NUCCETS OF COODNESS IN THE NEST OF EVIL

Nikos Georgantzis

- School of Agriculture Policy and Development, University of Reading, UK Aurora Garcia Gallego
- LEE-Economics Dep. Universitat Jaume I, Castellon, Spain
- **Tarek Jaber Lopez**
- LEE-Economics Dep. Universitat Jaume I, Castellon, Spain
- **Evangelos Mitrokostas**

University of Portsmouth, UK

MAIN QUESTION(S)

 Are "prisoners" fundamentally different from our usual ("normal") subjects?

OR

 Can laboratory experiments capture the differences among "prisoners" and "normal" subjects?

EXPERIMENTS IN TWO MALE PRISONS IN CHANIA, CRETE (GREECE)

• <u>The agricultural –low security– prison (1 session; 18 volunteer prisoners)</u>

Relatively more pleasant; prisoners spend long times in an open space; possibility of cultivating land and taking care of sheep; all prisoners can meet together during "free time"; library (used as our "lab")

• The high security prison (4 sessions; 58 volunteer prisoners)

Complete isolation; very limited contact with an open space; very limited activities, especially some artistic work allowed; prisoners meet during "free time" only within very well-selected closed groups-no meetings across groups; library (used as our "lab")

Average duration per session: 2 hours. Show-up fee: 5€. Overall, average earnings (including show-up fee)=19.7€

EXPERIMENTS IN TWO MALE PRISONS IN CHANIA, CRETE (GREECE)

The agricultural -low security – prison (1 session; 18 volunteer prisoners)

Relatively more pleasant; prisoners spend long times in an open space; possibility of cultivating land and taking care of sheep; all prisoners can meet together during "free time"; library (used as our "lab")

The high security prison (4 sessions; 58 volunteer prisoners)

Complete isolation; very limited contact with an open space; very limited activities, especially some artistic work allowed; prisoners meet during "free time" only within very well-selected closed groups-no meetings across groups; library (used as our "lab")

Average duration per session: 2 hours. Show-up fee: 5€. Overall, average earnings (including show-up fee)=19.7€

WHY IN GREECE?

School of Agriculture, Policy and Development - Ethical Clearance of Research **Ethical Clearance Submission Form**

You must not begin your research until you have obtained consent as evidenced by this form returned signed and dated. ALL QUESTIONS MUST BE COMPLETED.

Name:	Nikos Georgantzis		B128	4
Status (tick):	Staff member Visitor Higher degree student MSc student Undergraduate student	X	COLOF AGRICUIUS COLOF AGRICUIUS COLOF AGRICUIUS MILOLOGIA OF READING OF READING	ETHICAL CLEARANCE GRANTED
			Theory of the state of the stat	

Name of academic supervisor or principal investigator: _____Nikolaos Georgantzis___

1. Title of project: Prisoners' pro-social values in the presence of monetary temptation: Experimental evidence

2. Brief description of research to be undertaken:

the form every called a "social dilemma" in which human subjects

BUT THE UK MINISTRY OF JUSTICE: "WE REGRET..."

HIGH SECURITY: ENTRANCE

LOW SECURITY: ENTRANCE

MORE PHOTOS: LOW SECURITY

MORE PHOTOS: HIGH SECURITY (IN THE NEWS)

OUR LAB (LOW SECURITY)

TWO EXPERIMENTAL GAMES AND ONE PERSONALITY TEST (LSRP)

• (Genuinely) Sequential Discrete Trust game

A player decides whether to take 10€ for himself and another 10€ for a second player or let the game continue allowing the latter choose between 20€ for each one of the two or take 30€ for himself and let the former down with 5€.

• A Corruption game [Jaber et al (2014) Frontiers in Behavioral Neuroscience]

Two firms bid in an auction granting the license for a public project to one of them. An official decides who wins the auction. Bids involve combinations of bribe and quality (the larger the former, the lower the latter). Quality benefits all players but bribes are only good for officials.

RESULTS AT A GLANCE

TRUST GAME: STUDENT MALES

TRUST GAME: PRISON MALES

Prisoners Trust more and Reciprocate more than students

THE CORRUPTION GAME: THEORETICAL FRAMEWORK

Our framework

- Trade-off between bribe and project quality
- Quality is endogenous and pro-social (equally increasing all players' earnings)
- Bribe is: (i) unfair (increases inequality), (ii) anti-social, (iii) inefficient (it costs more to sender than contributes to receiver) and (iv) more attractive (than quality) to the public officer

Players

2 Firms and 1 Town Planner

Two Stages

- Stage 1: firms *i* and *j* compete for the license of a public project
 - simultaneous decisions: quality, Q_i, Q_j and bribe, B_i, B_j
- Stage 2: town planner observes both firms' offers (firms do not observe rival offers) to decide the winning firm

MONETARY PAYOFFS IMPLEMENTED IN THE EXPERIMENTS

$$\pi_{official} = 10 + \frac{1}{2} \cdot Q_{winner} + B_{winner}$$

$$\pi_{winner} = 10 + \frac{1}{2} \cdot Q_{winner} + 10 - 2 \cdot B_{winner}$$

$$\pi_{loser} = 10 + \frac{1}{2} \cdot Q_{winner}$$

A = 10, hence $Q_i + B_i \leq 10$

Our benchmark is the Nash Equilibria of the game:

$$N = (Q_1, Q_2, B_1, B_2) = (5, 5, 5, 5), \text{ and } (\pi_1, \pi_2) = (12.5, 12.5)$$

 $N = (Q_1, Q_2, B_1, B_2) = (6, 6, 4, 4), \text{ and } (\pi_1, \pi_2) = (14, 14)$
 $N = (Q_1, Q_2, B_1, B_2) = (7, 7, 3, 3), \text{ and } (\pi_1, \pi_2) = (15.5, 15.5)$

STUDENT SUBJECTS

STUDENT SUBJECTS VS PRISONERS

Laboratory subjects

Prison subjects

RESULTS FROM FIRM-SUBJECTS' BEHAVIOUR

Plots of quality bids

STUDENT SUBJECTS

STUDENT SUBJECTS VS PRISONERS

Laboratory subjects

Prison subjects

PSYCHOPATHY AND ECONOMIC BEHAVIOR

FAMOUS PSYCHOPATHS

FORMAL TEST FOR PSYCHOPATHIC PERSONALITY

Levenson Self-Report Psychopathy Scale (LSRP Scale): 26 questions answered on an "agree-disagree" 4-point likert scale.

Psychopathy is a personality disorder first described in 1941 by psychiatrist Hervey Cleckley. It is generally characterized as an acute or total lack of empathy and respect for others with a superficial presentation of normality.

The Levenson Self-Report Psychopathy Scale was developed by Levenson, Kiehl, and Fitzpatrick (1995)

[Levenson, M.; Kiehl, K.; Fitzpatrick, C. (1995). "Assessing psychopathic attributes in a noninstitutionalized population". Journal of Personality and Social Psychology, 68, 151-158.]

to measure psychopathy as a personality trait for use in psychological research. It measures on two scales; primary and secondary psychopathy.

PSYCHOPATHY MEASURED THROUGH LSRP

IS NOT A PSYCHOPATHOLOGY! (It is not treated clinically)

 Psychopaths (especially those scoring high in primary psychopathy) will generally avoid institutionalization for psychiatric reasons, while those scoring high in secondary may have higher probability to end up in prison.

LSRP SCORES IN PRISON AND IN THE LAB

Prison subjects

Laboratory subjects

NO SIGNIFICANT CORRELATION BETWEEN LSRP AND SENTENCE

Correlation LSRP Primary & Sentence -0.1650

Correlation LSRP Secondary & Sentence: 0.0081

Correlation LSRP Total & Sentence: -0.1271

TRUST AND PSYCHOPATHY (STUDENTS)

• No difference in LSRP depending on whether they trust as players 1 or not

RECIPROCITY AND PSYCHOPATHY (STUDENTS)

 Student subjects in the trust game had revealed that higher LSRP scores were related to non reciprocity as a second player

Differences in psychopathy, primary psychopathy and secondary psychopathy degrees between non-reciprocting (0) and reciprocating (1) P2 players.

TRUST AND PSYCHOPATHY (PRISON)

RECIPROCITY AND PSYCHOPATHY (PRISON)

LSRP: WHY DOES IT NOT WORK WITH PRISONERS?

 The prisoner sample is overall much less educated than students and a verbal test like LSRP does not capture their personality

LSRP: WHY DOES IT NOT WORK WITH PRISONERS?

- The prisoner sample is overall much less educated than students and a verbal test like LSRP does not capture their personality
- The reciprocating (N=20) and non reciprocating (N=6) subsamples are surprisingly similar in all variables

LSRP: WHY DOES IT NOT WORK WITH PRISONERS?

- The prisoner sample is overall much less educated than students and a verbal test like LSRP does not capture their personality (?)
- The reciprocating (N=20) and non reciprocating (N=6) subsamples are surprisingly similar in all variables
- Except for education: Reciprocating subjects have, on average, gone almost through a whole educational level higher than non-reciprocating ones (1.166 vs. 1.944)

TOWN PLANNERS AND PSYCHOPATHY

 Prison subjects in the corruption game suggest that higher LSRP scores is related to deciding according to bribe as officials

CORRUPTION AND PERSONAL CHARACTERISTICS

TRUST AND OTHER CHARACTERISTICS (PRISON)

Y = Bribe

	(1)	(2)	(3)	(4)	(5)
	bribe	bribe	bribe	bribe	bribe
Sentence	0.0355*	0.0292^{**}	0.0280**	0.0373^{**}	0.0276*
	(0.069)	(0.049)	(0.050)	(0.021)	(0.072)
Sentence Remain	0.225	0.207	0.204	0.312	0.251
	(0.347)	(0.306)	(0.261)	(0.114)	(0.226)
Education	0.182		-0.149		-0.0742
	(0.760)		(0.758)		(0.898)
Married	1.136			0.724	0.302
	(0.413)			(0.400)	(0.799)
Children	0.790	0.440		0.648	
	(0.231)	(0.233)		(0.122)	
Brothers	0.377		0.115	0.335	
	(0.368)		(0.702)	(0.318)	
LSRP Total	0.0984				
	(0.106)				
Origin	-1.118			-0.726	-0.174
	(0.300)			(0.287)	(0.826)
Age	-0.271	-0.146**	-0.0851**	-0.225**	-0.106
	(0.102)	(0.022)	(0.036)	(0.012)	(0.238)
LSRP Primary		0.101*	0.0907**	0.114^{**}	0.0920
		(0.076)	(0.096)	(0.044)	(0.120)
LSRP Secondary		0.0318			
		(0.737)			
cons	7.181	4.239	2.999	6.317^{*}	3.834
	(0.104)	(0.055)	(0.122)	(0.023)	(0.218)
N	15	16	15	16	15
p-values in parentheses					

p < 0.05, ** p < 0.01, *** p < 0.001

Y = BRIBE MAXIMIZING

	(1)	(2)	(3)	(4)	(5)		
	Bribe max						
origin	1.005	1.019	1.019	1.255	0.971		
	(0.388)	(0.383)	(0.383)	(0.166)	(0.407)		
sentence	0.00527	0.00524	0.00524	0.000855	0.00479		
	(0.867)	(0.867)	(0.867)	(0.975)	(0.885)		
sentence_remain	-0.00439	-0.00393	-0.00393	0.00453	-0.00596		
	(0.886)	(0.899)	(0.899)	(0.856)	(0.852)		
age	0.0281	0.0292	0.0292	0.0333	0.0223		
-	(0.533)	(0.535)	(0.535)	(0.462)	(0.605)		
lsrp total	0.0940**		0.114				
	(0.050)		(0.647)				
lsrp primary		0.0882	-0.0261		0.116**		
		(0.295)	(0.934)		(0.050)		
lsrp_secondary		0.114	0	0.337**			
		(0.647)	(.)	(0.050)			
_cons	-6.016	-6.190	-6.190	-7.300	-5.093		
	(0.088)	(0.132)	(0.132)	(0.057)	(0.113)		
N	17	17	17	17	17		
<i>p</i> -values in parentheses							

p < 0.05, p < 0.01, p < 0.01

O TRUST AND CORRUPTION

BRIBE AND RECIPROCITY

ORIGIN AND BEHAVIOR

TRUST AND ORIGIN

RECIPROCITY AND ORIGIN

BRIBE MAXIMIZERS AND ORIGIN

BRIBE AND ORIGIN

EVENTS ANALYZED

- Event 58: decision making player 1's screen appears
- Event 59: players 1 make their decision
- Event 61: players 2 make their decision (if they can). (Players 2 not deciding do not observe nothing).
- Event 63: results screen.

VARIABLES

- Baseline HR=the beat just before an event
- IBI1=First Interbeat interval after an event
- IBI2=Second Interbeat interval after an event
- dIBI1=IBI1-baseline
- dIBI2=IBI2-baseline
- dAvIBI=average(IBI1,IBI2)-baseline
- All variabes in milliseconds ellapsing between heart beats.
- Longer IBIs mean heart goes slower. When dIBI1 is positive then, decceleration.
- An acceleration means stress, a deceleration means alert, attention.

Y= TRUSI	
----------	--

trust 3.031* (0.057) 3.031* (0.057) 0.00175 (0.563)	trust 3.108* (0.052) -3.109* (0.052) 0.00126 (0.689)	trust 3.175** (0.046) -3.175** (0.046) 0.000922 (0.773)	trust 2.988* (0.061) -2.988* (0.061) 0.00190	trust 3.175** (0.046) -3.175** (0.046) 0.000922
3.031* (0.057) 3.031* (0.057) 0.00175 (0.563)	3.108* (0.052) -3.109* (0.052) 0.00126 (0.689)	3.175** (0.046) -3.175** (0.046) 0.000922 (0.773)	2.988* (0.061) -2.988* (0.061) 0.00190	3.175** (0.046) -3.175** (0.046) 0.000922
(0.057) 3.031* (0.057) 0.00175 (0.563)	(0.052) -3.109* (0.052) 0.00126 (0.689)	(0.046) -3.175** (0.046) 0.000922 (0.773)	(0.061) -2.988* (0.061) 0.00190	(0.046) -3.175 ^{**} (0.046) 0.000922
3.031* (0.057) 0.00175 (0.563)	-3.109* (0.052) 0.00126 (0.689)	-3.175** (0.046) 0.000922 (0.773)	-2.988* (0.061) 0.00190	-3.175 ^{**} (0.046) 0.000922
(0.057) 0.00175 (0.563)	(0.052) 0.00126 (0.689)	(0.046) 0.000922 (0.773)	(0.061) 0.00190	(0.046) 0.000922
).00175 (0.563)	0.00126 (0.689)	0.000922 (0.773)	0.00190	0.000922
(0.563)	(0.689)	(0.773)	(0 500)	
0.001.40			(0.528)	(0.773)
0.00148	0.000737	-0.000169	-0.000566	-0.000169
(0.643)	(0.818)	(0.960)	(0.862)	(0.960)
.00973**	-0.00965**	-0.00979**	-0.00957**	-0.00979**
(0.040)	(0.038)	(0.040)	(0.040)	(0.040)
.00597*	0.00443	0.00555	0.00498	0.00555
(0.098)	(0.203)	(0.134)	(0.157)	(0.134)
0.0307		-0.0445		-0.138*
(0.385)		(0.229)		(0.060)
	0.0790	0.0935*		0
	(0.139)	(0.091)		(.)
			0.00299	0.0935*
			(0.910)	(0.091)
0.195	-0.854	-0.425	-0.249	-0.425
(0.688)	(0.086)	(0.487)	(0.673)	(0.487)
48	48	48	48	48
7	7	8	7	8
	.00973** (0.040) .00597* (0.098) 0.0307 (0.385) 0.195 (0.688) 48 7	$\begin{array}{cccccc} 0.00973 & -0.00965 \\ (0.040) & (0.038) \\ 0.0597 & 0.00443 \\ (0.098) & (0.203) \\ 0.0307 \\ (0.385) \\ \hline \\ 0.0790 \\ (0.139) \\ \hline \\ 0.195 & -0.854 \\ (0.688) & (0.086) \\ 48 & 48 \\ 7 & 7 \\ \hline \\ 7 & 7 \\ \end{array}$	$\begin{array}{ccccccc} 0.00973^{**} & -0.00965^{**} & -0.00979^{**} \\ (0.040) & (0.038) & (0.040) \\ 0.0597^{*} & 0.00443 & 0.00555 \\ (0.098) & (0.203) & (0.134) \\ 0.0307 & & -0.0445 \\ (0.385) & & (0.229) \\ & & 0.0790 & 0.0935^{*} \\ (0.139) & (0.091) \\ \end{array}$	$\begin{array}{ccccccc} 0.00973^{**} & -0.00965^{**} & -0.00979^{**} & -0.00957^{**} \\ (0.040) & (0.038) & (0.040) & (0.040) \\ 0.0597^{*} & 0.00443 & 0.00555 & 0.00498 \\ (0.098) & (0.203) & (0.134) & (0.157) \\ 0.0307 & & -0.0445 \\ (0.385) & & (0.229) \\ \hline & & 0.0790 & 0.0935^{*} \\ (0.139) & (0.091) \\ \hline & & 0.00299 \\ (0.910) \\ \hline & & 0.0029 \\ \hline &$

Y=RECIPROCITY

	(1)	(2)	(3)	(4)	(5)
	reciprocate	reciprocate	reciprocate	reciprocate	reciprocate
datodermoeven61	-4.460	-11.46*	-10.32	-6.048	-10.32
	(0.300)	(0.083)	(0.115)	(0.168)	(0.115)
datodermoeven63	4.457	11.46*	10.32	6.046	10.32
	(0.301)	(0.083)	(0.115)	(0.168)	(0.115)
dibi1evento61ibi1base	0.00282	0.00162	0.00218	0.000254	0.00218
line	-0.00282	0.00162	0.00318	-0.000354	0.00318
	(0.640)	(0.852)	(0.722)	(0.960)	(0.722)
dibi2evento61ibi2base	-0.00399	0.00392	0.00721	0.00197	0.00721
line	-0.00599	0.00392	0.00721	0.00197	0.00721
	(0.630)	(0.737)	(0.580)	(0.849)	(0.580)
dibi1evento63ibi1base	0.0124	0.0149	0.00987	0.00946	0.00987
line	(0.206)	(0.173)	(0.378)	(0.345)	(0.378)
	()				()
dibi2evento63ibi2base	0.00201	0.00438	0.00684	0.00401	0.00684
line	(0.763)	(0.675)	(0.523)	(0.616)	(0.523)
lsrp primaria	-0.0857		-0.0639		0.248
	(0.180)		(0.425)		(0.271)
lsrp secundaria		-0.350*	-0.312		0
*=		(0.090)	(0.123)		(.)
lsrp tot				-0.113*	-0.312
				(0.075)	(0.123)
cons	1.911	3.723	4.409	3.397	4.409
	(0.100)	(0.068)	(0.052)	(0.051)	(0.052)
N	23	23	23	23	23

p < 0.05, p < 0.01, p < 0.001

SEVERAL (PRELIMINARY) CONCLUSIONS

- Prisoners are either similar or more trusting, reciprocal and prosocial than student subjects.
- Prisoners and students have similar LSRP scores.
- LSRP is not a good predictor of sentences.
- Unlike with student subjects, LSRP does not relate much to reciprocity in the trust game.
- But LSRP, longer sentence and young age relate to bribing and bribe-seeking behaviour.
- Trust decreases and reciprocity increases with a prisoners' sentence.
- Bribers tend to be less reciprocal.
- Trusting behaviour is predicted by higher arousal when faced with task and lower arousal when deciding.
- Also, trusting decisions relate to lower attentional resources.
- Finally, apart from lower LSRP scores reciprocal decisions imply a lower arousal and a higher one when receiving feedback.

