% whereas for the same
con�dence level and situation for the �nancial system, Austria CDS losses returns will not
be above 1.23% . This is the way these graphs should be read.
On the other hand, ∆CoV aRi|m,t(β) and ∆CoV aRm|i,t(β) are not monotonic increasing
with the value of β as can be seen in 10 and 12, where the values for Spain and Italy
are slightly decreasing although for high quantiles are again increasing. Moreover, there
are not observable changes in the ranking of the countries according to their values of
∆CoV aR. Concerning to the values of ∆CoES is remarkable that they seem monotonic
increasing with the value of β.

[Insert Figure 10 here]
[Insert Figure 12 here]

6 Conclusions

The CoV aR measure introduced by Adrian and Brunnermeier (2011) was drawn up for
assessing the banks' systemic risk contribution to the �nancial system. In this article
the CoV aR is employed with a copula methodology to measure the interrelationship be-
tween sovereign and �nancial credit risk. The economic literature has not employed yet
this approach to deal with the spillovers between sovereign and �nancial credit risk. This
approach is a robust way for measuring systemic risk focusing on a low quantile of the
returns' distribution.

Taken together, the data presented in this article provide evidence that the choice
of copula determines the CoV aR values and the tail dependence between �nancial and
sovereign credit returns strongly in�uence ∆CoV aR. The copula methodology allows to
decompose in a understandable way the systemic risk measures, besides of being a time-
saving and less computationally expensive method than other procedures. However, an
inaccurate copula choice implies a model risk that can drive to a wrong measure of expo-
sure and contagion. In order to prevent model risk, a wide range of copulas and several
information criteria are considered, using ML and PML to maximize the possibility of
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choosing an accurate copula.

Taking into account the relationship between sovereign and �nancial sector when the
credit risk is assessed supposed an average increase of 0.54% for the sovereign VaR and
0.45% for the �nancial VaR. The di�erence between core and peripherical countries is re-
�ected in higher exposure and contagion to the �nancial credit risk for peripheral countries,
i.e., higher ∆CoV aR and ∆CoES. These �ndings are consistent with previous results, e.g.
Alter and Beyer (2012) and Alter and Schüler (2012), showing that periphery countries
were the ones that contributed more to the �nancial credit contagion and that they were
the most a�ected due to the high exposure to the �nancial sector.

This diverse pattern in the systemic risk measures may emerge in the copula approach
due to the di�erent joint distribution. ∆CoES seems monotonic increasing with the con�-
dence level of the conditional variable while ∆CoV aR does not seem to share this feature.
∆CoV aR as a function of the con�dence level of the conditioning variable might reveal
tail dependence features. However it is necessary to study more deeply how these systemic
risk measures interact with di�erent parameters as the con�dence level for the conditional
and conditioning variable. Future works might try to �nd out the impact of the choice of
copula in the model risk of CoV aR and CoES.

Policy makers need indicators for assessing the e�ectiveness and the collateral detri-
mental e�ects that some measure can have in the economy. The ∆ Conditional measures
provides support as a tool for the measurement of contagion and spillover e�ects. These
measures have showed that the ECB's actions had an powerful e�ect limiting the exposure
of European countries to the �nancial credit risk, specially the exposure of Spain and Italy.
Some policy measures had also augmented the contagion e�ects between sovereign and the
�nancial sector as the EFSF. These results are in line with recent literature about the
e�ect of ECB's measures during the European sovereign credit crisis (Wyplosz et al. 2011,
Altavilla et al. 2016). The Greek referendum announcement on November 1st, 2011 and on
June 30th, 2015 also had an e�ect on the systemic risk measures computed in this article.
These �ndings reveal ∆ Conditional measures, i.e., ∆CoV aR and ∆CoES as suitable tools
to provide reliable information for take e�ective and e�cient policy measures.

18



References

Abad, P., Diaz, A., and Robles-Fernandez, M. D. Determinants of trading activity after
rating actions in the corporate debt market. International Review of Applied Financial
Issues and Economics, 3(2):514�539, 2011.

Acharya, V., Engle, R., and Richardson, M. Capital shortfall: A new approach to ranking
and regulating systematic risks. American Economic Review, 102:59�64, 2012.

Adrian, T. and Brunnermeier, M. CoVar. Technical report, Department of Economics,
Princeton University, 2011.

Altavilla, C., Giannone, D., and Lenzaa, M. The Financial and Macroeconomic E�ects of
the OMT Announcements. International Journal of Central Banking, 2016.

Alter, A. and Beyer, A. The dynamics of spillover e�ects during the European sovereign
debt turmoil. CFS Working Paper Series 2012/13, Center for Financial Studies (CFS),
2012.

Alter, A. and Schüler, Y. S. Credit spread interdependencies of european states and banks
during the �nancial crisis. Journal of Banking & Finance, 36(12):3444�3468, 2012.

Ao, S.-I., Kim, H. K., and Amouzegar, M. A. Transactions on Engineering Technologies:
World Congress on Engineering and Computer Science 2015. Springer, 2017.

Aussenegg, W. and Cech, C. Simple time-varying copula estimation. Prace
Naukowe/Uniwersytet Ekonomiczny w Katowicach, pages 9�20, 2011.

Ballester, L., Casu, B., and González-Urteaga, A. Bank fragility and contagion: Evidence
from the bank cds market. Journal of Empirical Finance, 38:394�416, 2016.

Bernardi, M., Durante, F., and Jaworski, P. Covar of families of copulas. Statistics &
Probability Letters, 120:8�17, 2017.

Berndt, A. and Obreja, I. Decomposing european cds returns. Review of Finance, 14(2):
189�233, 2010.

Bhanot, K., Burns, N., Hunter, D., and Williams, M. News spillovers from the Greek debt
crisis: Impact on the Eurozone �nancial sector. Journal of Banking & Finance, 38(C):
51�63, 2014.

Bicu, A. and Candelon, B. On the importance of indirect banking vulnerabilities in the Eu-
rozone. Research Memorandum 033, Maastricht University, Maastricht Research School
of Economics of Technology and Organization (METEOR), 2012.

Brownlees, C. and Engle, R. SRISK: a conditional capital shortfall measure of systematic
risk. Working Paper, 2016.

Candelon, B., Sy, A., and Arezki, R. Sovereign Rating News and Financial Markets
Spillovers; Evidence from the European Debt Crisis. Technical report, International
Monetary Fund, 2011.

Cech, C. Copula-based top-down approaches in �nancial risk aggregation. Technical report,
The University of Applied Sciences of BFI Vienna, 2006.

19



Chamizo, A. and Novales Cinca, A. Looking through systemic risk: Determinants, stress
testing and market value. 2016.

Christo�ersen, P. Evaluating interval forecasts. International economic review, pages 841�
862, 1998.

Chudik, A. and Fratzscher, M. Liquidity, risk and the global transmission of the 2007-08
�nancial crisis and the 2010-11 sovereign debt crisis. Globalization and Monetary Policy
Institute Working Paper, 107, 2012.

De Luca, G. and Rivieccio, G. Multivariate tail dependence coe�cients for archimedean
copulae. In Advanced Statistical Methods for the Analysis of Large Data-Sets, pages
287�296. Springer, 2012.

Demarta, S. and McNeil, A. J. The t copula and related copulas. International Statistical
Review/Revue Internationale de Statistique, pages 111�129, 2005.

Elliott, G. and Timmermann, A. Handbook of economic forecasting. Elsevier, 2013.

Engle, R., Jondeau, E., and Rockinger, M. Systemic risk in europe. Review of Finance, 19
(1):145�190, 2015.

Fengler, M. and Okhrin, O. Realized copula. Sfb 649 discussion papers, Humboldt Uni-
versity, Collaborative Research Center 649, 2012.

Girardi, G. and Ergün, A. T. Systemic risk measurement: Multivariate GARCH estimation
of CoVaR. Journal of Banking and Finance, 37(8):3169�3180, 2013.

Hansen, B. E. Autoregressive conditional density estimation. International Economic
Review, pages 705�730, 1994.

Jiang, C. Does tail dependence make a di�erence in the estimation of systemic risk.
Technical report, CoVaR and MES Working Paper, Boston College, 2012.

Karimalis, E. N. and Nomikos, N. Measuring: systemic risk in the european banking
sector: a copula covar approach. Technical report, Working paper, Cass City College,
London, 2014.

Kok, C. and Gross, M. Measuring contagion potential among sovereigns and banks using a
mixed-cross-section GVAR. Working Paper Series 1570, European Central Bank, August
2013.

Kupiec, P. Techniques for verifying the accuracy of risk measurement models. The Journal
of Derivatives, 3(2):73�84, 1995.

Lowry, R. Concepts and applications of inferential statistics. Vassar College, 2014.

Lucas, A., Schwaab, B., and Zhang, X. Conditional and joint credit risk. ECB Working
Series, 2013.

Mainik, G. and Schaanning, E. On dependence consistency of covar and some other sys-
temic risk measures. Statistics and Risk Modeling, 31(1):49�77, 2014.

Nicoloutsopoulos, D. Parametric and Bayesian non-parametric estimation of copulas. PhD
thesis, University of London, 2005.

20



Reboredo, J. and Ugolini, A. A vine-copula conditional value-at-risk approach to systemic
sovereign debt risk for the �nancial sector. The North American Journal of Economics
and Finance, 32:98�123, 2015a.

Reboredo, J. C. and Ugolini, A. Systemic risk in European sovereign debt markets: A
CoVaR-copula approach. Journal of International Money and Finance, 51:214�244,
2015b.

Reboredo, J. C. and Ugolini, A. Systemic risk of Spanish listed banks: a vine copula
CoVaR approach. Spanish Journal of Finance and Accounting / Revista Española de
Financiación y Contabilidad, 45(1):1�31, 2016.

Rodríguez-Moreno, M. and Peña, J. I. Systemic risk measures: The simpler the better?
Journal of Banking & Finance, 37(6):1817�1831, 2013.

Trichet, J.-C. Clare distinguished lecture in economics and public policy, 2009. Speech at
University of Cambridge organised by the Clare College.

Venter, G. Tails of copulas. In Proceedings of the Casualty Actuarial Society, volume 89,
pages 68�113, 2002.

Wyplosz, C., Gros, D., and Belke, A. The ECB, the EFSF and the ESM�Roles, Relation-
ships and Challenges. Policy Department A: Economic and Scienti�c Policy. Brussels:
European Parliament, 2011.

Zhang, J. Systemic Risk Measure: CoVaR and Copula. PhD thesis, Humboldt-Universität
zu Berlin, 2015.

21



Appendices

A Tables

Table 1: Main tail dependence features for each copula

Family Lower tail dependence Upper tail dependence

Clayton 2−1/θ −
Gumbel − 2− 21/θ

Frank − −
BB7 (Joe-Clayton) 2−1/δ 2− 21/θ

Rotated Gumbel 2− 21/θ −

Student's 2tv+1

(
−
√

(v+1)(1−θ)
1+θ

)
2tv+1

(
−
√

(v+1)(1−θ)
1+θ

)
BB1 (Clayton-Gumbel) 2−1/θδ 2− 21/δ

Note: − represents that there is no tail dependency.
Source: (Ao et al., 2017, p. 22) and Jiang (2012).
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Table 2: Conditional quantile um and copula density function c(um,t, ui,t; θ)

Copula Conditional quantile: um Copula density function: c(ui,t, um,t; θ)

Clayton
(
1 + ((1− α)(1− β))−θ − (1− α)−θ

)− 1
θ (θ + 1)

(
u−θi,t + u−θm,t − 1

)−2− 1
θ u−θ−1

i,t u−θ−1
m,t

Gumbel exp

(
−
[
(− log((1− α)(1− β)))θ − (− log(1− α))θ

] 1
θ

)
(A + θ − 1)A1−2θ exp(−A)

(um,tui,t)
−1(− log um,t)

θ−1(− log ui,t)
θ−1

Frank − 1
θ

log
(
1− (1−exp(−θ))−(1−exp(−θ))(exp(−θ(1−β)(1−α)))

(1−exp(−θ(1−β)))

) θ(1−exp(−θ)) exp(θ(ui,t+um,t))

(1−exp(−θ)−(1−exp(−θui,t))(1−exp(−θum,t)))2

BB7 ψ−1 [ψ ((1− β)(1− α))− ψ(1− α)]

[
T1(ui,t)T1(um,t)

]−1−δ

T2(ui,t)T2(um,t)L
−2(1+δ)/δ
1

(1− L−1/δ
1 )1/θ−2[

(1 + δ)θL
1/δ
1 − θδ − 1

]
Rotated Gumbel CRGumbel(1− α, um) = (1− β)(1− α)

(A + θ − 1)A1−2θ exp(−A)((1− ui)(1− um))−1

(− log(1− ui))θ−1(− log(1− um))θ−1

Student's t
∫ um
−∞ Ci|m((1− α)|s)ds = (1− β)(1− α)

K 1√
1−ρ2[

1 +
T−1
η (ui,t)

2−2ρT−1
η (ui,t)T

−1
η (um,t)+T

−1
η (um,t)

2

η(1−ρ2)

]− η+2
2

[
(1 + η−1T−1

η (ui,t)
2)(1 + η−1T−1

η (um,t)
2)
]− η+1

2

BB1

[{[
((1− β)(1− α))−θ − 1

]δ
− ((1− α)−θ − 1)δ

} 1
δ

+ 1

]− 1
θ (ui,tum,t)

−θ−1(ab)δ−1c
1
δ
−2
d
− 1
θ
−1{

d−1c
1
δ (1 + θ) + θ(δ − 1)

}

Note:
in BB7 copula conditional quantile formula: ψ(x; θ, δ) = [1 − (1 − x)−θ]δ − 1,

ψ−1(x; θ, δ) = 1−[1−(1+x)−
1
δ ]

1
θ and ψ

′
(x; θ, δ) = −[1−(1−x)θ]−δ−1δ[−(1−x)θθ/(−1+x)].

in BB7 copula density function: T1(s) = 1 − (1 − s)θ, T2(s) = (1 − s)θ−1 and L1 =
T1(v)−δ + T1(s)−δ − 1.

in Rotated Gumbel conditional quantile formula : CRGumbel(ui, um; θ) = ui + um − 1 +
CGumbel(1− ui, 1− um; θ).

in Rotated Gumbel copula density function: A = [(− log(1−ui))θ+(− log(1−um))θ]1/θ.
in Student's t copula conditional quantile formula: Ci|m(αi|s; η, ρ) =

Tη+1

(√
η+1

η+(T−1
η (αj))2

T−1
η (s)−ρT−1

η (αj)√
1−ρ2

)
, Tη is the cdf of a t-Student with η degrees of

freedom and T−1η represents its inverse.

in BB1 copula density function a = u−θi,t − 1 , b = u−θm,t− 1, c = aδ + bδ and d = 1 + c
1
δ .

The conditional uniform values are obtained from returns' distribution, hence for instance
looking above the 95% percentile of losses for the conditional and conditioning variable
means that α and β value 0.05.
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Table 3: Time-varying parameter representation for each copula

General model Λ
(
ωK + βKθ

K
t−1 + αK

1
10

∑10
k=1 |ui,t−kum,t−k|

)
Copula Parameter θ Function Λ(x)

Clayton θ exp(x)
Gumbel θ (exp(x) + 1)
Frank θ x
BB7 τL; τU (1 + exp(−x))−1

Rotated Gumbel θ (exp(x) + 1)

Student's t ρ 1−exp(−x)
1+exp(−x)

BB1 τU : τL (1 + exp(−x))−1

Note:
τU , τL ∈ (0, 1).
For the BB7 copula θ = 1

log2(2−τU )
and δ = −1

log2(τL)
.

For the BB1 copula δ = 1
log2(2−τU )

and θ = − log2(2−τU )
log2(τL)

.

Table 4: European banks employed for building the �nancial system credit risk index

Name Country

Banca Monte dei Paschi di Siena Italy
Banco Comercial Português Portugal
Banco Popular Español Spain
Banco Santander Spain
Bayerische Landesbk Germany
BBVA Spain
BNP Paribas France
Commerzbank AG Germany
Cooptieve Cente Rabo BA Netherland
Credit Agricole France
Credit Lyonnais France
Danske Bank A/S Finland
Deutsche bank AG Germany
Erste Group Bank AG Austria
ING Bank N.V. Netherland
Intesa Sanpaolo Spa Italy
KBCA Bank Belgium
Lb Badenwuerttemberg Germany
Mediobanca Spa Italy
Natixis France
Portigon AG Germany
SNS Bank N.V. Netherland
Societé Générale France
Unicredit Italy
Unicredit Bank AG Austria
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Table 5: Di�erent weights for building the
�nancial sector proxy.

Countries 1st PCA Equal % GDP

Austria 10.83% 11.11% 3.25%
Belgium 8.02% 11.11% 4.00%
Finland 9.95% 11.11% 2.07%
France 12.73% 11.11% 22.81%
Germany 11.73% 11.11% 28.36%
Italy 11.95% 11.11% 17.81%
Netherland 12.62% 11.11% 7.36%
Portugal 9.64% 11.11% 1.96%
Spain 12.53% 11.11% 12.39%

1st PCA column expresses the weights ob-
tained by the �rst principal component.
Equal indicates the equally weighted portfo-
lio.
% GDP column shows the weights according
to the percentage of total GDP in the �rst
quarter of 2009.

B Set of considered Copulas

The demonstration of some of the hereinbelow formulas can be seen in Karimalis and
Nomikos (2014) and in Bernardi et al. (2017).
In the following equations Fξm,t(ξm,t) = um,t and Fξi,t(ξi,t) = ui,t.

Clayton copula. This copula allows positive dependence and asymmetric lower tail
dependence. The Clayton copula has a dependence parameter θ ∈ (0,+∞). When θ → 0
implies independence and when θ →∞ implies perfect dependence.
Following the Girardi and Ergün (2013)'s de�nition , the uniform value is given by the
following formula

um =
(

1 + ((1− α)(1− β))−θ − (1− α)−θ
)− 1

θ
.

In order to estimate the parameter θ it is necessary to employ the copula density function
according to Equation (12)

c(ui,t, um,t; θ) = (θ + 1)
(
u−θi,t + u−θm,t − 1

)−2− 1
θ

(ui,tum,t)
−θ−1.

Gumbel copula. This copula allows positive dependence and asymmetric upper tail
dependence. The Gumbel copula has a dependence parameter θ ∈ [1,+∞). When θ = 1
implies independence and when θ →∞ implies perfect dependence.
Following Girardi and Ergün (2013)'s CoV aR de�nition, the analytical expression for the
conditional quantile employed in Equation (6) is

um = exp

(
−
[
(− log((1− α)(1− β)))θ − (− log(1− α))θ

] 1
θ

)
.
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In order to estimate the parameter θ we should employ the copula density function in
equation (12)

c(ui,t, um,t; θ) = (A+ θ − 1)A1−2θ exp(−A)

(ui,tuj,t)
−1(− log ui,t)

θ−1(− log um,t)
θ−1,

where A =
[
(− log um,t)

θ + (− log ui,t)
θ
] 1
θ .

Frank copula. This copula allows positive and negative dependence structures with-
out implying tail dependence. The Frank copula has a dependence parameter θ ∈ (−∞,+∞)\{0}.
When θ → 0 implies independence, when θ →∞ implies positive perfect dependence and
when θ → −∞ implies negative perfect dependence.
The expression of the conditional quantile following the de�nition of Girardi and Ergün
(2013) is

um = −1

θ
log

(
1− (1− exp(−θ))− (1− exp(−θ))(exp(−θ(1− β)(1− α)))

(1− exp(−θ(1− α)))

)
.

In order to estimate the parameter θ we need to employ the copula density function in
equation (12)

c(ui,t, um,t; θ) =
θ(1− exp(−θ)) exp(−θ(ui,t + um,t))

(1− exp(−θ)− (1− exp(−θui,t))(1− exp(−θum,t)))2 .

BB7 copula. This copula is also known as Joe-Clayton copula 10. This is a copula
with parameters θ ≥ 1 and δ > 0, where θ measures upper tail dependence and δ measures
lower tail dependence. The Joe-Clayton copula captures positive dependence while it allows
for asymmetric upper and lower tail dependence. When δ → 0 the Joe copula is obtained
and Clayton copula is the resulted one when θ = 0 .
The conditioned quantile following Girardi and Ergün (2013) is

um = ψ−1 [ψ ((1− β)(1− α))− ψ(1− α)] ,

where ψ(x; θ, δ) = [1− (1− x)θ]−δ − 1 and ψ−1(x; θ, δ) = 1− [1− (1 + x)−
1
δ ]

1
θ .

In order to estimate the parameter θ we need to employ the copula density function in
Equation (12)

c(ui,t, um,t; θ, δ) = [T1(ui,t)T1(um,t)]
−1−δ T2(ui,t)T2(um,t)

L
−2(1+δ)/δ
1 (1− L−1/δ

1 )1/θ−2
[
(1 + δ)θL

1/δ
1 − θδ − 1

]
,

where T1(s) = 1− (1− s)θ, T2(s) = (1− s)θ−1 and L1 = T1(v)−δ + T1(s)−δ − 1.

Rotated Gumbel copula. The Gumbel copula has a asymmetric dependence in the
tails. Actually, it has no tail dependency in the lower tail but positive dependence in the
upper tail when the parameter θ > 1. The opposite tail dependence is obtained if the
copula is rotated. If (Ui,Um) has a copula Cθ(ui, um), then (1− Ui,1− Um) is distributed
according to the rotated copula CRδ (ui, um).

CRGumbel(um, ui; θ) = um + ui − 1 + CGumbel(1− um, 1− ui; θ)
= um + ui − 1 + exp{−[(− log(1− um))θ + (− log(1− ui))θ]1/θ}.

10See De Luca and Rivieccio (2012) for more information about this copula.
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The conditional quantile um is obtained given the relation between the copula and the
levels of con�dence as it is showed in Equation (4) due to the fact that in the rotated
Gumbel copula there is not closed form expression for the conditional quantile like in the
Gumbel copula.
In order to estimate the parameter θ we need to employ the copula density function in
equation (12)

cRGumbel = cGumbel(1− ui, 1− um)

= (A+ θ − 1)A1−2θ exp(−A)((1− ui)(1− um))−1(− log(1− ui))θ−1(− log(1− um))θ−1,

where A = [(− log(1− ui))θ + (− log(1− um))θ]1/θ.

Following Reboredo and Ugolini (2015b) two additional copulas are also considered:
the t-Student copula and the Clayton-Gumbel copula (BB1 copula).

Student's t copula. This copula allows positive and negative symmetric tail de-
pendence. The parameter ρ measures correlation and the parameter η, the degrees of
freedom, controls the probability mass assigned to extreme joint co-movements of risk fac-
tors changes11. When η →∞ corresponds to the Gaussian copula12. Due to the fact that
the t-Student copula is an implicit copula, we can not obtain a close form conditioned
quantile. Given the conditional copula Ci|m(α|um) we can get the conditional quantile fom
the following formula

P [Fξi,t (ξi,t)<1−α,Fξm,t (ξm,t)<um]︷ ︸︸ ︷∫ um

0
Ci|m(1− α|s)︸ ︷︷ ︸

P [Fξi,t (ξi,t)<1−α|Fξm,t (ξm,t)=s]

ds = (1− β)(1− α),

where Ci|m(1 − α|s; η, ρ) = Tη+1

(√
η+1

η+(T−1
η (1−α))2

T−1
η (s)−ρT−1

η (1−α)√
1−ρ2

)
, Tη is the cdf of a

t-Student with η degrees of freedom and T−1
η represents it inverse13.

For estimating the degrees of freedom (η) and the correlation parameter ρ the copula
density function ies employed in Equation (12)

c(ui,t, um,t); η, ρ) = K
1√

1− ρ2[
1 +

T−1
η (ui,t)

2 − 2ρT−1
η (ui,t)T

−1
η (um,t) + T−1

η (um,t)
2

η(1− ρ2)

]− η+2
2

[
(1 + η−1T−1

η (ui,t)
2)(1 + η−1T−1

η (um,t)
2)
] η+1

2 ,

where K = Γ(η2 )Γ(η+1
2 )−2Γ(η+2

2 ).

11For more information about the properties of the t-Student copula see Demarta and McNeil (2005)
12The Gaussian copula underestimates the probability of joint extreme co-movements in high volatility

and correlation scenarios according to Aussenegg and Cech (2011)
13See for instance Cech (2006)
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BB1 copula. The BB1 copula, also known as the Clayton-Gumbel copula, allows
asymmetric tail dependence. The BB1 copula has two dependence parameters: one for
the Clayton behavior θ ∈ (0,+∞) and another one for the Gumbel behavior δ ∈ [1,+∞).
When δ = 1 and θ > 0 we get the Clayton copula and as a consequence upper tail
independence and lower tail dependence. When θ → 0 and δ > 0 the Gumbel copula is
obtained with upper tail dependence only. In the case of θ → 0 and δ = 1 we get upper
and lower tail independence14.
The expression of the conditional quantile following the CoV aR de�nition of Girardi and
Ergün (2013) is

um =

[{[
((1− β)(1− α))−θ − 1

]δ
− ((1− α)−θ − 1)δ

} 1
δ

+ 1

]− 1
θ

.

In order to estimate the parameter θ and δ we need to employ the copula density function
in Equation (12) obtained from Cech (2006)

c(ui,t, um,t; θ, δ) = (ui,tum,t)
−θ−1(ab)δ−1c

1
δ
−2d−

1
θ
−1
{
d−1c

1
δ (1 + θ) + θ(δ − 1)

}
(15)

where a = u−θi,t − 1 , b = u−θm,t − 1, c = aδ + bδ and d = 1 + c
1
δ .

C Tables of results

Table 6: Values obtained from the model structure of CDS returns

α̂i β̂i θ̂i φ̂0,i φ̂1,i η̂i λ̂i
Financial
sector

0.10 0.37 0.53 0.00 0.20 3.43 -0.02

Austria 0.08 0.27 0.65 0.00 0.01 2.16 0.06
Belgium 0.09 0.55 0.35 0.00 0.03 2.41 0.01
Denmark 0.09 0.00 0.91 0.00 0.00 2.07 0.05
France 0.10 0.56 0.34 0.00 0.04 2.41 0.00
Germany 0.09 0.25 0.65 0.00 0.01 2.20 0.03
Italy 0.09 0.40 0.51 0.00 0.13 3.00 0.00
Netherlands 0.07 0.52 0.42 0.00 -0.01 2.05 0.02
Spain 0.09 0.47 0.44 0.00 0.10 2.98 0.01

Equation (7) shows the model structure of returns and Equa-
tion (8) shows the probability density function of return inno-
vations.

14See for instance Venter (2002) or Nicoloutsopoulos (2005)
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Table 7: Values from the Aike Information Criterion (AIC) for the di�erent selected copulas

AIC
Austria Belgium Denmark France Germany Italy Netherlands Spain

B
as
ed

on
M
L
es
ti
m
at
io
n

Clayton -867 -762 -1148 -736 -839 -1063 -927 -1038
Gumbel -227 -470 -149 -393 -277 -1214 -132 -1137
Frank -8549 -5717 -9042 -8571 -8713 1155 -9245 576
BB7 -271 -546 -171 -455 -310 -1247 -166 -1182
Rotated
Gumbel

-257 -545 -168 -440 -295 -1189 -154 -1129

Student's t -300 -587 -196 -483 -343 -1301 -189 -1242
BB1 -278 -551 -180 -458 -318 -1290 -172 -1215

B
as
ed

on
P
M
L
es
ti
m
at
io
n Clayton -221 -447 -88 -348 -235 -973 -122 -966

Gumbel -230 -490 -157 -384 -290 -1225 -142 -1154
Frank -7732 -3222 -8314 -7807 -1679 958 -8509 303
BB7 -269 -547 -173 -433 -312 -1260 -152 -1178
Rotated
Gumbel

-247 -537 -173 -415 -295 -1181 -149 -1123

Student's t -283 -588 -182 -456 -336 -1298 -170 -1229
BB1 -272 -553 -177 -435 -316 -1291 -155 -1215

AIC = 2k − 2 log(L̂) where L̂ is the log-likelihood obtained from Maximum Likelihood method (ML) or
from the Pseudo Maximum Likelihood method (PML).

Table 8: Values from the Bayesian Information Criterion (BIC) for the di�erent selected
copulas

BIC
Austria Belgium Denmark France Germany Italy Netherlands Spain

B
as
ed

on
M
L
es
ti
m
at
io
n

Clayton -851 -746 -1132 -720 -823 -1046 -910 -1022
Gumbel -210 -454 -132 -377 -260 -1198 -116 -1121
Frank -8533 -5701 -9026 -8555 -8697 1171 -9229 593
BB7 -238 -514 -138 -423 -278 -1215 -133 -1150
Rotated
Gumbel

-240 -528 -152 -424 -278 -1173 -138 -1113

Student's t -279 -566 -174 -461 -321 -1279 -167 -1221
BB1 -245 -518 -148 -426 -285 -1257 -140 -1182

B
as
ed

on
P
M
L
es
ti
m
at
io
n Clayton -205 -431 -71 -332 -219 -957 -106 -950

Gumbel -213 -474 -141 -368 -274 -1208 -125 -1138
Frank -7716 -3206 -8298 -7791 -1663 975 -8492 319
BB7 -236 -515 -140 -401 -279 -1228 -119 -1145
Rotated
Gumbel

-230 -520 -157 -398 -279 -1165 -133 -1106

Student's t -261 -567 -161 -435 -315 -1277 -149 -1208
BB1 -239 -520 -145 -402 -284 -1259 -122 -1183

BIC = log(T )k− 2 log(L̂) where L̂ is the log-likelihood obtained from Maximum Likelihood method (ML)
or from the Pseudo Maximum Likelihood method (PML).
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Table 9: Summary statistic for risk measures (%)

Date Austria Belgium Denmark France Germany Italy Netherlands Spain

V
a
R
i,
t

May 8th, 2010 1.75 3.34 1.30 2.79 1.97 3.41 1.47 4.05

July 26th, 2012 1.34 1.89 1.11 2.07 2.08 2.11 1.39 2.24

August 2nd, 2012 1.39 3.26 1.14 2.19 2.11 3.63 1.34 3.15

September 6th, 2012 1.48 2.38 1.06 2.37 1.73 1.94 1.45 2.26

C
o
V
a
R
i|
m
,t May 8th, 2010 2.24 4.81 1.74 3.46 2.57 4.92 1.95 5.47

July 26th, 2012 1.71 2.66 1.48 2.53 2.69 2.69 1.84 2.82

August 2nd, 2012 1.75 4.49 1.53 2.65 2.71 4.39 1.79 3.82

September 6th, 2012 1.89 3.35 1.42 2.88 2.24 2.61 1.91 2.99

C
o
V
a
R
m
|i
,t

May 8th, 2010 4.35 5.03 4.54 4.10 4.41 4.39 4.51 4.35

July 26th, 2012 2.01 2.22 2.08 1.95 2.04 2.04 2.07 2.03

August 2nd, 2012 2.92 3.17 3.02 2.85 2.97 2.97 3.01 2.96

September 6th, 2012 1.89 2.13 1.97 1.82 1.93 1.93 1.96 1.93

∆
C
o
V
a
R
i|
m
,t May 8th, 2010 0.25 0.79 0.23 0.34 0.31 6.38 0.26 6.02

July 26th, 2012 0.19 0.41 0.20 0.23 0.32 2.46 0.24 2.46

August 2nd, 2012 0.19 0.67 0.20 0.23 0.31 3.20 0.23 2.81

September 6th, 2012 0.21 0.52 0.19 0.26 0.27 2.81 0.24 3.06

∆
C
o
V
a
R
m
|i
,t May 8th, 2010 0.66 1.05 0.77 0.53 0.69 5.89 0.75 5.79

July 26th, 2012 0.20 0.31 0.24 0.16 0.22 1.84 0.23 1.81

August 2nd, 2012 0.22 0.36 0.27 0.18 0.25 2.13 0.27 2.11

September 6th, 2012 0.21 0.35 0.26 0.18 0.24 2.04 0.26 2.05

C
o
E
S
i|
m
,t May 8th, 2010 8.18 16.04 6.76 12.15 9.47 9.63 7.62 10.06

July 26th, 2012 6.38 8.64 5.77 8.55 9.65 4.48 7.13 4.65

August 2nd, 2012 6.43 14.21 5.91 8.74 9.62 6.69 7.04 5.87

September 6th, 2012 7.00 10.93 5.53 9.74 8.06 4.63 7.34 5.16

C
o
E
S
m
|i
,t May 8th, 2010 14.92 16.24 15.29 14.45 15.04 8.36 15.23 8.38

July 26th, 2012 5.26 5.67 5.41 5.15 5.33 3.25 5.39 3.26

August 2nd, 2012 6.66 7.16 6.86 6.54 6.76 4.36 6.83 4.36

September 6th, 2012 5.49 5.96 5.66 5.36 5.58 3.27 5.64 3.25

∆
C
o
E
S
i|
m
,t May 8th, 2010 0.85 2.31 0.84 0.98 1.03 8.71 0.93 8.26

July 26th, 2012 0.64 1.19 0.71 0.67 1.04 3.35 0.87 3.37

August 2nd, 2012 0.63 1.93 0.73 0.67 1.02 4.37 0.86 3.84

September 6th, 2012 0.70 1.52 0.68 0.76 0.87 3.82 0.89 4.16

∆
C
o
E
S
m
|i
,t May; 8th, 2010 1.28 2.04 1.49 1.02 1.34 7.59 1.45 7.47

July 26th, 2012 0.38 0.61 0.46 0.32 0.42 2.37 0.45 2.33

August 2nd, 2012 0.42 0.71 0.53 0.35 0.48 2.74 0.52 2.72

September 6th, 2012 0.42 0.68 0.51 0.34 0.46 2.62 0.50 2.62

The measures are computed using CDS data from May 20th, 2009 to May 13th, 2016.
All the measures are computed �xing α = β = 95%.
Subscript i indicates a country CDS returns and m the �nancial sector CDS returns.
CoV aR, CoES and the derived ∆ measures are obtain following Girardi and Ergün (2013) de�nition of CoV aR.
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Table 11a: Event study p-values at a country level for di�erent estimation windows

∆CoV aRi|m,t ∆CoV aRm|i,t

Months
May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

A
u
st
ri
a

0,5 0,57 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,04 0,07 0,04 0,50 0,22

1 0,44 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,04 0,07 1,00 0,69 0,08

1,5 0,35 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,22 1,00 0,04 0,07 0,89 0,50 0,69

2 0,29 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,04 0,07 0,35 0,50 0,69

2,5 0,51 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,08 0,07 1,00 0,50 0,69

3 0,48 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,04 0,07 0,89 0,50 0,69

3,5 0,46 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,14 0,07 1,00 0,50 0,69

4 0,46 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,22 0,07 1,00 0,50 0,69

4,5 0,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,22 0,07 1,00 0,69 0,69

5 0,52 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,22 0,07 1,00 0,69 0,69

5,5 0,59 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,22 0,07 1,00 0,50 0,69

6 0,61 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,35 1,00 0,22 0,07 1,00 0,69 0,69

B
el
gi
u
m

0,5 0,01 0,00 0,04 0,93 0,00 0,00 0,00 0,00
0,27 1,00 0,69 0,04 0,07 0,04 0,35 0,14

1 0,00 0,00 0,01 0,97 0,00 0,00 0,00 0,00
0,07 0,89 0,69 0,04 0,07 1,00 0,50 0,22

1,5 0,00 0,00 0,01 0,97 0,00 0,00 0,00 0,00
0,07 0,08 0,50 0,04 0,07 0,69 0,50 0,35

2 0,00 0,00 0,01 0,97 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 0,35 0,35 0,35

2,5 0,00 0,00 0,00 0,97 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 0,89 0,50 0,50

3 0,00 0,00 0,00 0,96 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 0,89 0,50 0,50

3,5 0,00 0,00 0,00 0,96 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 0,89 0,50 0,35

4 0,01 0,00 0,00 0,96 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 1,00 0,50 0,50

4,5 0,02 0,00 0,00 0,96 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 1,00 0,50 0,50

5 0,05 0,00 0,00 0,96 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 1,00 0,50 0,50

5,5 0,11 0,00 0,00 0,96 0,00 0,00 0,00 0,00
0,07 0,04 0,22 0,04 0,07 1,00 0,50 0,50

6 0,12 0,00 0,00 0,95 0,00 0,00 0,00 0,00
0,07 0,08 0,35 0,04 0,07 1,00 0,50 0,50

This table shows t test and Wilcoxon rank-signed test p-value using di�erent estimation windows (from
0,5 months to 6 months). Bold numbers point out when both p-values are lower than 0.1 indicating a
change in exposure or contagion. ∆CoV aRi|m,t measures exposure of sovereign to the �nancial sector
and ∆CoV aRm|i,t measures contagion to �nancial sector from the sovereign sector.
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Table 11b: Event study p-values at a country level for di�erent estimation windows

∆CoV aRi|m,t ∆CoV aRm|i,t

Months
May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

D
en
m
ar
k

0,5 0,70 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 0,50 1,00 0,14 0,14 0,04 0,50 0,14

1 0,60 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,47 0,69 1,00 0,14 0,07 1,00 0,69 0,22

1,5 0,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,35 0,89 0,35 0,07 0,89 0,50 0,35

2 0,52 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,22 0,89 0,50 0,07 0,50 0,50 0,35

2,5 0,48 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,22 0,89 0,35 0,07 1,00 0,50 0,50

3 0,53 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,22 0,50 0,35 0,07 1,00 0,50 0,50

3,5 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,35 0,89 0,35 0,07 1,00 0,50 0,35

4 0,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,35 0,89 0,35 0,07 1,00 0,50 0,50

4,5 0,45 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,35 0,89 0,35 0,07 1,00 0,50 0,50

5 0,43 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,14 0,22 0,89 0,35 0,07 1,00 0,50 0,50

5,5 0,41 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,14 0,35 0,89 0,35 0,07 1,00 0,50 0,50

6 0,42 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,14 0,35 0,89 0,35 0,07 1,00 0,50 0,50

F
ra
n
ce

0,5 0,00 0,58 0,40 0,04 0,00 0,00 0,00 0,00
0,07 0,14 1,00 0,08 0,14 0,04 0,50 0,14

1 0,00 0,49 0,31 0,05 0,00 0,00 0,00 0,00
0,07 0,08 1,00 0,08 0,07 1,00 0,50 0,14

1,5 0,00 0,42 0,27 0,26 0,00 0,00 0,00 0,00
0,07 0,04 1,00 0,14 0,07 1,00 0,50 0,35

2 0,00 0,39 0,21 0,23 0,00 0,00 0,00 0,00
0,07 0,04 0,89 0,14 0,07 0,69 0,35 0,22

2,5 0,00 0,39 0,22 0,21 0,00 0,00 0,00 0,00
0,07 0,04 1,00 0,14 0,07 1,00 0,50 0,35

3 0,00 0,36 0,19 0,17 0,00 0,00 0,00 0,00
0,07 0,08 0,89 0,08 0,07 1,00 0,50 0,35

3,5 0,00 0,33 0,17 0,17 0,00 0,00 0,00 0,00
0,07 0,04 1,00 0,14 0,07 1,00 0,50 0,35

4 0,00 0,30 0,14 0,17 0,00 0,00 0,00 0,00
0,07 0,04 0,89 0,14 0,07 1,00 0,50 0,50

4,5 0,00 0,30 0,14 0,15 0,00 0,00 0,00 0,00
0,07 0,08 0,89 0,14 0,07 1,00 0,50 0,50

5 0,00 0,28 0,12 0,13 0,00 0,00 0,00 0,00
0,07 0,04 1,00 0,14 0,07 1,00 0,50 0,50

5,5 0,00 0,37 0,11 0,12 0,00 0,00 0,00 0,00
0,07 0,08 1,00 0,14 0,07 1,00 0,50 0,69

6 0,02 0,41 0,22 0,12 0,00 0,00 0,00 0,00
0,07 0,14 1,00 0,14 0,07 1,00 0,50 0,69

This table shows t test and Wilcoxon rank-signed test p-value using di�erent estimation windows (from
0,5 months to 6 months). Bold numbers point out when both p-values are lower than 0.1 indicating a
change in exposure or contagion. ∆CoV aRi|m,t measures exposure of sovereign to the �nancial sector
and ∆CoV aRm|i,t measures contagion to �nancial sector from the sovereign sector.
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Table 11c: Event study p-values at a country level for di�erent estimation windows

∆CoV aRi|m,t ∆CoV aRm|i,t

Months
May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

G
er
m
an
y

0,5 0,76 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1,00 1,00 0,08 1,00 0,14 0,04 0,50 0,22

1 0,72 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,47 1,00 0,04 1,00 0,07 1,00 0,50 0,22

1,5 0,68 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,27 0,35 0,04 1,00 0,07 0,50 0,50 0,35

2 0,65 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,14 0,35 0,04 1,00 0,07 0,22 0,22 0,35

2,5 0,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 0,89 0,50 0,50

3 0,60 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 0,69 0,50 0,50

3,5 0,59 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 0,89 0,50 0,35

4 0,57 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 1,00 0,50 0,50

4,5 0,56 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 1,00 0,50 0,50

5 0,55 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 1,00 0,50 0,50

5,5 0,62 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 1,00 0,50 0,69

6 0,68 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 1,00 0,08 1,00 0,07 1,00 0,50 0,69

It
al
y

0,5 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00
0,07 0,08 0,22 0,04 0,14 0,04 0,22 0,22

1 0,00 0,00 0,00 0,13 0,00 0,00 0,00 0,00
0,07 0,35 0,22 0,08 0,07 1,00 0,50 0,22

1,5 0,00 0,00 0,00 0,08 0,00 0,00 0,00 0,00
0,07 0,22 0,22 0,08 0,07 1,00 0,50 0,35

2 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,04 0,07 0,50 0,22 0,22

2,5 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00
0,07 0,22 0,22 0,04 0,07 1,00 0,22 0,50

3 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,04 0,07 0,69 0,50 0,35

3,5 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00
0,07 0,08 0,22 0,04 0,07 0,89 0,22 0,35

4 0,00 0,00 0,00 0,03 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,04 0,07 1,00 0,50 0,50

4,5 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,04 0,07 1,00 0,50 0,35

5 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,04 0,07 1,00 0,50 0,50

5,5 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,04 0,07 1,00 0,50 0,50

6 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00
0,07 0,22 0,22 0,04 0,07 1,00 0,50 0,50

This table shows t test and Wilcoxon rank-signed test p-value using di�erent estimation windows (from
0,5 months to 6 months). Bold numbers point out when both p-values are lower than 0.1 indicating a
change in exposure or contagion. ∆CoV aRi|m,t measures exposure of sovereign to the �nancial sector
and ∆CoV aRm|i,t measures contagion to �nancial sector from the sovereign sector.
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Table 11d: Event study p-values at a country level for di�erent estimation windows

∆CoV aRi|m,t ∆CoV aRm|i,t

Months
May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

May
8th,2010

July
26th,2012

August
2nd,2012

September
6th,2012

N
et
h
er
la
n
d
s

0,5 0,94 0,15 0,08 0,00 0,00 0,00 0,00 0,00
1,00 1,00 1,00 0,22 0,07 0,04 0,50 0,14

1 0,91 0,14 0,08 0,00 0,00 0,00 0,00 0,00
0,14 1,00 1,00 0,22 0,07 1,00 0,69 0,14

1,5 0,90 0,10 0,05 0,00 0,00 0,00 0,00 0,00
0,07 1,00 1,00 0,22 0,07 0,89 0,50 0,35

2 0,88 0,07 0,03 0,10 0,00 0,00 0,00 0,00
0,07 1,00 1,00 1,00 0,07 0,50 0,50 0,22

2,5 0,88 0,05 0,02 0,08 0,00 0,00 0,00 0,00
0,07 1,00 1,00 1,00 0,07 1,00 0,50 0,35

3 0,90 0,03 0,01 0,06 0,00 0,00 0,00 0,00
0,07 1,00 1,00 1,00 0,07 1,00 0,50 0,35

3,5 0,89 0,03 0,01 0,04 0,00 0,00 0,00 0,00
0,07 1,00 1,00 0,89 0,07 1,00 0,50 0,35

4 0,89 0,02 0,01 0,03 0,00 0,00 0,00 0,00
0,07 1,00 1,00 0,89 0,07 1,00 0,50 0,50

4,5 0,88 0,02 0,00 0,03 0,00 0,00 0,00 0,00
0,07 1,00 1,00 0,89 0,07 1,00 0,50 0,50

5 0,88 0,01 0,00 0,02 0,00 0,00 0,00 0,00
0,07 1,00 1,00 0,89 0,07 1,00 0,50 0,50

5,5 0,87 0,04 0,00 0,03 0,00 0,00 0,00 0,00
0,07 1,00 1,00 1,00 0,07 1,00 0,50 0,50

6 0,88 0,47 0,20 0,02 0,00 0,00 0,00 0,00
0,07 1,00 1,00 1,00 0,07 1,00 0,50 0,50

S
p
ai
n

0,5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,14 0,04 0,14 0,04 0,22 0,22

1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,22 0,22 0,08 0,07 1,00 0,50 0,22

1,5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,14 0,22 0,08 0,07 1,00 0,22 0,22

2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,08 0,14 0,08 0,07 0,50 0,22 0,22

2,5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,14 0,08 0,07 0,89 0,22 0,35

3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 0,89 0,22 0,35

3,5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 0,89 0,22 0,22

4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 1,00 0,22 0,35

4,5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 1,00 0,35 0,22

5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 1,00 0,22 0,35

5,5 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 1,00 0,22 0,35

6 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,07 0,04 0,08 0,04 0,07 1,00 0,50 0,35

This table shows t test and Wilcoxon rank-signed test p-value using di�erent estimation windows (from
0,5 months to 6 months). Bold numbers point out when both p-values are lower than 0.1 indicating a
change in exposure or contagion. ∆CoV aRi|m,t measures exposure of sovereign to the �nancial sector
and ∆CoV aRm|i,t measures contagion to �nancial sector from the sovereign sector.
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Table 12: Top 5 most stressful moments according to the systemic risk measures

TOP ∆CoV aR1stPC
i|m,t ∆CoES1stPC

i|m,t ∆CoV aR1stPC
m|i,t ∆CoES1stPC

m|i,t
1# 10-May-10 10-May-10 10-May-10 10-May-10
2# 11-May-10 11-May-10 11-May-10 11-May-10
3# 12-May-10 12-May-10 12-May-10 12-May-10
4# 30-Jun-15 30-Jun-15 29-Jun-15 29-Jun-15
5# 01-Nov-11 01-Nov-11 04-May-10 04-May-10

This table shows the �ve days with the highest values for the di�erent
systemic risk measures in the sample. The dates can be linked to the
announcement of ECB measures as the EFSF and SMP (May, 8th 2010), the
Greek referendum announcement by prime minister Papandreu (October,
30th 2011) and the di�culties of Greek government to repay the IMF's
loan after the Greek referendum announcement by prime minister Tsipras
(June, 30th 2015).

Table 13: Unconditional coverage test Kupiec (1995)

Austria Belgium Denmark France Germany Italy Netherlands Spain

C
oV
a
R
i|m

,t
(α
,β

)

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

lower bound ex-
ceedances

1 1 1 1 1 1 1 1

higher bound ex-
ceedances

7 7 7 7 7 7 7 7∑T1m,t=1

t=0 1i|m,t = 1 26 21 26 20 21 13 23 19

T1m,t=1 66 66 66 66 66 66 66 66

C
oV
a
R
m
|i,
t(
α
,β

)

p-value 0.9858 0.6166 0.4497 0.0321 0.5080 0.0035 0.3844 0.0026

lower bound ex-
ceedances

4 3 6 3 4 2 6 2

higher bound ex-
ceedances

15 12 18 13 15 9 17 9∑T1m,t=1

t=0 1i|m,t = 1 9 8 9 14 11 12 8 12

T1i,t=1 180 134 228 152 180 94 213 91
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Table 14: Conditional coverage test Christo�ersen (1998)

Austria Belgium Denmark France Germany Italy Netherlands Spain

C
oV
a
R
i|m

,t
(α
,β

)

p-value 0.0769 0.0718 0.0217 0.0153 0.0718 0.7596 0.2278 0.7383

T pair,00
1i,t=1 28 33 29 28 33 42 30 32

T pair,01
1i,t=1 12 11 11 18 11 10 13 14

T pair,10
1i,t=1 12 11 11 17 11 10 12 14

T pair,11
1i,t=1 13 10 14 2 10 3 10 5

C
oV
a
R
m
|i,
t(
α
,β

)

p-value 0.3289 0.4791 0.0383 0.5228 0.1515 0.6864 0.4282 0.1850

T pair,00
1i,t=1 161 118 211 125 159 71 196 70

T pair,01
1i,t=1 9 7 7 12 9 10 8 9

T pair,10
1i,t=1 9 7 7 12 9 10 8 8

T pair,11
1i,t=1 0 1 2 2 2 2 0 3
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D Figures of results
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Figure 1: CoV aR(α, β = 0.95) and CoV aR(α, β = 0.95) for Italy on July, 26th, 2012 for
di�erent copulas.
Top �gures show (left) the maximum daily credit losses with a 95% level of con�dence for Italy
conditioned to the maximum daily credit losses for the �nancial system with a α∗100% con�dence
level, i.e., CoV aRItaly|m,t(α, 0.95) and (right) the maximum daily losses with a 95% level of con-
�dence for the �nancial system conditioned to the maximum daily losses for Italian CDS with a
α∗100% con�dence level, i.e., CoV aRm|Italy,t(α, 0.95). Bottom �gures show the change in CoV aR
when the conditioning variable changes from a stable situation , i.e., α = 0.5 to the α∗100% worst
case scenario. The left column �gures have as a conditioning variable the �nancial system, ie. m,
and as conditioned variable Italy. The right column �gures have the reverse conditioning and
conditioned variables to the left column �gures.
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Figure 2: Comparison between Frank and Student's t copula for Italy on July, 26th, 2012
given the estimated time-varying copula by maximum likelihood.
Top �gures show uniform random values generated using Frank (left) or Student's t (right) copula
given the estimated time-varying parameter on July, 26th, 2012 for each copula. Note the saturation
on the Student's t tails as a proof of the tail dependence. Bottom �gures show the corresponding
copula density function where each line correspond to a contour level for Frank (left) and Student's
t (right) copula.
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Figure 3: Returns' conditional quantile comparison between Frank and Student's t copula
(C(uj , 1− α) = (1− β)(1− α)) for Italy on July, 26th, 2012.
These 3-D �gures show the maximum conditional quantile of losses for institution j when the
conditioning institution's returns are below its 1 − α quantile. Left �gure is computed under the
assumption that C(·, ·) is a Frank copula and right �gure assumes a Student's t copula.
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Figure 4: CoV aRi|m,t(0.95, 0.95), V aRi,t(0.95) and CoESi|m,t(0.95, 0.95)
V aRi,t(0.95) expresses the maximum daily credit losses in percentage for country i with a 95%
con�dence level. CoV aRi|m,t(0.95, 0.95) expresses the maximum daily credit losses with a con�-
dence level 95% that country i will face given that the �nancial sector's credit returns are below
its (1− α) percentile.
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Figure 5: CoV aRm|i,t(0.95, 0.95), V aRm,t(0.95) and CoESm|i,t(0.95, 0.95)
V aRm,t(0.95) expresses the maximum daily credit losses in percentage for the �nancial sector
with a 95% con�dence level. CoV aRm|i,t(0.95, 0.95) expresses the maximum daily credit losses
with a con�dence level 95% that the �nancial system will face given that the country i's credit
returns are below its (1−α) percentile. Note that CoV aRm|i,t(0.95, 0.95) ≥ V aRm,t(0.95) because
CoV aRm|i,t(0.95, 0.95) can be considered as assessing V aRm,t(0.95) under a stressed scenario in
the country i, consequently its value should be higher. CoESm|i,t(0.95, 0.95) indicates the expected
loss of the �nancial system if the losses are above its CoVaR given that the country i is below its
(1 − α) percentile. CoESm|i,t(0.95, 0.95) ≥ CoV aRm|i,t(0.95, 0.95)due to considering more severe
scenarios.
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Figure 6: ∆CoV aRi|m,t(0.95) and ∆CoESi|m,t(0.95) time-series for each country
∆CoV aRi|m,t(0.95) indicates the increase in CoV aRi|m,t(α, 0.95) when the �nancial system suf-
fers a change from a normal (α = 0.5) to a distressed situation (α = 0.95). ∆CoESi|m,t(0.95)
indicates the change in Expected Shortfall of i's sovereign credit risk if the losses are above its
CoV aRi|m,t(α, 0.95) when �nancial sector's situation is deteriorated, i.e., CoESi|m,t(0.95, 0.95)−
CoESi|m,t(0.5, 0.95). These measures assess the exposure of di�erent countries to the �nancial
sector.
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Figure 7: ∆CoV aRm|i,t(0.95) and ∆CoESm|i,t(0.95) time-series for each country
∆CoV aRm|i,t(0.95) indicates the increase in CoV aRm|i,t(α, 0.95) when the i's sovereign credit
situation su�ers a deterioration from a normal (α = 0.5) to a distressed scenario (α = 0.95).
∆CoESm|i,t(0.95) indicates the change in Expected Shortfall of the �nancial system if the losses
are above its CoV aRm|i,t(α, 0.95) when i's sovereign credit risk situation is deteriorated, i.e.,
CoESm|i,t(0.95, 0.95) − CoESm|i,t(0.5, 0.95). These measures assess the contagion from di�erent
countries to the �nancial sector.
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Figure 8: First principal component of ∆CoV aRi|m,t(0.95), ∆CoV aRm|i,t(0.95),
∆CoESi|m,t(0.95) and ∆CoESm|i,t(0.95)
Red lines indicate measures of contagion from the sovereign credit risk to the �nancial sector, whilst
blue lines represent systemic risk measures of exposure of sovereign credit risk to the �nancial credit
risk. The black vertical lines refer to three announcements: the ECB's announcement where the
European Financial Stability Facility (EFSF) and the Securities Market Program (SMP) were
presented (May 8th, 2010), the day after the Greek prime minister Papandreou announced his
will of proposing a referendum about the bailout conditions (November 1st, 2011) and the Greek
government payback-problems with IMF (June 30th, 2015).
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Figure 9: Stressed CoV aRi|m,t(α = 0.95, β), CoV aRm|i,t(α = 0.95, β), CoESi|m,t(α =

0.95, β) and CoESm|i,t(α = 0.95, β on May 10th, 2010

A higher level of β means a more stressful scenario for the conditioned variable on May 10th, 2010.
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Figure 10: Stressed ∆CoV aRi|m,t(α = 0.95, β), ∆CoV aRm|i,t(α = 0.95, β),

∆CoESi|m,t(α = 0.95, β) and ∆CoESm|i,t(α = 0.95, β on May 10th, 2010

A higher level of β means a more stressful scenario for the conditioned variable on May 10th, 2010.
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Figure 11: Stressed CoV aRi|m,t(α = 0.95, β), CoV aRm|i,t(α = 0.95, β), CoESi|m,t(α =

0.95, β) and CoESm|i,t(α = 0.95, β on July 26th, 2012

A higher level of β means a more stressful scenario for the conditioned variable on July 26th, 2012.
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Figure 12: Stressed ∆CoV aRi|m,t(α = 0.95, β), ∆CoV aRm|i,t(α = 0.95, β),

∆CoESi|m,t(α = 0.95, β) and ∆CoESm|i,t(α = 0.95, β on July 26th, 2012

A higher level of β means a more stressful scenario for the conditioned variable on July 26th, 2012.
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