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Summary

The objective of this thesis is to compare the performance of a variety of models for VaR
and ES estimation for a collection of assets of different nature: stock indexes, individual stocks,
bonds, exchange rates, and commodities. Throughout the thesis, by a VaR or an ES “model”
is meant a given specification for conditional volatility, combined with an assumption on the
probability distribution of return innovations.

Specifically, Chapter 1 considers the concept of unbiasedness in VaR estimation. Fran-
coni and Herzog (2012) (FH) [12] showed that there exists an analytical bias correction for
VaR when returns are Normally distributed. In this chapter the FH analysis is extended to the
Student-t distribution as well as to Mixtures of two Normal distributions, using a bootstrap-
ping algorithm proposed by FH. The use of the probability-unbiased VaR avoids the systematic
underestimation of risk implied by the bias of standard VaR measures. The magnitude of the
distortion that needs to be exerted on the quantile to move from the standard VaR to the
probability-unbiased VaR depends on the sample size and on the distribution assumption on
returns. Since financial returns usually have thick tails, the smaller the sample size and the
lower the heaviness of the tail of the assumed distribution in estimation, the higher will be
the distortion to be applied to achieve unbiasedness. This VaR adjustment allows us to work
with small samples knowing that the estimated VaR will generally display a good performance.
Furthermore, the results in the thesis show that using a small sample may easily lead to more
accurate VaR estimates than longer samples according to the Exceedance Probability and to the
Observed Absolute Deviation per year (mean of the absolute differences between the expected
number of exceedances and the number of observed exceedances). The good performance of the
probability-unbiased VaR follows from the fact that a short sample size allows for capturing
better the structural changes that arise over time in financial returns due to trading behaviour.

Chapter 2 analyzes how the efficiency of VaR depends on the volatility specification and
the assumption on the probability distribution for return innovations. This question is crucial
for risk managers, since there are so many potential choices for volatility model and probability
distributions that it would be very convenient to establish some priorities in modelling returns
for risk estimation. We consider different conditional VaR models for assets of different nature,
using symmetric and asymmetric probability distributions for the innovations and volatility
models with and without leverage. We calculate VaR estimates following the parametric ap-
proach. The ability to explain sample return moments might be considered a natural condition
to obtain a good VaR performance. However, even though significant effort is usually placed in
selecting an appropriate combination of probability distribution and volatility specification in
VaR estimation, the ability to explain sample return moments is seldom examined. After using
simulation methods to calculate implied return moments from estimated models, we compare
the implied levels of skewness and kurtosis of returns with the analogue sample moments. We
show that the ability to explain sample moments is in fact linked to performance in VaR esti-
mation. Such performance is examined through standard tests: the unconditional coverage test
of Kupiec (1995) [17], the independence and conditional coverage tests of Christoffersen (1998)
[7], the Dynamic Quantile test of Engle and Manganelli (2004) [10], as well as the loss functions
proposed by Lopez (1998, 1999) [18] [19] and Sarma et al. (2003) [22] and that of Giacomini
and Komunjer (2005) [13].

Relative to an ever increasing literature, we contribute in different ways:



i) considering a set of probability distributions that have recently been rendered to be ap-
propriate for capturing the skewness and kurtosis of financial data, but whose performance for
VaR estimation has not been compared previously on a common dataset: Skewed Student-t
[11], Skewed Generalized Error [11], Johnson Sy [15], Skewed Generalized-t [23] and Gener-
alized Hyperbolic Skew Student-t [1] distributions, with the Normal and symmetric Student-t
distributions as benchmark,

i1) considering three volatility specifications with leverage, GJR-GARCH, APARCH and
FGARCH, as well as the standard symmetric GARCH model as benchmark. FGARCH and
APARCH are increasingly being appreciated as being adequate for financial returns because
they are specified for a power of the conditional standard deviation of the innovations, which
provides more flexibility to the dynamics of volatility,

i11) explicitly evaluating the fit to return data, relating that fitting ability to VaR perfor-
mance, and

iv) by introducing a dominance criterion to establish a ranking of models on the basis of
their behavior under standard VaR validation tests and loss functions.

We obtain the following results:

i) VaR models that assume asymmetric probability distributions for the innovations, like
the Skewed Student-t distribution, Skewed Generalized Error distribution, Johnson SU distri-
bution, and Skewed Generalized-t distribution provide a better fit to sample return moments
than symmetric distributions and achieve a better VaR performance,

i1) volatility models with leverage, like APARCH and FGARCH, show a better VaR perfor-
mance than more standard GARCH and GJR-GARCH volatility specifications,

i11) our out-of-sample simulation results suggest that the important assumption for VaR
performance is that of the probability distribution of return innovations, with the choice of
volatility model playing a secondary role,

iv) dealing with the power of the conditional standard deviation as a free parameter is an
important feature of the APARCH/FGARCH volatility specifications because our estimates
suggest that for a number of financial assets the squared conditional deviation specification is
inappropriate,

v) a good fit to return moments usually leads to a good VaR performance. APARCH or
FGARCH models with Skewed Generalized Error, Skewed Generalized-t and Johnson Sy distri-
butions are preferred to other asymmetric distributions, like Skewed Student-t and Generalized
Hyperbolic Skew Student-t, and symmetric distributions, like Student-t and Normal distribu-
tions, and

vi) alternative VaR models seem to provide a distinct performance for different classes of
assets.

In Chapter 3 we estimate the conditional Expected Shortfall based on the Extreme Value
Theory (EVT) approach using asymmetric probability distributions for return innovations, and
we analyze the accuracy of our estimates before and during the 2008 financial crisis using daily
data for 1- and 10-day horizons. We take into account volatility clustering and leverage ef-
fects in return volatility by using the APARCH model under different probability distributions
assumed for the standardized innovations: Gaussian, Student-t, skewed Student-t, skewed gen-
eralized error and Johnson Sy and under EVT methods, following the two-step procedure of
McNeil & Frey (2000) [20]. This two-step procedure fits a Generalized Pareto Distribution to
the extreme values of the standardized residuals generated by APARCH models. Then, we
compare the one-step-ahead out-of-sample ES forecast performance of all these models for dif-



ferent significance levels («). Previously existing backtesting tests for ES have been shown have
serious limitations [as indicated by McNeil & Frey (2000) [20], Berkowitz (2001) [6], Kerkhof
and Melenberg (2004) [16] and Wong (2008) [24]]. Such limitations are overcome by some re-
cent ES backtesting proposals that we use for ES evaluation: the Righi & Ceretta (2013) [21]
test, two tests by Acerbi & Szekely (2014) [2] that are straightforward but require simulation
analysis (like the Rigui & Ceretta test), the test of Graham & P4l (2014) [14], which is an
extension of the Lugannani-Rice approach of Wong, the quantile-space unconditional coverage
test of Costanzino & Curran (2015) [8] for the family of Spectral Risk Measures, of which ES
is a member and, finally, the conditional test of Du & Escanciano (2015) [9].

This chapter contributes to the literature in different ways:

i) considering the APARCH volatility specification in an EVT model using Filtered Histor-
ical Simulation (FHS) [3] [4] to take into account volatility clustering and asymmetric returns,

i1) comparing conditional EVT models that incorporate conditional models with asymmet-
ric probability distributions rarely used in the financial literature for ES estimation,

i11) by analyzing the performance of VaR and ES estimates over 10-day horizons for risk
liquidity management, as proposed in Basel capital requirements [5],

iv) by focusing on the accuracy of our risk models for VaR and ES estimation during the
pre-crisis and crisis periods as well as under different significance levels («), and

v) by evaluating ES performance using the most recent ES backtesting proposals in the
same study.

We obtain the following conclusions:

i) Extreme Value Theory produces a good ES performance regardless of the probability dis-
tribution assumed for return innovations in estimation. This is due to the fact that the tail is
modelled with a Generalized Pareto Distribution not only with 1-day but also 10-day horizons,

it) if we consider conditional models without the EVT approach, we observe that the Skewed
Generalized Error distribution and the Johnson Sy distribution play an important role in cap-
turing tail risk in 1-day and 10-day horizons. This is because the stylized facts of financial
returns such as volatility clusters, heavy tails and asymmetry are suitably captured by these
asymmetric distributions,

i11) even during the crisis period, conditional EVT models are more accurate and reliable for
predicting asset risk losses than conditional models that do not incorporate the EVT approach,
and

iv) sometimes conditional EVT models produce a strong ES overestimation.
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