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Abstract. We design the class of (indirect) Approval mechanisms which allow the players’

strategies to coincide with the subsets of the outcome space. By focusing on the single-peaked

domain, we prove that: a) Each of these mechanisms is characterized by a unique equilib-

rium outcome, and b) for almost every implementable welfare optimum (outcome of a social

choice rule), including the Condorcet winner alternative, there exists an Approval mechanism

that unanimously implements it. That is, Approval mechanisms help a society achieve every

feasible welfare goal, and, perhaps more importantly, they promote social coherence: The

implemented outcome is approved by everyone.
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1. Introduction

Democratic entities, once they set their fundamental welfare goals, try to achieve them by
adopting decision-making procedures that allow for the equal participation of all individu-
als. These democratic decision-making procedures may be broadly split into two categories:
voting and deliberation. Voting requires agents to take actions in support of certain policy
alternatives. Given the type of actions and the voting rule at play, an alternative is imple-
mented. In the literature, a voting mechanism is a - simultaneous or sequential - game with
a formal structure, whose unique equilibrium outcome1 coincides with a specific welfare
optimum. That is, the voting mechanism selects the outcome of a social choice rule (Maskin
[1999]). Indeed, in standard decision-making frameworks well-defined voting mechanisms
exist and result in a variety of welfare optima and outcomes of social choice rules. For ex-
ample, in the context of single-peaked preferences, as recently shown by Gershkov et al.
[2015], sequential quota mechanisms may implement any - generalized - median rule.2 On
the other hand, deliberation requires agents to engage in rounds of informal discussions
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and negotiations until a consensual decision is reached. These procedures guarantee that
the outcome reflects the interests of all members (Innes and Booher [1999]), and they are
employed in high-stakes decision-making by institutions such as the UN Security Council
and the European Council.

Both of these approaches to democracy have deep philosophical grounds, and, despite ap-
parent differences, they complement each other. Arriving at unanimous decisions through
deliberations is usually deemed superior to voting since it leads to collective harmony, but
it is also more costly. As a result, a collective decision problem is commonly solved by
voting when the costs of deliberation surpass the potential costs of post-decision confronta-
tion and clash. When a collective body is composed of a small number of entities (such as
the countries of the EU) among which clash and confrontation who have been historically
costly (for example, the two world wars), it is straightforward that deliberation is the opti-
mal choice.3 When a collective body, though, is too large for deliberation to take place in
an effective manner and/or a costly clash among the participating members is not unlikely,
voting mechanisms are more likely to be adopted.

Since the advantage of deliberative democracy is the implementation of a consensual al-
ternative and the minimization of the likelihood that the participating entities will clash
following the decision (at the expense of reaching this decision after a possibly long period),
while the advantage of voting is the low cost of decision-making (at the expense possibly
generating post-decision conflicts), would it not be desirable to implement welfare optima
via voting mechanisms that generate unanimous outcomes?

In this paper, we focus on the framework of single-peaked preferences,4 and we design
the class of (indirect) Approval mechanisms which do precisely this: They bring together the
described positive features of voting (low decision-making costs) and deliberation (unani-
mous decisions). These mechanisms allow every player to support as many alternatives as
one wants (an arbitrary interval within the unit interval). After all individuals report their
sets of approved alternatives, a publicly known aggregation rule is applied, and an alter-
native is implemented. These aggregation rules might take very simple forms. The most
intuitive examples are arguably the median and the mean aggregation rule. When play-
ers submit their sets of approved alternatives a distribution of approvals is generated: The
density of this distribution at x ∈ [0,1] is identical to the number of individuals that has
approved of alternative x, normalized by the total measure of approvals. The median (resp.
mean) aggregation rule simply implements the median (resp. mean) of this distribution.

Our main finding is that, under some mild restrictions, every implementable welfare opti-
mum may be unanimously implemented by some anonymous Approval mechanism. An Approval

3Moreover, elected officials that take decisions using advice from committees of experts are much more com-
fortable following unanimous recommendations than suggestions that are disputed by a number of experts
in the committee. Unanimous recommendations minimize the responsibility of the decision maker and make
him less accountable to groups of citizens that are negatively affected by his decisions. In addition, when ex-
perts agree on a policy recommendation, it is hard for elected officials to succumb to interest groups’ pressures
and neglect experts’ advice, and this should maximize the probability of informed decision-making. These are
only a few additional reasons that the consensus building literature was developed (see, for example, Bessette
[1980], Gutmann and Thompson [1996], Gutmann and Thompson [2002] and Fishkin and Laslett [2003]).
4The set of alternatives is A = [0,1], and the set of possible preference relations consists of the single-peaked
ones in A.
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mechanism is understood to unanimously implement a welfare optimum/social choice rule
if: a) it implements it in every Nash equilibrium, and b) there is at least one equilibrium in
which each player includes in his strategy (set of approved outcomes) the implemented out-
come. The equilibrium strategies of most players take an easy “I approve every alternative
at most (least) as large as the implemented alternative” form. In fact, every player with a
preferred alternative to the left (right) of the implemented one approves the implemented
alternative and all the alternatives to its left (right). That is, in equilibrium, at most one
player will not include the implemented outcome and his own ideal outcome in his strat-
egy, and this player’s ideal outcome must coincide with the implemented one. Hence, every
equilibrium is substantially unanimous in the sense that, for each voter, the implemented
outcome and his ideal one either are both contained in his strategy or they coincide with
each other.

Notice that in the context of single-peaked voting, the implementable welfare optima
essentially coincide with the outcomes of (generalized) median rules. Indeed, as proved
by Moulin [1980] (generalized) median rules are the unique social choice rules that satisfy
efficiency and strategy-proofness, while Berga and Moreno [2009] established that strategy-
proof rules which are “not too bizarre” (in the context of Sprumont [1995])5 are the only
implementable ones. This allows us to provide a transparent characterization of the unique
equilibrium outcome of each Approval mechanism.6 Moreover, it gives us the tools to design
explicitly an Approval mechanism for each (generalized) median rule - including one for the
pure median rule (also known as the Condorcet rule or, simply, majority rule). Hence, we
explain how to construct an Approval mechanism that implements any given (generalized)
median rule, and we provide the Approval mechanism that unanimously implements the
ideal policy of the median voter (Condorcet winner alternative). To our knowledge, this is
the first simple simultaneous game that implements the Condorcet winner alternative and
arguably is of interest on its own. Finally, the fact that in equilibrium, players approve,
not only the implemented outcome, but their ideal one as well, indicates that these rules,
beyond unanimity, promote sincere revelation of preferences.

The Approval mechanisms can be applied to a variety of decision-making problems. Con-
sider for example a number of judges who disagree on the quality of an athletic performance
(say, in gymnastics or in figure skating) and who have to jointly assign a score to this perfor-
mance, while each of them wants the joint score to be as close as possible to his individual
performance evaluation. Another potential, and - perhaps - more important application, is
the determination of London Interbank Offered Rate (LIBOR) or the board members of the
European Central Bank (ECB) deciding over the interest rate from a closed and convex set
of interest rates (see Cai [2009], Rausser et al. [2015] and Rosar [2015] among others for

5That is, we restrict attention to anonymous rules that implement each of the alternatives for at least one
full-range preference profile.
6Our context is a public good provision one. In the context of private good provision, Bochet et al. [2008]
perform a related exercise with the uniform rule as characterized by Sprumont [1991] and Ching [1994] More
precisely, they prove for a large class of allocation rules, at each preference profile, there is a unique Nash
equilibrium allocation that coincides with the uniform allocation for the profile.
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recent analysis).7 Our Approval mechanisms can be of interest in these settings since they
can improve the quality of decision-making by ensuring a unanimous final decision.

In what follows we discuss the relevant literature (section 2), we describe the model (sec-
tion 3) and present an example (section 4). Then we formally analyze the unanimous im-
plementation through approval mechanisms (section 5).

2. Relevant literature

We aim to show the usefulness of indirect mechanisms in encouraging unanimous agree-
ments. To do so, we focus on the single-peaked domain and prove the following result:
Using approval mechanisms, we can unanimously implement any anonymous, efficient and
strategy-proof social choice function. The remainder of this section reviews the related lit-
erature and underlines our contribution to the implementation theory.

Recall that, as proved by Moulin [1980], a peak-only social choice function is efficient,
anonymous and strategy-proof if and only if it is a generalized median rule (GMR) with
(n− 1) phantoms.8 This is among the few general positive results in social choice theory. Its
interpretation is not very intuitive since the meaning of the phantoms or fixed ballots is at
first sight far from clear. To clarify, we will now briefly explain how these rules work. We
assume throughout that the outcome space A is the interval [0,1]. A GMR f is character-
ized by the phantom vector (p1, . . . ,pn−1): Given the peaks (t1, . . . , tn) of the voters, it selects
f (t1, t2, . . . , tn) as an outcome with

f (t1, t2, . . . , tn) =m(t1, t2, . . . , tn,p1,p2, . . . ,pn−1),

such that each phantom pi is in the interval [0,1] and m(·) stands for the median.9 Note that
each phantom is not required to be in the interior of A. That plays a key role. Indeed, if
pi = 0 for any i = 1, . . . ,n− 1, then

f (t1, t2, . . . , tn) =min(t1, t2, . . . , tn),

7The London Interbank Offered Rate (LIBOR) is the interest rate at which banks can borrow from each other
and plays a critical role in financial markets. LIBOR anchors contracts amount “to the equivalent of $45000
for every human being on the planet” (see MacKenzie [2008]). The banks are asked to submit an interest
rate at which their banks could borrow money. The lowest and highest quarter of the values are discarded
and the Libor corresponds to the average of the remainder. In other words, the device used to determine this
index is the trimmed mean rule. Theorists have mostly focused on the pure mean rule (without trimming) and
their conclusion over its properties is qualified (see Renault and Trannoy [2005] and Yamamura and Kawasaki
[2013] for theoretical works on this subject and Marchese and Montefiori [2011] and Block et al. [2014] for
experimental ones). In environments with a large number of voters, this rule seems to be a natural candidate
as it is the unique one satisfying a weakening of strategy-proofness (see Ehlers et al. [2004]). While the latter
feature is quite desirable, the former violates the usual desiderata of voting theory: A voter drops his most
preferred policy to announce an extremist policy that maximizes his impact on the final outcome. This extreme
polarization of the voters’ positions seems to posit a fundamental problem with the average method.
8One may wonder how restrictive the peak-only assumption is. Arguably, a lot of information is neglected by
restricting attention from the preference relations to just their peaks. However, this intuition turns out to be
false: When preferences are single-peaked, it turns out that every strategy-proof rule with an interval range
must be peak-only. See Ching [1997] and Sprumont [1995] for a direct proof and Barberà et al. [1993] for an
extension in a multidimensional discrete model.
9Moulin’s original work assumes that the outcome space is the set of real numbers. Our results can be extended
to such a framework.
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whereas if pi = 1 for any i = 1, . . . ,n− 1, then

f (t1, t2, . . . , tn) =max(t1, t2, . . . , tn).

More interestingly, when n is odd, letting pi = 0 for any i ≤ n−1
2 and pi = 1 for any i ≥ n−1

2 + 1
leads to

f (t1, t2, . . . , tn) =m(t1, t2, . . . , tn),

and, hence, coincides with the Condorcet winner alternative (pure median rule). A similar
reasoning shows that - carefully selecting the phantoms - leads to the implementation of the
kth ranked type.

We consider generic GMRs, the ones in which interior phantoms are all non-identical.
That is, aGMR is non-generic if there are some pi , pj ∈ (0,1) with pi = pj . The class of generic
GMRs is of particular interest since we prove that the approval mechanisms unanimously
implement these rules.

While these rules are obviously anonymous, it is less evident that they are also efficient
and strategy-proof. Efficiency arises from having not more than n−1 phantoms and, hence,
ensuring that the final outcome lies in the interval defined by the lowest and the highest
type. Strategy-proofness holds since no agent strictly prefers to misreport his type indepen-
dently of the announcements of the rest of the players. Indeed, if a voter’s peak is to the left
of the chosen alternative, any announcement different than his peak has two possible con-
sequences: either it makes the final decision greater than the chosen alternative or it does
not affect the decision (see Border and Jordan [1983] regarding the notion of uncopromis-
ingness). This naturally implies that the game generated by each GMR has a very appealing
Nash equilibrium in which every voter sincerely reveals his true peak.

However, one should note that the game generated by each GMR need not lead to the
generalized median of the true peaks. In this respect, the GMRs share a common feature
with other strategy-proof mechanisms: They admit a large multiplicity of Nash equilibria,
some of which produce different outcomes. For instance, the game triggered by the pure
median rule exhibits a large set of equilibria: As long as every player announces the same
alternative x, this constitutes an equilibrium that implements x since no unilateral deviation
affects the aggregate outcome.10 This leads to the following conclusion: The direct game
associated to a GMR does not Nash implement the GMR (see Repullo [1985] for similar
results).

When presented with the previous observation, two main questions appear: (i) Why
would we care about implementing GMRs? and (ii) how should we implement them?

As far as the first question is concerned, a careful examination of the literature shows
that these rules are essentially the only Nash implementable ones in this environment. To
see why, consider the following line of reasoning. First, Maskin [1999] proves that any
Nash implementable social choice function must be Maskin monotonic (for any domain of
preferences). Second, Berga and Moreno [2009] prove that with single-peaked preferences,

10Experimental evidence shows that strategy-proof mechanisms need not lead a large share of the agents to
reveal their true type (see Attiyeh et al. [2000], Kawagoe and Mori [2001], Kagel and Levin [1993] and Cason
et al. [2006] among others).
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a rule is Maskin monotonic if and only if it is strategy-proof and (weakly) non-bossy.11

Moreover, they prove that non-bossiness is equivalent to convex range in this preference
domain (note that the GMRs have convex range). If f is implementable but f is not a GMR,
then it is strategy-proof rule without a convex range. If a rule has a non-convex range, then
it fails unanimity in the sense that an alternative need not be implemented even if it is the
most preferred one of all voters. This constitutes a strong argument against the use of rules
without a convex range. As Sprumont [1995] puts it, the GMRs are the only implementable
rules which are not ”too bizarre” in this environment. In other words, if the social planner’s
objective is to implement an efficient, unanimous and anonymous social choice function, he
must opt to implement a GMR.

In order to answer the second question, the natural answer would be the use of the integer
game. In this game, the players send messages to the social planner; to ensure efficiency, the
players name integers. When their messages contradict each other, the one announcing
the largest integer is rewarded. Yet, the integer games were built to be applicable in very
general settings rather than for their plausibility. For this reason, these mechanisms are
often quite complex, and this has motivated researchers to investigate the implementation
problem using different approaches, as argued by Jackson [2001].

The literature on designing appealing indirect mechanisms is vast. Yet, it often lacks
general results, while succeeding in tailoring interesting mechanisms for particular situa-
tions. In this literature, the most closely related contributions are the ones by Yamamura
and Kawasaki [2013] and Gershkov et al. [2015] and the one by Saijo et al. [2007].

Yamamura and Kawasaki [2013] proves how to implement GMRs through a class of sim-
ple direct mechanisms: the average rules. As they show, the agents tend to adopt an extrem-
ist behavior (either 0 or 1) in equilibrium. Moreover, the equilibrium outcome coincides
with the GMR of the true peaks with an important restriction: All phantoms must be inte-
rior (i.e. different from 0 or 1). Hence, one cannot implement the Condorcet winner using
the average rules. Gershkov et al. [2015] show how to implement the GMRs through se-
quential quota mechanisms. More precisely, their sequential mechanisms are obtained by
modifying a sequential voting scheme suggested by Bowen [1943]. Our approach is orthogo-
nal to theirs since our Approval mechanisms are simultaneous. In short, the implementation
results that these papers obtain are related to ours: Yet, our main contribution is to show
that Approval mechanisms give incentives for reaching unanimous agreements.

Once we have commented on these closely related works, we will state some final remarks
on two literatures to which this paper is connected.

The first one is the one focusing on strategic voting and, more precisely, on the unanim-
ity rule (see Feddersen and Pesendorfer [1996, 1997, 1998] for classical references in the
area and Koriyama and Szentes [2009] and Bouton et al. [2016] for recent contributions).
The comparison between the current results and the ones in such a literature seems to be

11The relation between strategy-proofness and Maskin monotonicity has produced a rich literature. Muller
and Satterthwaite [1977] show that Maskin monotonicity and strategy-proofness are equivalent when prefer-
ences are the unrestricted. Dasgupta et al. [1979] obtains strategy-proofness as necessary condition for Maskin
monotonicity under some restricted preferences. For recent contributions, see also Takamiya [2007] and Klaus
and Bochet [2013].
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far from pertinent. Indeed, in broad terms, these works often evaluate the consequences
of honest and strategic behavior of voters when confronted with the unanimity rule. They
tend to perform a welfare analysis of this rule in several settings: private/common values,
complete/incomplete information, optimal size of the jury, etc.. Their main message is that
the unanimity rule tends to be inefficient whenever strategic voting is present: That is, vot-
ers do not reveal their true information if the collective decision is to be made by unanimity.
Our objective is different: We posit incentives to endogenously achieve unanimity assuming
from the outset that voters are strategic. Having said so, our paper is also related to the
literature on Approval Voting (see Brams and Fishburn [1983], Laslier and Sanver [2010]
and Bouton and Castanheira [2012] among others), to which Approval mechanisms borrow
both its name and its flexibility. Laslier et al. [2015] design a bargaining device over lotteries
based on Approval voting and derive conditions for consensus reaching in equilibrium with
just two agents.

Finally, this work is, of course, related to implementation theory (see Maskin [1999] and
Jackson [2001] for a review). Our notion of implementation is related to the one of Nash
implementation in the sense that it requires that all equilibria of the game form imple-
ment the desired social choice rule.12 It is stronger than Nash implementation since it
requires the existence of unanimous equilibrium in which all voters agree on the imple-
mented policy. Our objective is hence two-fold: to reduce the multiplicity of equilibria
associated to strategy-proof mechanisms while ensuring a unanimous agreement. The for-
mer requirement is closely related to the contribution by Saijo et al. [2007] who proposed
a novel concept of implementation named secure implementation. This implementation
notion13 aims to get rid of the multiplicity of equilibria inherent to the direct mechanisms
associated with strategy-proof rules previously described by coarsening the notion of im-
plementation. Their proposal manages to derive securely implementable functions in some
situations (such as quasi-linear preferences) but fails to do so in our framework. Our con-
tribution is hinting at a possible manner of overcoming this theoretical objection: In order
to implement a strategy-proof social choice function, rather than using its associated direct
mechanism one could make use of indirect Approval mechanisms that foster unanimity
while ensuring the uniqueness of the equilibrium outcome.

3. The setting

Let A := [0,1] denote the set of alternatives, and N := {1, . . . ,n} with n ≥ 2 stand for the
finite set of players. Each player is endowed with preferences over A. The utility for player
i when x ∈ A is the implemented policy equals ui(x) with ui : A → R, where each ui ∈ U ,

12There is a large literature on implementation, and different notions have been proposed. While Nash imple-
mentation is arguably the most well-known, scholars have focused on other concepts, such, Bayesian imple-
mentation (Jackson [1991]), virtual implementation (Abreu and Sen [1991], Bergemann and Morris [2009b]),
implementation in mixed strategies (Mezzetti and Renou [2012]) and implementation with partial honesty
(Dutta and Sen [2012]) among others.
13More specifically, they focus on a dual notion of implementation that requires dominant strategy implemen-
tation and Nash implementation simultaneously. The notion of secure implementation is equivalent to the one
of robust implementation (see Bergemann and Morris [2009a] among others) in any private values setting, as
ours, as shown by Adachi [2014].
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the set of single-peaked preferences. Note that each player i has a unique peak denoted ti
so that ui(x′) < ui(x′′) when x′ < x′′ ≤ ti and when ti ≤ x′′ < x′.14 We let (t1, . . . , tn) stand for a
distribution of the players’ peaks, and u = (u1, . . . ,un) ∈U :=

∏n
j=1U .

A social choice function is a function f : U → A that associates every u ∈U with a unique
alternative f (u) in A. A mechanism is a function θ : S → A that assigns to every s ∈ S, a
unique element θ(s) in A, where S :=

∏n
i=1Si and Si is the strategy space of agent i. The

mechanism θ is the direct revelation mechanism associated to a SCF f if Si =Ui for all i ∈N
and θ(u) = f (u) for every u ∈U . A SCF f is strategy-proof if for all i ∈N , all ui , ũi ∈Ui , and
all u−i ∈ U−i , ui(f (ui ,u−i)) ≥ ui(f (ũi ,u−i)). As shown by Moulin [1980], these rules admit a
simple characterization: The median of the peaks of the players plus (n − 1) exogenous pa-
rameters (phantoms). More formally, for any finite collection of points x1, . . . ,xm in [0,1], we
let m(x1, . . . ,xm) denote their median. That is, the smallest number m(x1, . . . ,xm) ∈ x1, . . . ,xm,
which satisfies: 1

m#{xi | xi ≤ m(x1, . . . ,xm)} ≥ 1
2 and 1

m#{xi | xi ≥ m(x1, . . . ,xm)} ≥ 1
2 . In the do-

main U and assuming that each agent’s message is one element of A, a SCF f is anonymous,
efficient and strategy-proof if and only if there exist (n − 1) real numbers, κ1, . . . ,κn−1 such
that f (t1, . . . , tn) =m(t1, . . . , tn,κ1, . . . ,κn−1).

We let B denote the collection of closed intervals of A and define an approval mechanism
as a mechanism such that Si = B for every i ∈ N .15 We write bi = minbi and bi = maxbi for
each bi ∈B. Note that the strategy set B allows elements of different dimensions: singletons
and positive length intervals. To accommodate this fact, we let λd denote the Lebesgue
measure on R

d with d = 0,1. Since each bi is a convex set, its dimension is well-defined so
that for each approval profile b = (bi ,b−i), we let dim(b) = maxi∈N dim(bi).

Given a mechanism θ : S → A, the strategy profile s ∈ S is a Nash equilibrium of θ at
u ∈ U , if ui(θ(si , s−i)) ≥ ui(θ(s′i , s−i) for all i ∈ N and any s′i ∈ Si . Let Nθ(u) be the set of
Nash equilibria of θ at u. The mechanism θ implements the SCF f in Nash equilibria if
for each u ∈ U , (i) there exists s ∈ Nθ(u) such that θ(s) = f (u) and (ii) for any s ∈ Nθ(u),
θ(s) = f (u). The SCF f is implementable if there exists a mechanism that implements f
in Nash equilibria. An Approval Mechanism θ unanimously implements the SCF f if (i) θ
implements f in Nash equilibria and (ii) there exists b ∈ Nθ(u) such that ∩ni=1bi = {x} and
with θ(b) = x for some x ∈ A. Our focus is on the unanimous implementation of strategy-
proof rules.

4. An Example: the Median Approval Mechanism

In order to clarify the main ideas behind unanimous implementation, this section presents
an example that illustrates how an approval mechanism works. While our results can be
generalized, we restrict ourselves to three voters in this section to clarify the logic underly-
ing our more general approach.

14For simplicity, we assume that ti , tj for any i, j ∈ N . Our results are not affected when relaxing this con-
straint.
15This assumption can be relaxed by allowing any finite union of closed and convex subsets of A to be the set
of pure strategies. Relaxing it however would imply more cumbersome notation and proofs since then two
strategies that differ by a zero-measure set can have equivalent consequences. Moreover, it does not affect
greatly the result. We prefer to stick to the simpler definition of strategy.



UNANIMOUS IMPLEMENTATION 9

Let N = {1,2,3} and 0 < t1 < t2 < t3 < 1 denote their respective ideal points.16 The Ap-
proval mechanisms that we consider throughout have the following common structure: a)
Every player simultaneously and independently announces a closed interval bi in A, b)
these intervals define a score distribution, and c) the mechanism implements θ(b) with
b = (b1, . . . , bn) which equals some quantile of the score distribution such as the median.

The Approval mechanisms differ in how this score distribution is generated. While the
general structure is discussed in the rest of the paper, we stick here to the simplest inter-
esting manner: That is, we assume that when voter i submits the interval bi , he assigns an
individual score sx(bi) to each x ∈ [0,1] as follows:

sx(bi) = 1 for any x ∈ bi and sx(bi) = 0 otherwise.

Collectively, each profile b assigns a score sx(b) to each alternative x which equals the sum
of the individual scores so that sx(b) =

∑n
i=1 sx(bi). If at least one player submits a positive

interval, the score distribution is the function φ : Bn × [0,1]→ [0,1] such that

φ(b,z) =
∫ z

0

sx(b)∑n
i=1(bi − bi)

dx.

The Median Approval mechanism associates any profile b with the median θ(b) of the score
distribution (when φ is continuous, φ(b,θ(b)) = 1

2 , while when all voters announce a single-
ton, θ(b) corresponds to the median of these singletons).

To understand why this mechanism triggers unanimous agreements, it is key to see that
the best responses are particularly simple to define. Indeed, take some profile b = (bi ,b−i)
and assume that bi is a best response for player i. If ti < θ(b), recall that the agent’s best
response(s) is the strategy that minimizes θ(b) since preferences are single-peaked. In this
case, his unique best response is bi = [0,θ(b)]. Indeed, it is intuitive that any best response
for player i must include some points to the left of θ(b). Now, assume that some best re-
sponse b′i satisfies b′i ∩ [θ(b),1] , ∅. Then consider the strategy ci such that ci = bi ∩ [0,θ(b)].
It follows that θ(ci ,b−i) < θ(b′i ,b−i) since the only difference between ci and b′i is that ci does
not include any point to the right of θ(b), proving that b′i cannot be a best response. It fol-
lows that any best response for player i must be included in [0,θ(b)]. Take now some b′i with
b′i , [0,θ(b)]. Then, again this cannot be a best response since θ(b) < θ(b′i ,b−i) since bi \ b′i
consists only of alternatives located to the left of θ(b). Therefore, if ti < θ(b), the unique
best response for player i is to play [0,θ(b)]. By a symmetric argument, when ti > θ(b), the
unique best response is to play [θ(b),1]. These best responses fully describe the strategic be-
havior in any equilibrium in which no player obtains his peak as the implemented outcome.
They are the main culprit for the unanimous implementation since a rational player must
include the outcome in his ballot.

In order to illustrate the previous best responses, let N = {1,2,3} and t1, t2 <
1
3 < t2. The

game triggered by this mechanism admits a unique equilibrium b∗ with b∗1 = b∗2 =
[
0, 1

3

]
and

16A similar example is analyzed in Austen-Smith and Banks [2005], chapter 6, p.233. In their model, the three
players also reach a consensus over an interior policy in the interval [0,1]. The reasons for consensus depend
on the discount factors, which define the no-delay equilibrium. See Banks and Duggan [2000] for a bargaining
model of collective choice.
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b∗3 =
[

1
3 ,1

]
and θ(b∗) = 1

3 .17 Note that in b∗, every player is playing his unique best response
since he approves of all the alternatives to the left or to the right of the implemented out-
come. Figure 1 depicts the distribution of approvals generated by b∗. The alternatives lower
than 1

3 are selected by two players whereas the rest of them just by one. Hence it is simple
to understand that θ(b∗) = 1

3 since it splits the area below the score function in two exact
halves.

0 1

1/3 = θ(b′)

b∗2 = [0, 1/3] b∗3 = [1/3, 1]

# [Approvals < 1/3] = 2/3 #[ Approvals > 1/3] = 2/3

b∗1 = [0, 1/3]

Figure 1. Distribution of approvals associated to b∗.

Consider the most intuitive deviations b′1 for player 1: either [0,x] with x > 1/3 or [0, y]
with y < 1/3. The first one can be labeled as overshooting since the player includes al-
ternatives that exceed the outcome 1

3 whereas the second one is undershooting. Letting
b′ = (b′1,b

∗
2,b
∗
3), Figure 2 shows that both of these deviations move the outcome to the right

of 1
3 and hence are not best responses. A similar intuition applies to the rest of the devia-

tions.
As depicted by Figure 2a, overshooting moves the outcome to the right of 1

3 since the area

to the left of 1
3 is equal to

2
3

1+x which is smaller than 1
2 for any x > 1

3 . This is not a best response
for player 1 since his peak is located to the left of 1

3 . Indeed, overshooting expands the total
area while leaving unchanged the area to the left of 1

3 . It is then simple to understand that
the median must move to the right of 1

3 .
A similar argument applies to undershooting and is depicted by Figure 2b. Again, the

area to the left of 1
3 is smaller than 1

2 (1
3 +y < 2

3 ) so that undershooting also moves the outcome
to the right of 1

3 . When undershooting, the player’s deviation reduces both the total area and
the area to the left of 1

3 by the same amount making impossible that the median is located
to the left of 1

3 . A similar argument shows that the unique best response for player 1 is to
approve of [0,1

3 ]: no under- or over-shooting occurs in equilibrium.

17As it will be shown in Section 5, when n = 3, this mechanism unanimously implements m(t1, t2, t3,1/3,2/3).
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0 1

1/3 < θ(b′)

b′1 = [0, x] with x > 1/3

b∗2 = [0, 1/3] b∗3 = [1/3, 1]

# [Approvals < 1/3] = 2/3 # [Approvals > 1/3] = 2/3 + x− 1/3

(a) Over-shooting in b∗.

0 1

1/3 < θ(b′)

b′1 = [0, y] with y < 1/3

b∗2 = [0, 1/3] b∗3 = [1/3, 1]

# [Approvals < 1/3] = 1/3 + y #[ Approvals > 1/3] = 2/3

(b) Under-shooting in b∗.

Figure 2. Deviations for Player 1 in b∗

5. Unanimous Implementation

This section presents the main results of this work. First, we describe certain properties
of Approval mechanisms that are sufficient for unanimous implementation. Then, we prove
by construction (as in Maskin [1999]) that for each generic GMR, an Approval mechanism
that unanimously implements it exists.

5.1. Properties of Approval Mechanisms . We restrict ourselves to anonymous Approval
mechanisms18 such that for each x ∈ A, there is some b ∈Bn with θ(b) = x. It is important to
stress here that our characterization approach is not a normative one (we do not try to single

18The mechanism θ : Bn→ A satisfies Anonymity if for any permutation σ :N →N , θ(σ (b)) = θ(b).
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out a set of mechanisms that satisfy certain appealing properties) but a consequentialistic
one (we try to pin down properties of Approval mechanisms that are adequate for unani-
mous outcomes). Indeed, this kind of a characterization, by its very nature, cannot precede
the precise identification of mechanisms that lead to the desired outcomes and, hence, the
current presentation order might appear, at first, as a hysteron proteron. One could claim,
though, that the actual order in which results are derived and the optimal order in which
these results are presented, do not necessarily coincide. Starting with a thorough descrip-
tion of the features of Approval mechanisms that are behind unanimity is, to ours’ view,
more enlightening and insightful, than a direct presentation of the relevant mechanisms
and a subsequent attempt to detail the underlying incentive structure.

The first property deals with the two sort of strategies allowed in an Approval mechanism.
Indeed, either a strategy contains finitely many alternatives (zero-dimensional strategy) or
infinitely many (one-dimensional strategy). One might argue that zero-dimensional strate-
gies are stubborn in the sense that the player is approving of a zero-measure set of the set of
available alternatives. Similarly, a one-dimensional strategy is a compromise in opposition to
stubborn strategies. The set of stubborn and compromise strategies are respectively labeled
by S(B) and C(B) with B = S(B) ∪ C(B). The Approval Mechanisms on which we will
focus give incentives to players to select one-dimensional strategies, in the following sense:

Incentives for Compromise (IC): The mechanism θ : Bn → A satisfies Incentives for Com-
promise if, for any i ∈ N and for any bi ∈ S(B), ∃ b′i ∈ C(B) with ui(θ(b′i ,b−i)) > ui(θ(b))
whenever θ(b) , ti .

This property ensures that a player has an incentive to submit a compromise strategy
rather than a stubborn one, as long as the mechanism does not select his most preferred
alternative. The main implication of IC is that there is no equilibrium in which each player
announces a singleton.

In order to define our second property, we introduce the following piece of notation. For
each i ∈ N and any b−i ∈ Bn−1, θ(B,b−i) denotes the attainable set of player i at b−i ; It
represents the set of available alternatives that player i can choose when the rest of the
players select b−i . Since B is not finite, the set θ(B,b−i) need not have a maximum or
a minimum. Monotonicity gives precise conditions to characterize the maximum and the
minimum of the attainable set when they exist.

Monotonicity (MON ): The mechanism θ : Bn → A satisfies Monotonicity if for any i ∈ N
and any b−i ∈Bn−1, we have:

bmi ∈ argminθ(B,b−i) if and only if bmi = [0,xmi ] with xmi = θ([0,xm],b−i),and (1)

bMi ∈ argmaxθ(B,b−i) if and only if bMi = [xMi ,1] with xMi = θ([xM ,1],b−i). (2)

That is, when a player attempts to draw an implemented outcome as far left as possible,
he should not approve of outcomes to its right and it should not be the case that he does not
approve of outcomes to its left, and vice versa.
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For any profile b ∈ Bn, we let Supp(b) =
⋃n
i=1 bi denote the support of b. The support

denotes the set of alternatives that are selected by at least some player. When the support is
convex, all alternatives located between the minimum and the maximum of the support are
approved by at least one individual.

The next property requires Approval mechanisms to be continuous, at least with reference
to strategy profiles with convex support.

Continuity (C). The mechanism θ : Bn → A satisfies Continuity if for any i ∈ N , any b ∈
C(B)n and any bε = (bεi ,b−i) ∈ C(B)n,

Supp(b),Supp(bε) are convex and lim
ε→∞

bεi = bi =⇒ lim
m→∞

θ(bε) = θ(b).

The continuity property states that the Approval mechanism is continuous with respect to
each component as long as the support is convex. This implies that all alternatives between
the minimum and the maximum of the support are approved by at least one individual;
in equilibrium, the support is convex, whereas when all voters announce singletons, the
support is not convex.

To define our final property, we turn attention to the following class of strategy profiles.
For any j = 0,1, . . . ,n and any x ∈ [0,1], we let B(j,x) :=

{
b ∈ Bn | #{bi = [0,x]} = n − j

and #{bi = [x,1]} = j}
}

denote the set of profiles in which n − j players choose the strategy
[0,x] and j players use the strategy [x,1]. Since θ is anonymous, note that θ(b) = θ(b′) for
any b,b′ ∈B(j,x). We now let for any j ∈ {0, . . . ,n}, Kj := {x ∈ A | θ(b) = x for any b ∈B(j,x)}.

We are now ready to define the phantoms of an Approval mechanism.

Definition 1. For any b ∈ B(j,x) and any Approval mechanism θ, the vector of phantoms κ =
(κj)

n
i=0 is defined as follows:

κj :=


0 if Kj = ∅ and θ(b) < x ∀x ∈ (0,1),
1 if Kj = ∅ and θ(b) > x ∀x ∈ (0,1),
Kj if Kj , ∅ and Kj ∩ {0,1} = ∅,
∅ otherwise.

Whenever κj is treated like a number, it is implicitly assumed that it is a singleton. We
consider that κj is: a) interior if κj ∈ (0,1) and b) intersective if θ(b) crosses the 45 degree line
at κj ∈ (0,1) for any b ∈B(j,x). For simplicity, we say that κj denotes the fixed points of θ(b)
for any b ∈B(j,x).

Fixed-Point Monotonicity (FP ). The mechanism θ : Bn→ A satisfies Fixed-Point Monotonic-
ity if a) all κjs are singletons and increase in j ∈ {0,1, . . . ,n} with κ0 = 0 and κn = 1, and b)
every interior κj is distinct and intersective.

This property establishes that the fixed points of the Approval mechanisms are well-
behaved and is essential to ensure the existence of a pure strategy equilibrium.



14 MATÍAS NÚÑEZ AND DIMITRIOS XEFTERIS

5.2. Sufficiency. Equipped with the previous results we are now ready to state the suffi-
cient conditions for unanimous implementation.

Theorem 1. If an Approval Mechanism θ satisfies C, FP , MON and IC, then:

(1) there is an equilibrium in pure strategies for every admissible preference profile;
(2) in every equilibrium b of θ we have θ(b) =m(t1, t2, . . . , tn,κ1, . . . ,κn−1); and
(3) there is an equilibrium b of θ with ∩ni=1bi = θ(b).

Proof. Take some θ : Bn → [0,1] satisfying C, FP , MON and IC. For short, we write (t,κ)
rather than (t1, t2, . . . , tn,κ1, . . . ,κn−1). The proof first states the existence of equilibrium (Step
A.), then the uniqueness of the equilibrium outcome (Step B.) and finally the existence of a
unanimous equilibrium (Step C.).
Step A.: There is some equilibrium b of θ with θ(b) =m(t,κ).

Step A. is divided into two cases: There is either no th with th =m(t,κ) (Step A.I.), or there
is a th like we develop in Step A.II.

Step A.I. @ : th with th = m(t,κ). Since there is no th with th = m(t,κ), there must exist
j ∈ {1, . . . ,n− 1} such that κj =m(t,κ). Therefore, the number of elements located below and
above κj in (t,κ) is equal to n− 1, which is equivalent to:

#{i ∈N | ti < κj}+ (j − 1)︸                         ︷︷                         ︸
elements lower than κj

= #{i ∈N | ti > κj }+ (n− j − 1)︸                              ︷︷                              ︸
elements higher than κj

= n− 1.

The previous equalities jointly imply that #{i ∈ N | ti < κj} = n− 1 and #{i ∈ N | ti > κj } = j.
Let b ∈Bn be an approval profile with:

bi :=

 [0,κj] if ti < κj ,
[κj ,1] if ti > κj .

Since #{i ∈ N | ti > κj} = j, it follows that #{i ∈ N | ti < κj} = n − j. Therefore, b ∈B(j,κj).
Moreover, θ(b) = κj due to FP , and, that θ(b) = m(t,κ). In order to prove that b is an equi-
librium, assume that there is some i ∈ N with a profitable unilateral deviation b′i , so that
θ(b′i ,b−i) , θ(b). Assume first that θ(b′i ,b−i) < θ(b). If ti > κj and given that preferences are
single-peaked, it follows that ui(θ(b′i ,b−i)) < ui(θ(bi ,b−i)). In other words, b

′
i is not a prof-

itable deviation, entailing a contradiction. If ti < κj , then by definition bi = [0,κj]. However,
due to MON , bi is player i’s unique best response, which proves that there is no profitable
deviation. The same argument applies if θ(b′i ,b−i) > θ(b), which proves that b is an equilib-
rium of the game and concludes Step A.I.

Step A.II. ∃ : th with th = m(t,κ). If there exists j ∈ {1, . . . ,n − 1} such that κj = th, then
j = n − h or j = n − h + 1. Using the same line of reasoning as in A.I., one can show that:
a) when j = n − h + 1, any b ∈ B(n − h + 1, th) is an equilibrium with θ(b) = th and b) when
j = n− h, any b ∈B(n− h, th) is an equilibrium with θ(b) = th.

If th =m(t,κ) and th , κj , there are n−1 values smaller than th in (t,κ). There are essentially
two cases here: a) th ∈ (κ1,κn−1) and b) th < κ1 (the proof for the case th > κn−1 is symmetric).
Below, we consider both cases in turn.
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a) Choose j, such that 1 < j < n−1, with κj < th =m(t,κ) < κj+1. Moreover #{κl | κl < th} = j
and #{i ∈N | ti < th} = h−1 so that: j +h−1 = n−1 =⇒ j = n−h. Therefore, κn−h < th < κn−h+1.

For each A ∈B, we define bA as the approval profile with:

bAi =


[0, th] if ti < th,
A if ti = th,
[th,1] if ti > th.

Our objective is to prove that there is some bA with θ(bA) = th. Since θ is continuous over
a player’s strategy, the result immediately follows from the Intermediate Value Theorem
provided that there are some A′ and A′′ with

θ(A′,bA−h) < th < θ(A′′,bA−h).

By C and FP , we have that for any b ∈ B(n − h,κn−h), θ(b) = κn−h < th if κn−h ∈ (0,1) and
for any b ∈ B(n − h, th), θ(b) < th if κn−h = 0. Similarly, for any b ∈ B(n − h + 1,κn−h+1),
θ(b) = κn−h+1 > th if κn−h+1 ∈ (0,1), and for any b ∈ B(n − h + 1, th), θ(b) > th if κn−h+1 = 1.
Hence, θ(A′,bA−h) < th when A′ = [0, th] and θ(A′′,bA−h) > th when A′ = [th,1] so that there
exists some A with θ(bA) = th.

In order to prove that this profile (b for short) is an equilibrium, suppose by contradiction
that there exists some i ∈ N with a profitable deviation b

′
i . Then, it cannot be the player

with type th since θ(b) = th. Suppose then that θ(b′i ,b−i) < θ(b). Then, ti < th; otherwise,
if ti > th then ui(b′j ,b−j) < ui(bi ,b−i), a contradiction with b

′
i being a profitable deviation.

However, any voter with ti < th is playing his unique best response [0, th], entailing again a
contradiction. A symmetric argument applies when θ(b′i ,b−i) > θ(b). Therefore b must be an
equilibrium concluding a) in Step A.

b) In this case, th = m(t,κ) < κ1, and hence, h = n. According to FP , we have that for any
b ∈B(n−h,x), θ(b) < x for every x ∈ (0,1) (because n−h = 0 < 1) and for any b ∈B(n−h+1,x),
θ(b)(x) = x if and only if x = κ1 (because n − h + 1 = 1). Therefore, θ([0, th],b−h) < th and
θ([th,1],b−h) > th, and, hence, the continuity arguments guarantee here the existence of an
interval A∗ such that θ(bA

∗
) = th. This, in turn, ensures the existence of an equilibrium

similar to the one described in a), which concludes the proof of step A.
Step B.: Any equilibrium b of θ satisfies θ(b) = m(t,κ). Suppose that, there is some θ that
admits an equilibrium b with θ(b) > m(t,κ). We let Lm := {i ∈ N | ti ≤ m(t,κ)} and Fm := {j ∈
{1, . . . ,n− 1} | κj ≤m(t,κ)} with #Lm = i′ and #Fm = j ′. However, by definition, it must be the
case that i′+j ′ ≥ n so that n−i′ ≤ j ′. Thus, κn−i′ ≤ κj ′ =m(t,κ) (i). By Monotonicity, the unique
best response for any player in S equals [0,θ(b)] so that θ(b) ≤ κn−i′ (ii). Combining both (i)
and (ii), it follows that θ(b) ≤m(t,κ) a contradiction with θ(b) > m(t,κ). A symmetric claim
delivers also a contradiction whenever θ(b) < m(t,κ), proving that θ(b) =m(t,κ) as wanted.
Step C.: There exists some equilibrium b of θ with ∩ni=1bi = θ(b). Note that by construc-
tion, the equilibrium built in Step A.I satisfies this claim. In Step A.II, n−1 players announce
th in their equilibrium strategy. Hence it suffices to show that there is some A∗ with th ∈ A∗.
If player h plays [0, th], the outcome is lower than th whereas if he plays [th,1] then the out-
come is higher than th as proved in Step A.II. Observe that if h plays [c,c] and we start from
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c = 0 and c = th and first we start increasing c from th to 1 and then c from 0 to th, we should
have i) always th is included in the interval [c,c] and ii) due to the continuity of the outcome
in c and c the outcome should equal to th for some strategy. Q.E.D.

As a by-product of the previous Theorem and the continuity property, we can establish the
following interesting property of Approval mechanisms: These mechanisms are partially
revealing in the sense that any player always has a best response in which he approves of his
peak ti .

Lemma 1 (Partially Revealing). Let θ : Bn→ A satisfy C, FP , MON and IC. For any approval
profile b and any i ∈N , there is some best response bi ∈B with ti ∈ bi .

The proof is an immediate consequence of Monotonicity whenever θ(b) , ti . If θ(b) = ti ,
the claim is a consequence of θ being a deterministic mechanism as well of, the different
properties of the Approval mechanisms.

5.3. Feasibility. We now prove that the properties defined in the necessity part are not
vacuous in the sense that for any generic GMR, there exists some Approval mechanism that
unanimously implements it.

Let η : [0,1]→ [0,1] be a differentiable and strictly increasing function with η(0) = 0 and
η(1) = 1 and q a non-negative real number.

We assume that when voter i submits the interval bi , he is endowed with up to q+ (η(bi)−
η(bi)) points to be distributed over bi .

More precisely, if dim(bi) ≥ dim(b), then the strategy bi assigns an individual score sx(bi ,q,η)
to each x ∈ [0,1] as follows:

sx(bi ,q,η) =
q

bi − bi
+ η′(x) for any x ∈ bi and sx(bi) = 0 otherwise,

so that his total weight s(bi ,q,η) =
∫ 1

0
sx(bi ,q,η)dx is equal to q+ (η(bi)−η(bi)) as defined. On

the contrary, when dim(bi) < dim(b), so that bi is a singleton and some other voter announces
a positive dimension interval, we let sx(bi ,q,η) = 0 so that his vote is not taken into account.

Collectively, each profile b assigns a score sx(b,q,η) to each alternative x which equals the
sum of the individual scores so that sx(b,q,η) =

∑n
i=1 sx(bi ,q,η).

If all voters announce a singleton, we let med(b1,b2, . . . , bn) be the outcome. On the con-
trary, if some voter announces a positive-dimension interval, the score distribution is the
function φq,η : Bn × [0,1]→ [0,1] such that

φq(b,η,z) =
∫ z

0

sx(b,q,η)∑n
i=1 s(bi ,q,η)

dx.

The Approval mechanism associates any profile b with the alternative θα,q,η(b) such that

θα,q,η(b) := min{x ∈ [0,1] | φq(b,η,θq,η(b)) = α}.

In other words, it selects the α-quantile of the sample endogenously generated by b given
q and η. Each mechanism θα,q,η is characterized by q, η and the parameter α. It is called a
Generalized Approval Mechanism (GAM).
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As shown by the next Lemma, any θα,q,η is a well-defined mechanism.

Lemma 2. For any approval profile b = (bi ,b−i), any non-negative q and any η : [0,1]→ [0,1],
θα,q,η(b) is a well-defined mechanism.

Proof. Note first that sx(b,q,η)∑n
i=1 s(bi ,q,η) ≥ 0 for any x ∈ [0,1]. It suffices to show that its integral over

[0,1] equals 1, which is equivalent toφq(b,η,1) = 1. But this is satisfied since
∫ 1

0
sx(b,q,η)dx =∑n

i=1 s(bi ,q,η). Q.E.D.

Proposition 1. Any GAM satisfies IC, MON , C and FP .

While the formal proof of this proposition for IC, MON and C is relegated to the appen-
dix, we do not prove that FP is satisfied by any GAM. Note that the GAMs are designed to
exhibit trackable phantoms so that FP holds by construction.

Indeed, the vector of fixed points of each mechanism θα,q,η is denoted by κα,q,η and is
defined as follows. To simplify notation, we write κ and θ and assume that α,q and η are
given. Recall that for any j = 1, . . . ,n−1, any strategy profile b ∈B(j,x) has n−j players using
the strategy [0,x] and j players using the strategy [x,1]. As in definition 1, each κj is defined
as follows

κj :=


0 if Kj = ∅ and θ(b) < x ∀x ∈ (0,1),
1 if Kj = ∅ and θ(b) > x ∀x ∈ (0,1),
Kj if Kj , ∅ and Kj ∩ {0,1} = ∅,
∅ otherwise.

Therefore, we have for any j = 1, . . . ,n − 1 , if Kj , ∅ and Kj ∩ [0,1], then any phantom κj
must satisfy the following inequality:

(n−j)η(κj )+(n−j)q
qn+(n−j)η(κj )+j[1−η(κj )]

= α⇔ η(κj) = α(nq+j)−(n−j)q
(n−j)−α(n−2j) .

It follows that the phantom vector κ = (κj)
n
j=0 associated with each GAM satisfies

κj = max{0,min{1,η−1(
α(nq+ j)− (n− j)q
(n− j)−α(n− 2j)

)}},

for each j ∈ {1, . . . ,n − 1}. Note that for any j such that η−1(α(nq+j)−(n−j)q
(n−j)−α(n−2j) ) ∈ (0,1), then κj =

η−1(α(nq+j)−(n−j)q
(n−j)−α(n−2j) ). Since η is differentiable and strictly increasing, one can prove that 0 ≤

κ1 ≤ κ2 ≤ . . . ≤ κn−1 ≤ 1, and that for any pair of interior phantoms κi ,κj ∈ (0,1), it must be
the case that κi , κj . It follows that any GAM satisfies FP .

We are now ready to state the main result of this section.

Theorem 2. For any generic GMR, there exists some GAM that unanimously implements it.

Proof. Take some genericGMRwith phantom vector p = (p1, . . . ,pn−1). We want to prove that
there is some GAM θα,q,η with phantom vector κ that unanimously implement the GMR so
that κ = p.

Assume first that that every pj ∈ (0,1). In this case, it suffices to set α,q and η so that:
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pj = η−1(
α(nq+ j)− (n− j)q
(n− j)−α(n− 2j)

),

meaning κ = p as wanted.
Assume now that there is some a,b ∈ {1, . . . ,n−1} such that pa = 0 and pb = 1 with pi ∈ (0,1)

if i ∈ (a,b). As previously argued, it must be the case that p1 ≤ p2 ≤ pn−1. Hence, for any
s ≤ a, ps = 0 and for any t ≥ b, pt = 1.

Take now some q and α such that

α(nq+ a)− (n− a)q
(n− a)−α(n− 2a)

= 0 and
α(nq+ b)− (n− b)q
(n− b)−α(n− 2b)

= 1. (3)

This ensures that κa = 0 and κb = 1. The previous equalities are equivalent to

q =
aα

n(1−α)− a
,

where α depends on the value of a+ b. More precisely, if a+ b = n then α = 1/2 whereas,

α =
1

(n− a− b)n
((n− a)(n− b)−

√
ab(n− a)(n− b)) if a+ b < n

and
α =

1
(n− a− b)n

((n− a)(n− b) +
√
ab(n− a)(n− b)) if a+ b > n

which proves that the equalities (3) are compatible. Moreover, since 0 ≤ κ1 ≤ κ2 ≤ . . . ≤
κn−1 ≤ 1, it follows that, for any s ≤ a, κs = 0 and for any t ≥ b, κt = 1.

If b = a + 1, then we are done, since κ = p. If b > a + 1, then by assumption, any pi with
i ∈ (a,b) must satisfy pi ∈ (0,1). Then, given that q and α are given by (3), it is enough to
suitably select η such that for any i ∈ (a,b),

pi = η−1(
α(nq+ i)− (n− j)q
(n− i)−α(n− 2i)

),

which ensures that κ = p as wanted. Q.E.D.

5.4. Examples. While the previous arguments remain general, we have not explicitly stated
which generic GMRs are unanimously implemented by which GAM. To do so, we now
introduce some examples that show the usefulness of the methods proposed throughout.
The first one is concerned with the implementation of the Condorcet winner. The second
and third prove how to implement GMRs with interior phantoms. While the second one is a
GAM, the third one is not a GAM: This proves that there might be other interesting classes
of Approval mechanisms.

Example 1: Implementing the Condorcet winner. Let N = {1,2,3} be the set of voters
with t1 < t2 < t3 and set q = 1 and α = 1/2. Namely, each voter is endowed 1 + bi − bi points
and the outcome selected corresponds to the median of the distribution generated by b. The
unique equilibrium outcome of this game is the selection of t2, the median of the types and
the Condorcet winner policy.
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We first prove how to elect t2 at equilibrium and then show why this is the unique
equilibrium outcome. To build an equilibrium supporting t2, note that the analysis of
the best responses imply that, in any such equilibrium, t1 plays [0, t2] whereas t3 plays
[t2,1]. We need to prove that there is some b′2 that ensures t2 to be elected. To see why
there must exist such a b2, let b′ = ([0, t2],b′2, [t2,1]). Then for any t2 ∈ (0,1), if b′2 = [0, t2],

φ1(b′, t2) =
∫ t2

0

2+ 2
t2

3+2t2+1−t2dx >
1
2 , whereas if b′2 = [t2,1], φ1(b′, t2) =

∫ t2
0

1+ 1
t2

3+t2+2(1−t2)dx <
1
2 . There-

fore, the t2-voter can change his b′2 from [0, t2] to [t2,1] to find a strategy [t2 − ε, t2 + δ] that
contains t2 and which leads to φ1(b, t2) = 1/2, or, to the unanimous implementation of her
ideal policy. For instance, if t2 = 1

3 , ε = 7
30 and δ = 1

10 ensures this whereas when t2 = 2
3 ,

ε = 1
66 and δ = 1

6 triggers an outcome equal to t2.
Now, in order to prove that there is no other possible equilibrium outcome, assume by

contradiction that there is some x , t2 elected at equilibrium b. Assume that x < t2, the case
with x > t2 being symmetric. If x ∈ (t1, t2), then the description of the best responses imply

that b = ([0,x], [x,1], [x,1]) since t1 < x < t2 < t3. But then φ1(b,x) =
∫ x

0
1+ 1

x
4+x dx so that φ1(b,x) <

1
2 for any x ∈ (t1, t2), so that there is no such an equilibrium. If x ∈ [0, t1), then b must be such
that the tree players play [x,1] so that the median of these three intervals must be higher
than x. Finally, if x = t1, then in any equilibrium b, players 2 and 3 play b2 = b3 = [t1,1].
However, if player 1 plays b1 = [0, t1], θ1(b) then θ1([0, t1], [t1,1], [t1,1]) = (t1+1)(t1−3)

4(t1−2) > t1 for

any t1 ∈ [0, 1
2 ]. Yet, since [0, t1] would be the best response of any player with ideal policy

to the left of t1, it follows that [0, t1] ≡ argminb1∈B θ1(b1, [t1,1], [t1,1]), which implies that
θ1(b1, [t1,1], [t1,1]) > t1 for any b1 ∈B. Therefore, there is not an equilibrium that elects t1.
All in all, the unique equilibrium outcome associated with θ1 and α = 1

2 is t2.

Example 2: Interior phantoms with a GAM. If we set q = 0, α = 1
2 and η(x) = x for any

x ∈ [0,1]. As previously argued, the phantoms of this Approval mechanism must satisfy for
any j = 1,2, . . . ,n − 1, η(κ

q,η
j ) = j+q(2j−n)

n ⇐⇒ κj = j
n . Hence, N = {1,2,3} leads to κ1 = 1

3 and

κ2 = 2
3 . The equilibria with this mechanism in the case in which m(t1, t2, t3,

1
3 ,

2
3 ) equals one

of the peaks is similar to the ones depicted with the Approval mechanism that implements
the Condorcet winner.

However, in the precise case in which m(t1, t2, t3,
1
3 ,

2
3 ) = 1

3 , the logic is different. Indeed,
the mechanism admits a unique equilibrium b∗ with b∗1 = b∗2 =

[
0, 1

3

]
and b∗3 =

[
1
3 ,1

]
, the one

discussed in section 4. In general, if the equilibrium outcome coincides with a phantom and
not with a type, there is a unique equilibrium (all players playing either to the left or to the
right of the outcome) whereas this is not the case when a player’s peak is the equilibrium
outcome (this player can play in several ways, while the rest of the players play either to the
left or to the right of the outcome).

Example 3: Interior phantoms without a GAM. For any profile b and any alternative x,
we let #{i ∈ N | x ∈ bi}. denote the number of individuals approving of alternative x in b.
Thus, any profile b generates the function fb with fb(x) = #{i∈N |x∈bi }∑

i∈N λ dim (b)(bi )
for any x ∈ [0,1]. It

is easy to prove that fb is a well-defined density function for any approval profile b.
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We let µb stand for the mean of the approval profile b with µb =
∫

[0,1]
xfb(x)dx. Note that

µb ∈ [0,1], and, hence, it always coincides with an alternative. The Average Approval Mech-
anism associates µb to each approval profile b so that θ(b) = µb.

One can show that this rule unanimously implements the generic GMR with for any j =

1, . . . ,n − 1, κj =
√
j√

n−j+
√
j
. This proves that the class of GAMs is not the unique one that

implements GMRs.
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the score distribution is the function φq,η : Bn × [0,1]→ [0,1] such that

φq(b,η,z) =
∫ z

0

sx(b,q,η)∑n
i=1 s(bi ,q,η)

dx.

The Approval mechanism associates any profile b with the alternative θα,q,η(b) such that

θα,q,η(b) := min{x ∈ [0,1] | φq(b,η,θq,η(b)) = α}.

For any b and any i ∈N , we let ψ−i(b,q,η) :=
∑n
j=1,j,i s(bj ,q,η). Note that

φq(b,η,z) =
∫ z

0

sx(bi ,q,η) +
∑n
j=1,j,i sx(bi ,q,η)

s(bi ,q,η) +ψ−i(b,q,η)
dx.

with sx(bi ,q,η) = q

bi−bi
+η′(x) for anyx ∈ bi and sx(bi) = 0otherwise, and s(bi ,q,η) = q+(η(bi)−

η(bi)).
Since φq(b,η,z) is a score distribution, note that

n∑
j=1,j,i

sx(bi ,q,η) < ψ−i(b,q,η)

for any b,q,η and any i ∈ N . The next lemma shows how the outcome varies when a player
varies the lower and upper bound of his strategy.

Lemma 3. Consider any profile b = (bi ,b−i) with convex support. Fix α,q,η. Then, the GAM θ

satisfies the following properties:

(1) if minbi <maxbi < θ(b), then

∂
∂minbi

θ(bi ,b−i) > 0 and
∂

∂maxbi
θ(bi ,b−i) < 0.

(2) if minbi < θ(b) <maxbi , then

∂
∂minbi

θ(bi ,b−i) > 0 and
∂

∂maxbi
θ(bi ,b−i) > 0.

(3) if θ(b) <minbi <maxbi , then

∂
∂minbi

θ(bi ,b−i) < 0 and
∂

∂maxbi
θ(bi ,b−i) > 0.

Proof. Consider first minbi <maxbi < θ(b). Consider x such that Fq,η(b,x) = 1/2. Note that

∂
∂maxbi

φq(b,η,z) =

(
ψ−i(b,q,η)−

∑n
j=1,j,i sx(bi ,q,η))

)
η′(maxbi)

(η(maxbi)− η(minbi) +ψ−i(b,q,η) + q)2 > 0.

That is as maxbi increases θ(b) has to decrease for the outcome to be still equal to α so
that ∂

∂maxbi
θ(bi ,b−i) < 0, as wanted. When we vary the lower bound of bi , notice that

∂
∂minbi

φq(b,η,z) =

(∑n
j=1,j,i sx(bi ,q,η)−ψ−i(b,q,η)

)
η′(minbi)

(η(maxbi)− η(minbi) +ψ−i(b,q,η) + q)2 < 0.



24 MATÍAS NÚÑEZ AND DIMITRIOS XEFTERIS

Again, since minbi increases θ(b) has to increase for the share of approvals to be still
equal to α so that ∂

∂minbi
θ(bi ,b−i) > 0, as wanted. The case in which θ(b) <minbi <maxbi is

symmetric and is omitted.
Consider now the case with minbi < θ(b) <maxbi . We can check that

∂
∂maxbi

(
η(x)− η(minbi) + q

x −minbi
maxbi −minbi

+
n∑

j=1,j,i

sx(bi ,q,η)
)

=
q(minbi − x)

(minbi −maxbi)2 < 0,

whereas

∂
∂maxbi

(
η(maxbi)− (minbi) + q+ψ−i(b,q,η)

)
= η′(maxbi) > 0.

Thus,

∂
∂maxbi

φq(b,η,z) < 0,

so that as maxbi increases x, has to increase. This shows that ∂
∂maxbi

θ(bi ,b−i) > 0, as wanted.
Symmetrically, one can show that as minbi increases θ(b) has to increase for φq(b,η,z) to be
still equal to α. Q.E.D.

Once we have proved this key property of GAM, we prove that each GAM satisfies the
different properties used in the characterization.

Lemma 4. Any GAM satisfies IC.

Proof. Take some b with θ(b) , ti and bi ∈ S(B). Let ti < θ(b) w.l.o.g. Applying Lemma 3,
it is simple to see that there always exists some δ > 0 such that ti < θ([ti , ti + δ],b−i) < θ(b).
Hence, there exists ci ∈ C(B) with ui(θ(ci ,b−i)) > ui(θ(b)), as desired. Q.E.D.

Lemma 5. Any GAM satisfies MON .

Proof. We now prove that for any GAM θ, equivalence (1) holds. A similar proof applies to
the characterization of the maximum of the attainable set.

1. Sufficiency. Take some i ∈ N and assume that there is some b∗i ∈ argminθ(B,b−i)
with b∗i , b

m
i . Let x∗ = θ(b∗i ,b−i). Since b∗i , b

m
i , this means that either b∗i ∩ [0,x∗] , ∅ (1.a.)

or b∗i ∩ [x∗,1] , ∅ (1.b) or both (1.c). In each of these cases, Lemma 3 directly implies that
θ([0,x∗],b−i) < θ(b∗i ,b−i), a contradiction with b∗i ∈ argminθ(B,b−i).

2. Necessity. Take some i ∈ N and assume that there is some bmi with bmi = [0,xmi ]
and xmi = θ([0,xm],b−i). Assume that bmi < argminθ(B,b−i), so that there is some b∗i with
θ(b∗i ,b−i) < θ([0,xm],b−i). By definition, it must be the case that this means that either b∗i ∩
[0,xmi ] , ∅ or b∗i∩[xmi ,1] , ∅ or that both inequalities hold simultaneously. However, Lemma 3
again directly. proves that for any b∗i ∈B, θ(b∗i ,b−i) ≥ θ([0,xm],b−i), which is a contradiction.

Q.E.D.

Lemma 6. Any GAM satisfies C.
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Proof. : Take any GAM θ with density function fb. Take some i ∈ N and any pair b,bε ∈ Bn

with bε = (bεi ,b−i) such that Supp(b),Supp(bε) ∈ C(B). Assume moreover that limε→∞ b
ε
i = bi .

We letφq(b,η,z) andφq(bε,η,z) respectively denote the score distribution associated to b and
bε. Since Supp(b),Supp(bm) ∈ C(B), Fb(x) and Fbε(x) are strictly increasing and continuous
(hence invertible) on Supp(b) and Supp(bε). The respective inverse functions are denoted by
F−1
b : [0,1]→ Supp(b) and F−1

bε : [0,1]→ Supp(bε). Therefore, limε→∞F
−1
bε (x) = F−1

b (x) for any
x ∈ Supp(b). Since for any b with invertible Fb, θ(b) = F−1

b (1
2 ), it follows that limε→∞θ(bε) =

θ(b), as wanted. Q.E.D.
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