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Abstract

We present two composite coincident and leading indicators designed to capture
the state of the Spanish economy and to provide reliable statistical forecasting power,
respectively. Our approach, based on trends, guarantees that the resulting indicators
are reasonably smooth and issue stable signals, reducing the uncertainty.

The coincident indicator has been checked by comparing it with the one recently
proposed by the Spanish Economic Association index. Both indexes show similar
behavior and ours captures very well the beginning and end of the official recessions
and expansion periods (whereas the leading indicator systematically predicts the peaks
and troughs). Our coincident indicator also tracks very well alternative mass media
indicators typically used in the political science literature.

The leading indicator provides significant aid in forecasting annual GDP growth
rates, and its one-step-ahead forecasts shows improvements over other alternatives.

1 Introduction

Sound leading and coincident indicators of business cycles are essential components for firms,
investors and policy makers. Coincident Indicators are designed to capture the present state
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of the economy or of its global business cycle, while Leading Indicators should be able to
show reliable statistical forecasting power. Not surprisingly, economists have devoted a large
amount of research in the quest for such indicators following the early works of Burns and
Mitchell (1946) for the US economy. This intensive research has produced a vast amount of
findings with both, theoretical and empirical implications as well as additional requirements
for the indexes to fulfill. Leading indicators, for instance, should systematically provide a
precise indication of the future course of the economy (consistency) and the signals need
to arrive early enough so prospective policy decisions have time to be effective timeliness.
On the other hand, coincident indicators should be able to reproduce the present state of
the economy without producing false turning points signals too frequently. The stability of
signals is also an important additional requirement that the literature to date has largely
overlooked (Drehmann and Juselius, 2014). Indicators that issue stable or persistent sig-
nals reduce the uncertainty regarding trends and avoid confusion for economic agents in
interpreting future directions of change.

At present, there is a large amount of literature on how to design coincident and leading
indicators. Methods range from ad-hoc weighted averages of the time series of observed data
to model-based methodologies. In the first approach, the optimality properties of the index
are unknown so its usefulness is very limited. Within the model-based approach, however,
the methods of diffusion index forecast (Stock and Watson, 2002) and the other variants
of Dynamic Factor Models (DFM) have been able to incorporate information from a large
number of predictors into the forecast in a simple and parsimonious way. A practical question
in this approach, however, is how much data are really needed? In other words, how to find
the best way to extract a subset of variables from a larger data set and, how to use it for
real-time forecasting?

Justification for using a very large number of variables has been solely based on statistical
properties of final estimates. For instance, if the DFM is estimated using principal compo-
nents, the number of variables included in the model needs to be large to achieve consistency
(Bai and Ng, 2002). Therefore, a large number of papers in the literature tend to include
hundreds of variables without offering a systematic good record of forecasting performance
(Stock and Watson, 2003). However, Poncela and Ruiz (2015) showed that when the DFM
is directly estimated from the Kalman Filter equations, no more than a small number of
variables is needed to achieve consistency. They also showed that, when model parameters
have to be estimated, the parameter and total uncertainties could increase when the number
of indicators increases. The related question is then: do we really need consistency when our
main goal is forecasting? In this regard, Garćıa-Ferrer and Poncela (2002), Boivin and Ng
(2006) and Poncela and Garćıa-Ferrer (2014) among others, found that expanding the sample
size adding data that bear little information about the factor components does not neces-
sarily improve forecasts. Similar results are found in Álvarez, Camacho, and Pérez-Quirós
(2016) regarding the use of aggregated versus disaggregated data.

This last issue (reduction search) is central when trying to deal with the permanent
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disease that afflicts all real forecasting exercises with non-experimental data: too many pre-
dictors without enough data. Leamer (2012) offers an interesting proposal by acknowledging
that old and new methods to deal with the overparametrization problem can work well some-
times but not always. Understanding the economic circumstances where each approach is
successful becomes a crucial starting point. Then it is the context that determines which
procedure to use.1

Independently of the method used, either spectral methods (Altissimo, Cristadoro, Forni,
Lippi, and Veronese, 2010) or principal components (Stock and Watson, 2002), estimation
of DFM is based on two features: the assumption of stationarity and the use of seasonally
adjusted data. Both of them may have potential problems. Because economic data are
nonstationary, authors prefilter all series to make each one plausibly stationary by taking
first or second differences. But getting rid of nonstationarity by differencing individual series,
when the series are cointegrated, throws away vast amount of information and may distort
inference (Corona, Poncela, and Ruiz, 2017; Sims, 2012). The issue of using seasonally
adjusted data is also open to controversy [Ghysels, Osborn, and Rodrigues (2006), Matas-
Mir, Osborn, and Lombardi (2008)]. In recent years several researchers have found the
presence of residual seasonality of the US real gross domestic product (GDP) and other US
macroeconomic variables [Bujosa and Garćıa-Ferrer (2014)]. In an attempt to reduce the
residual seasonality, the US Bureau of Economic Analisys (BEA) revised GDP during the
period 2013–2015, seasonally adjusting more of the input data in the aggregated series. In
spite of these adjustments, Phillps and Boldin (2017) find that the first quarter data were
still on average 0.6% too weak2.

For the above reasons; in this paper we will be using original (or log transforms) monthly
seasonally unadjusted data to build and analyze coincident and leading indicators for the
Spanish business cycles from 1982 to 2014. Our goals in this paper are threefold. Firstly, we
will obtain a Composite Coincident Indicator (CCI) using monthly targeted predictors and
dynamic factor models with the aim of reproducing the official dating of Spanish business
cycles and its relation with mas media indexes. Secondly, and using the same methodology,
we will obtain a Composite Leading Indicator (CLI) by updating the results from Bujosa,
Garćıa-Ferrer, and de Juan (2013) who successfully anticipate the onset of Spanish recessions.
Finally, we will evaluate our CLI in comparison with alternative independent forecasts of
Spanish GDP for the period 2001–2016, both in one to one basis as well as with alternative
forecast combinations.

1When analysing US business cycles a few years ago, Leamer (2009) found that for macroeconomic
variables the borderline between features that repeat and features that do no repeat is constantly changing
and, how the contribution to GDP growth of certain economic indicators was radically different during the
expansions and during recessions. This empirical finding allowed him to use the so-called cycle drivers that
systematically anticipated a large percentage of the US recessions. Interestingly, this finding was solely based
on detailed examination and monitoring of disaggregated macroeconomic data using very simple methods.

2Prior to the revision in mid-2016 directly seasonally adjusting the offcicial seasonally adjusted GDP
would revise the first quarter growth since 2013 upward by an average of about 1.5%.
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The paper is organized as follows. Section 2 describes the methodology. Section 2.1
describes the Linear Dynamic Harmonic Regression (LDHR) model to estimate the trends
of the individual predictors while Section 2.2 outlines how they can be stacked in the DFM
for non-stationary time series. Section 3 is devoted to the construction of our coincident
indicator and compares it with the official CF index recently proposed by Spanish Economic
Association (AEE) and with other mass media indicators. Section 4 is devoted to the
leading indicator construction and its historical leadership regarding business cycle activity.
Section 5 assess forecast performance of alternative forecasters including optimal forecast
combinations. Finally, Section 6 concludes.

2 Methodology

2.1 Linear Dynamic Harmonic Regression

The Dynamic Harmonic Regression (DHR) model, developed by Young, Pedregal, and Tych
(1999), is based on a spectral approach, under the hypothesis that the observed time series
y is periodic or quasi-periodic3 and can be decomposed into several components whose vari-
ances are concentrated around certain frequencies: e.g. at a fundamental frequency and its
associated sub-harmonics. This model is often appropriate for observed time series with well
defined spectral peaks, which implies that variance is concentrated around narrow frequency
bands. The DHR model is the sum of several Unobserved Components:

y =
R∑

j=0

sj + e (1)

where the irregular component, e is a stationary sequence e ≡ {et}t∈Z of random variables
with zero mean and variance σ2

e; and each DHR component sj ≡ {sjt}t∈Z is an oscillatory
processes with form

sjt = ajt cos(ωjt) + bjt sin(ωjt). (2)

Hence, the frequency ωj is associated to the j-th component. Usually j = 0 corresponds
to the trend (or zero frequency term) and the other components (j = 1, ..., R) correspond
to the seasonal frequency and its harmonics. Oscillations of each DHR component, sj,
are modulated by two stochastic processes. Both stochastic processes, aj ≡ {aj}t∈Z and
bj ≡ {bj}t∈Z, follow the same AR(1) or AR(2) model with at least one root on the unit
circle. The complete DHR model is

yt =
∑R

j=0

{
ajt cos(ωjt) + bjt sin(ωjt)

}
+ et (3)

3By “quasi-periodic” we mean that the amplitude and the phase of the periodicity may vary over time.
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This model can be considered a straightforward extension of the classical harmonic regression
model, in which the gain and phase of the harmonic components can vary randomly due to
the stochastic processes aj and bj. Bujosa, Garćıa-Ferrer, and Young (2007) showed that
DHR components sj have an equivalent representation as ARIMA processes with some AR
roots on the unit circle.

φj ∗ sj = θj ∗wj, j = 0, . . . , R; (4)

where, wj ≡ {wj}t∈Z is a white noise process, and where φj and θj are, respectively, the AR
and MA polynomials. We say that the trend component (j = 0) follows a IRW model when
φ0 is a two degree polynomial with two unit roots.

Hence, DHR model is a sum of non-stationary stochastic signals plus noise. This is a stan-
dard approach in the literature of unobserved component models and seasonal adjustment
of economic time series. The non-stationary signal extraction problem in this framework
(including its spectral approach) has been studied since the sixties (see Bell, 1984; Hannan,
1967; Pierce, 1979; Sobel, 1967; Tiao and Hillmer, 1978). Nevertheless, and despite the
widespread use of the term pseudo-spectrum in this literature, there was no proper defini-
tion of pseudo-spectra in this context4 until recently. As a matter of fact, Bujosa, Bujosa,
and Garćıa-Ferrer (2015) provide the first formal justification of a corner stone in this lit-
erature: “the pseudo-spectrum of a sum of signals is the sum of the pseudo-spectra of the
signals”. Hence, it is easy to see that the pseudo-spectrum of the DHR model is the sum of
the pseudo-spectra of its components:

fdhr
(
ω,σ2

)
=

R∑
j=1

σ2
j

θj(e−iω)θj(eiω)

φj(e−iω)φj(eiω)
+ σ2

e ; (5)

where the entries in the variance vector σ2 = [σ2
0, . . . , σ

2
R, σ

2
e ] are the unknown hyper-

parameters of the model. Young et al. (1999) propose to fit this model in the frequency
domain by the vector σ̃2 that minimizes the euclidean distance5

min
σ̃2∈RR+2

∥∥∥f̂z(ω)− fdhr
(
ω, σ̃2

)∥∥∥ , (6)

where f̂z(ω) is the estimated AR-spectrum of the observed time series. This strategy has
an intuitive appeal but, since DHR components follow non-stationary ARMA processes, the
corresponding pseudo-spectra have poles; and therefore the norm is not defined. So they take
logs in (6) and truncate the log-functions in the neighborhood of the poles. Then, Young et al.
(1999) minimize the alternative objective function using non-linear least squares procedure.

4where polynomials φj and θj have constant parameters, so this is not the proper context for evolutionary
spectra.

5In their original work, Young et al. (1999) seek the vector NVR = [1, NV R0, . . . , NV RR], where
NV Rj = σ2

j /σ̂
2, using the residual variance σ̂2 from a fitted AR model of the observed series z.
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Here we will be using the Linear Dynamic Harmonic Regression (LDHR) alternative
developed by Bujosa et al. (2007). The LDHR is a linear alternative procedure that also
provides an automatic identification of the complete DHR model. It exploits the algebraic
structure of the pseudo-spectrum functions (see Bujosa et al. (2015)) to avoid the poles
associated to the unit modulus AR roots of fdhr (ω,σ2). Equation (6) is multiplied by the
function Ψ(ω) = ϕ(e−iω)ϕ(eiω), where ϕ is the minimum order polynomial with all unit
modulus AR roots of the complete DHR model, then we can solve by OLS the alternative
minimization problem:

min
σ̃2∈RR+2

∥∥∥Ψ(ω) · f̂y(ω)−Ψ(ω) · fdhr
(
ω, σ̃2

)∥∥∥ , (7)

where f̂y(ω) is the estimated periodogram Î(ω) of y. The estimation of Î(ω) is computed

after a pre-whitening of y using an AR polynomial φ̂y fitted to the series. The size, shape

and location of the spectral peaks (the roots of φ̂y) are used to identify the model of each
of the DHR components spj ; therefore all unit modulus AR roots in Ψ(ω) are the unit roots

in φ̂y(B). Hence, because in (7) all the unit modulus AR roots cancel out, the minimization
problem (6) can be solved by OLS (see Bujosa et al., 2015, 2007).

The noise variance ratios
(
NV Rj = σ2

j/σ
2
e

)
work as smoothing parameters; the smaller

the NV R0, the closer to a linear deterministic trend the estimated trend is. In the limit,
when the NV R0 = 0 the estimated trend is linear. In the case of seasonal components,
the smaller the NV Rj, the smoother the changes in the amplitude of the oscillations of the
j-th DHR component s

pj
t (see Young et al., 1999). Our preference for the DHR is due to

the advantages of Integrated Random Walk (IRW) and Smooth Random Walk (SRW) trend
models over other procedures when dealing with monthly series. Although other alternatives
may track the long term behaviour in any time series equally well, when we look at their
associated first difference transformations the picture changes dramatically. In some cases,
estimated trends actually contain some higher frequency components related to the annual
cycle, which are then amplified by the difference operator.

Since the full DHR model is re-estimated when new data is available, small changes
in some roots close to the unit circle could lead to different volatility on the final filtered
components from one month to the next. In order to track more stable indicators we force
the roots close to the unit circle to be on the unit circle so, in all cases, trends follow an IRW
model and processes that modulate oscillations of seasonal DHR components follow a RW.
This fixed DHR model is justified since it is the model that our LDHR algorithm identifies
in most cases along the sample for the targeted variables.

2.2 Dynamic Factor Model

Let y
t

be a m-dimensional vector of the m time series (the estimated DHR trends in our
case). Following Peña and Poncela (2006) and Lam and Yao (2012), we assume that this



2 METHODOLOGY 7

vector can be written as a linear combination of r < m common factors plus noise

y
t

= Pf
t
+ et (8)

where f
t

is the r-dimensional vector of common unobserved factors, P
[m×r]

is a factor load-

ing matrix. We assume all the common dynamic structure in the trends comes through
the common factors f

t
. We suppose that the vector of common factors follows a vector

autoregressive moving average, VARMA (p, q) model

Φ(B)f
t

= Θ(B)at,

where Φ(B) and Θ(B) are polynomials of r×r matrices, the roots of the equation |Φ(B)| = 0
can be on or outside the unit circle, and at is normally distributed, with zero mean and
serially uncorrelated with a full rank variance-covariance matrix Σa. The components of the
vector of common factors, f

t
, are non-stationary, and we assume the usual conditions for

the invertibility of the VARMA model (see Lütkepohl, 1993, p. 222).
Assume y

t
is I(d), and let Cy(k) be the generalised sample covariance matrices, that is,

Cy(k) =
1

T 2d+d′

T∑
t=k+1

(y
t−k
− ȳ)(y

t−k
− ȳ)′,

where ȳ = 1
T

∑T
t=1 y and d′ can be either 0 or 1. Peña and Poncela (2006) show that for non-

stationary factor identification these matrices play the same role as the sample covariance
matrices in the stationary case. They show [Theorem 1] that Cy(k) converges to a random
matrix Γy that has r1 eigenvalues greater than zero almost sure. This r1 eigenvalues are a
basis of the column space of the loading sub-matrix P1 of the r1 non-stationary factors.

Unfortunately we can not assume that the sequence of vectors et in (8) are normally
distributed, have zero mean and full diagonal covariance matrix Σe, therefore we can not
apply a formal statistical test for the number of common factors as in Peña and Poncela
(2006)6. We can only inspect the eigenvalues and eigenvectors, in order to find evidence of
some large eigenvalues with stable eigenvectors for different values of k, and the remaining
eigenvalues relatively small with non-stable associated eigenvectors.

2.3 Cycle characterization

We use the characterization proposed in Garćıa-Ferrer and Bujosa-Brun (2000), which is
directly linked to the first difference of IRW trend estimations outlined in Section 2.1.

6In fact Poncela (2012) claims that the precise estimation of the number of common factors is still a corner
stone in both exact or strict as well as large and approximate dynamic factor models. In a less restrictive
context, as it is our case, the number of common factors is an open issue.
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We define the anticipation of a recession at time t as the point where the first difference
of trend reaches its local maximum numerical value, and the confirmation of a recession
as the point where the first difference becomes negative if it remains so for at least six
months. Analogously, we define the anticipation of an expansion at the local first difference’s
minimum; and the confirmation of an expansion when the first difference becomes positive
if it remains so for at least nine months. The empirical time differences for an expansion
and a recession are somehow heuristic and based on empirical observations over a large set
of IRW trends of monthly economic series. We will follow the same characterization for the
cycle when dealing with our composite indicators.

2.4 Building composite indicators

The key issue in building the composite indicators is the selection of the targeted variables
and their weighting scheme for their combination into a composite index.

2.4.1 The selection of the targeted variables

In building both, leading and coincident, composite indicators we initially rely on a starting
data base that includes 46 monthly seasonal Spanish economic variables covering all economic
sectors included in the National Accounts (see Bujosa et al., 2013, Table I, for details).
For each composite indicator a small number of targeted variables is selected. Prior to
the selection process all series are filtered in the same way (using their LDHR models) to
extract their DHR components. Then, their cycles are obtained according to the definitions
developed in Section 2.3. The variable selection depends on the (leading or coincident)
nature of each composite indicator. In this regard, we use the mean and the range periods
for the anticipation and confirmation of the recessions along the sample range (see Table I
in Bujosa et al. (2013)), statistical criteria based on dynamic correlation analysis, and also
economic information taking expert knowledge into account.

As a result, for the CCI case, our targeted variables include air traffic passengers, af-
filiates to the social security system, fuel consumption, IPI manufacturing and electricity
consumption. For the CLI case, our targeted variables set includes cement consumption,
car registrations, housing starts and commercial vehicle registrations (see Section 4). All
individual data are available at least since January 1982.

2.4.2 Weighting the trends

Once a small set of targeted variables is selected, using the corresponding trend estimates,
we proceed to estimate the DFM Equation (8) and the corresponding generalized sample
covariance matrix [Cy(k) at the five lags, k = 1, . . . , 5]. For each small set described above,
results corroborate the existence of a single nonstationary common factor. Hence, the non-
stationary common factor for trends corresponding to the small set of targeted variables that
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drive the cycle will be our CLI. The non-stationary common factor corresponding to the
set of coincident targeted variables will be our CCI. In each case the composite indicator
is finally computed as a weighted sum of the corresponding targeted variable trends. In
each case, the vector of weights is the normalized eigenvector corresponding to the largest
eigenvalue of Cy(5).

The remaining of this section is devoted to the building details for the CCI.7

2.4.3 Building the CCI

Table 1 includes estimates of the corresponding Noise Variance Ratio (NVR) coefficients for
the trend as well as for the main seasonal component and its harmonics. The low values
of the NVR estimates imply considerable smoothness. Differences among the coincident
indicators are minor with the exception of Workers in SS System. Also the seasonal NVR
estimates are quite similar for all series, but the seasonal harmonic component with period
2 is not present in three monthly indicators.

Series Trend S12 S6 S4 S3 S2.4 S2

Air traffic passengers 0.0022 0.0154 0.0078 0.0052 0.0028 0.0019
Fuel consumption 0.0005 0.0019 0.0008 0.0056 0.0017 0.0044
Workers in SS System 0.0304 0.0071 0.0006 0.0010 0.0013 0.0021
IPI manufacturing 0.0012 0.0015 0.0024 0.0045 0.0063 0.0106 0.0004
Electricity consumption 0.0005 0.0069 0.0053 0.0023 0.0025 0.0037 0.0013

Table 1: Estimated NVRs of individual monthly variables on the CCI index.
.

In Figure 1, we have plotted the targeted variables in logs, and their estimated IRW
trends; where both non-stationarity in the mean and strong seasonality are evident. Using
the trend estimates, we have obtained and plotted the estimated individual cycles (IRW
trend derivatives) for the five monthly indicators (right hand side column of Figure 1).

In Figure 2 we show the five eigenvalues of the generalized sample covariance matrix of
the five trends using the whole sample [Cy(k) at the first five lags, k = 1, . . . , 5]. As we can
see, although the five eigenvalues are quite stable at different lags, the first one λ1 is much
larger than the remaining ones, indicative of the existence of only a single nonstationary
factor. Figure 3 shows that the corresponding eigenvector is also quite stable at different
lags (k). In fact, it is more stable than the other eigenvectors, that are real at some lags,

7For details for the CLI see Bujosa et al. (2013). Information about the individual NVR estimates,
estimated individual cycles, eigenvalues of Cy(k) for different lags and the normalized eigenvector associated
with the larger eigenvalue of Cy(k), as well as the evolution of the weights used to build de CLI are available
from the authors upon request.
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Figure 1: Left hand side colum: the coincident indicators in logs and their smoothed IRW
trends. Right hand side column: the estimated individual cycles (IRW first differences). Red
triangles mark anticipations of a recession, black squares mark confirmations of a recession,
green triangles mark anticipation of an expansion and blue dots mark confirmations of an
expansion (see Section 2.3).
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but two of them (not always the same pair) become complex conjugates for different values
of k. This also corroborates the existence of a single nonstationary common factor.

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

0

0.2

0.4

Eigenvalues for di�erent lags

First

Second

Third

Fourth

Fifth

Figure 2: Eigenvalues od Cy(k) for different lags k.
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0.1
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0.3

Eigenvector (weights) associated to the larger eigenvalue

Air tra�c passengers

Fuel consumption

Workers in SS System

IPI manufacturing

Electricity consumption

Figure 3: Normalized eigenvector associated to the larger eigenvalue of Cy(k) for different
lags k.

Therefore, we will consider only one non-stationary common factor (since λ1/
∑
λi ≈97%

of the variance). That common factor will be our Composite Coincident Indicator (CCI);
a weighted sum of the five monthly indicators. The vector of weights is the eigenvector
corresponding to the largest eigenvalue. In order to carry on the out-of-sample exercise
we have computed the generalized sample covariance matrix Cy(5) using the iteratively
estimated trends. Figure 4 shows the evolution of the components of the first eigenvector
(the weights used to build the CLI) when the sample is updated.

3 Composite Coincident Indicator

3.1 The CF and the CCI indexes

In April 2015, the AEE launched the first “oficial” dating of the Spanish Business Cycle
through its Dating Commitee. This achivement meant an important milestone for researchers
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Figure 4: Evolution of the weights used to build the Composite Leading Indicator (using
only the information available at each point in time).

and policy makers trying to analyze and compare alternative Spanish business cycle charac-
terizations8 As it happens with the NBER for the US data or the CEPR for the euro area,
we now have a yardstick to compare historical and future results.

The AEE index (CF) is built by using time series data on different frequencies (quarterly
and monthly) following the initial dynamic factor model proposed by Stock and Watson
(1991) and further extensions by Mariano and Murasawa (2003) and Aruoba, Diebold, and
Scotti (2009) (see Camacho, Pérez-Quirós, and Poncela (2013) for a recent survey). The
model is estimated by maximum likelihood using the Kalman Filter. The main assump-
tion behind this approach is that the dynamics of each economic variable depends on two
factors. The first one (a common factor that governs the simultaneous movements of all
variables) provides a business cycle interpretation while the second factor would represent
the idiosyncratic movements of each individual variable.

The set of variables chosen to build the CF index includes quarterly GDP, three monthly
indicators of economic activity; namely, industrial production index, social security affiliates
and the indicator of service sector activity, plus three indicators based on surveys: purchasing
manager index, economic sentiment indicator and the consumer confidence index.9

When comparing our restricted data set with the one used in the CF index a major dif-
ference appears. In our CCI, there are not expectation variables included. Two main reasons
for their absence. First, both the purchasing manager index (1999M08) and the economic
sentiment indicator (1987M04) series start their publication too late for our interest. Second,
we have doubts regarding the value of the survey responses to questions about the present

8Its web page: http://asesec.org/CFCweb/ gives access to the data and methodology used, the precise
turning points and an explanation for each of them. In addition to this, the Dating Committee maintains
an update the index of economic activity, which combines monthly and quarterly information from several
data sources to extract the latent level of economic activity in real time.

9Data enter the model under different transformations. Survey data enter in levels, GDP in seasonally and
calendar effects adjusted while the monthly economic variables are seasonally adjusted except the industrial
production index that is not.

http://asesec.org/CFCweb/
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and future state of the economy that is not already embodied in other economic variables.10

In Figure 5 we have plotted the official CF and the CCI monthly indexes from 1983M07
to 2014M12. Both indexes show a very similar behavior along the business cycle (with
correlation 0.86) and our CCI seems to capture very well the beginning of the official AEE
recessions (shaded areas) and expansion periods during this period. Also, as Table 2 shows,
our CCI seems to show a major lead at the beginning of 1994 expansion and a minor one at
the beginning of the 2008 recession.
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Figure 5: The “oficial” CF (bars) and CCI (line) indexes: 1984M01–2014M12. In all figures,
shaded areas correspond to the “oficial” AEE recessions (see Section 3.1)

3.2 The Economy, the News media and the CCI index

In the political science literature there is a growing body of work exploring the relationship
between the economy, economic news and public perception in various countries. For the
US, Doms and Morin (2004) show how the news media affects consumers’ perceptions of the
economy through different channels. In particular, they show that the greater the volume
of news about the economy, the greater the likelihood that consumers will update their
expectations about the economy. More recently, Soroka, Stecula, and Wlezien (2015) using

10(Leamer, 2009, Chap. 13) provides a good test of the usefulness of these consumer sentiment variables.
After the 9/11 terrorist attack, the Conference Board index of consumer expectations plummeted. The
plummet in the index after 9/11 should have been evident in retail sales. However, while retail sales tumbled
in September 2001, those sales were completely recaptured in October and then back to the normal trend.
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Recession begins Expansion begins

CF index CCI CF index CCI

1992M05 1992M04 1994M02 1993M06
2008M03 2007M11 2010M02 2009M11
2011M06 2011M02 2013M08 2013M07

Table 2: Recessions dating of coincident indexes. Dates on the CCI columns correspond
to confirmation of recessions and expansions of our CCI following the definitions given in
Section 2.3

31,180 news stories over 20 years in the US find how media measures just do a very good
job capturing the economy itself, better even than particular economic indicators. Similarly,
Lischka (2015) uses VAR/Granger methodologies to check the dynamic relationships among
real-world indicators, public expectations, and aggregated news on the general economy for
the four most popular news outlets in Germany from 2002 to 2011.

For the Spanish case, media variables are based on a comprehensive monthly data set
of frontpage economic news stories from three national newspapers: “ABC”, “El Mundo”
(EM) and “El Páıs” (EP). The final data set includes 5,095 stories for the three newspapers
obtained by Soto (2017) from May 2004 until December 2015. A human-based content
analysis has been performed to convert the array stories into time series of economic news
coverage11. The resulting data has been arranged into two indicators:

1. Volume of Coverage (Volume), a straightforward monthly economy-related article count

2. Tone of Content (Tone), net monthly balance of all the economy-related stories (posi-
tive minus negative stories).

The volume and tone for the three newspapers and its weighted average of coverage are
illustrated in Figure 6 12

Note that tone and volume series are negatively correlated. This reflects the fact that
coverage increases when the news are bad, a well known aspect of modern mass media
research (Soroka et al., 2015). Also, as the fisrt column of Table 3 indicates, tone is positively
related to the business cycle while volumen is negatively related.

11As a result of the content analysis, each article was assigned to a positive, negative, or neutral category.
A story was coded as positive if it presented the economy as improving. Conversely, stories that depicted
the economy as declining were coded negative. Articles with no clear tone or mixed messages were coded as
neutral.

12Besides the tone and volume of the individual journals, we also use the respective weighted tone and
volume averages where the weights are computed as a function of the journals circulation. Consequently
weights change from year to year.
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Figure 6: Tones and Volumes of the main Spanish newspapers and their aggregate.
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Variables CCI ABC(T) EM(T) EP(T) AG(T) ABC(V) EM(V) EP(V)

ABC (Tone) .336 –
EM (Tone) .627 .641 –
EP (Tone) .713 .461 .640 –
AG (Tone) .710 .717 .884 .903 –
ABC (Vol.) -.410 -.356 -.425 -.421 -.474 –
EM (Vol.) -.552 -.399 -.597 -.521 -.610 .586 –
EP (Vol.) -.451 -.276 -.383 -.538 -.508 .351 .470 –
AG (Vol.) -.578 -.438 -.578 -.586 -.654 .796 .885 .650

Table 3: Bi-variate Correlations: Economic and Public media measures. Note: ABC,
EM=El Mundo, EP=El Páıs, AG = Weighted Press Index. Data: 2004M05 – 2015M12.
Negative correlations are shaded.

In Figure 7 we show the normalized EP tone and the normalized CCI. In general, the
media coverage of the economy tracks very well the state of economy. Although its signals
are not always consistent (stability condition), exceptions are few 13.

(2009M08)

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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−2

−1

0
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2

Figure 7: El Páıs Tone (bars and left scale) and the CCI (solid line and right scale).

13The most notable one corresponds to 2009M08. At that time, however, Spanish Government was re-
peatedly announcing the possibility of “green shoots”, indicative of a potential recovery.
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4 Composite Leading Indicator

One of the key issues in building leading indicator models is the selection of the leading
variables, and of their weighting scheme for their combination into a composite leading
index. Years ago, Emerson and Hendry (1996) acknowledged that the variables selected
as leading indicators change all too often, suggesting that they didn’t lead for very long,
and that picking up leading indicators by maximizing in sample correlation was unreliable.
This reflects one of the main problems in constructing leading indicator models: certain
categories such as leading, coincidental and lagging are not invariant through time; neither
are the same ones across different countries. More recently, however, leading indicators
have been giving a new lease of life by exploiting the fact that leading indicators (available
at monthly frequency) can be stacked in the model. In a univariate context, the MIDAS
approach by Ghysels, Santa-Clara, and Valkanov (2006) that directly links low-frequently to
high-frequency data has been extensively used in macroeconomic forecasting [e.g. Clements
and Galvão (2009)] to obtain larger predictive gains, particularly at short horizons. Also,
in a multivariate context, the mixed-frequency VAR suggested by Ghysels (2016) and the
U-MIDAS model of Foroni, Marcellino, and Schumacher (2015) offers potential forecasting
gains.

As it is described in Section 2.4, for our CLI, the selected small number of leading targeted
variables includes cement consumption, car registrations, housing starts and commercial
vehicle registrations. From the economic point of view, the selected variables are good proxies
of the Spanish economy since they belong to the main contributing sectors to GDP, namely
private consumption investment and construction. For the period 1980M01 to 2009M12,
Bujosa et al. (2013) show how well individual indicators lead the reference business cycle
with a lead ranging from 8 to 14 months. Also, when looking at growth cycles, (Bujosa
et al., 2013, Table 4) also show that the CLI always precedes the highs and lows of the GDP
growth rates. The average leading anticipation is 3.5 quarters in peaks and 3.6 quarters in
troughs; confirming the greater length and amplitude symmetry of the growth cycles than
their corresponding business cycles [see, e.g. Niemira and Klein (1994) and Garćıa-Ferrer,
Queralt, and Blazquez (2001)].

In Figure 8 we show the CLI index together with official AEE’s CF index. Also in
Table 4 we report information regarding the turning points dating (peaks and troughs) of
both indexes from March 1983 to December 2014. As can be seen, the CLI leads CF by
eighteen months at peaks but only eight months at troughs. This suggest that in terms
of timeliness, the CLI is most useful for signalling oncoming recessions. As in other cases
[e.g. Paap, Segers, and van Dijk (2009)] there seems to be convincing evidence favoring the
presence of a non-synchronous common cycle with asymmetric lead times.

The double dip behavior and the long lead of CLI preceding the 1992 recession were
caused, in a different way, by two special events that took place in Spain in 1992: the
Olympic Games of Barcelona and the Universal Exposition in Seville (Expo 92).Whereas
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Figure 8: CF (bars and left scale) and CLI (solid line and right scale) indexes 1984M03–
2014M12. Peaks and troughs marked with letters (Upper case for CLI and italic lower case
for CF).

Peaks Troughs

CLI CF # months CLI CF # months

84M03 85M02 11
87M01 89M09 32 90M05 91M03 10

92M09 92M12 3
94M06 95M01 6 95M09 95M10 1
98M07 00M04 21 00M08 01M11 15
06M01 07M03 13 08M06 09M03 9

12M02 12M12 10

Average 18 Average 8.4

Table 4: Turning Points Dating of CLI and CF indexes
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most developed economies were in recession by mid 1991, Spain was heavily investing on
these events and the Spanish economy was not in a contraction phase. But when the rest of
the world was taking off from the recession, the Spanish economy came into a contraction.
Thus the 1992 special events in Spain mask the recession (see Bujosa et al. (2013)). In this
regard, the CLI anticipates the 2008 recession as early as 2006M01, 10 months earlier than
the CCI and 13 months earlier than the official CF index.

5 Real-time business cycle forecasting

The full-sample estimation results discussed in the previous section demonstrate two facts.
The first one is that using the CCI within the LDHR model delivers an accurate description
of the Spanish business cycle dynamics; and secondly, that the CLI is a good leading indicator
of both CCI and CF indexes. However, both facts are ex-post features since the trends used
to construct the CCI and the CLI indexes are smoothed estimates that, at each data point,
use information pertaining to the whole sample. But the practical usefulness of leading
indicators can only be assessed on their ability to signal changes in the business cycle ex-
ante. Therefore, a realistic test of this issue requires the use of information that were actually
available at the beginning of each forecast period.

Our forecasting exercise will be based on the one-step ahead forecast errors of annual
Spanish GDP growth from 2001 to 2016. The forecast period include 16 years under three
well defined paths: a normal growth period (2001–2007), a double-dip recessión period (2008–
2012) and a posterior recovery (2013–2016). As such, it is a good yardstick to check the ability
of alternative models to produce, not only accurate forecasts but, also the right signaling of
the corresponding turning points. The CLI forecasts will be compared with those of other 19
individual public and private institutions published by Consensus Forecasts and FUNCAS14.

The empirical literature on the performance of professional macroeconomic forecasts is
abundant. Using different data sets and methodologies it has analyzed several issues such
as accuracy, unbiasedness, and efficiency extensively. At first, it focused on large advanced
countries (see, e.g. Ager, Kappler, and Osterloh, 2009; Dovern and Weisser, 2011). More
recently, however, attention has been spreaded to emerging countries like Brazil (Carvalho
and Minella, 2012), Mexico (Capistrán and López-Moctezuma, 2014), China (Deschamps
and Bianchi, 2012) and individual or groups of the Asian-Pacific countries (Chen, Costantini,
and Deschamps, 2016). As far as we know, however, no such comparative analysis has been
carried on in the case of Spain.

To be sure that this is a genuine out-of-sample forecasting exercise all models should

14Every month, Consensus Economic surveys over 250 prominent financial and economic forecasters for
their estimates of a range of variables including future growth, inflation, interest rates and exchange rates.
More than 20 countries are covered and the reference data, together with analysis and polls on topical issues
is rushed to subscribers by express mail and e-mail.
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share the same time information when the forecasts are made. In the case of the institutions
included in the Consensus Forecasts and FUNCAS, the annual GDP growth forecasts for
2001 are those published in the January 2001 report that use information available up to
December 2000. Similarly, GDP forecasts for 2002 are those published in the 2002 January
report using information up to December 2001. . . and so on. Therefore, for each institution
we collect 16 one-step-ahead forecasts and their corresponding 16 one-step-ahead forecast
errors.

In the case of the monthly CLI, annual growth rates are computed directly as the differ-
ence between January and December for every year in the sample. As with its competitors,
the newest information used to produce the (t + 1) forecast is December of year t. The
initial estimation period runs from 1980 to 2000 where the GDP growth rate is regressed on
three lags of CLI growth rates plus a constant. So, the 2001 GDP growth rate forecast is
obtained. Since the CLI is updated along 2001, the model is re-estimated again to obtain the
2002 forecast. . . and so on. As its contenders, we will obtain a vector of 16 one-step-ahead
forecasts and errors.15

Absolute and relative Root Mean Square Error (RMSE) results for individual institutions
are shown in Table 5, where the consensus represents the simple average of all institutions
excluding the CLI16 and is used as the reference to calculate the relative performance. For
the whole forecasting period (2001–2016), the CLI shows considerable improvement over its
competitors (including the consensus) which tend to perform similarly, indicating a potential
degree of herding behavior (e.g. Rülke, Silgoner, and Wörz, 2016). For the normal growth
period (2001–2007), however, all institutions perform similarly but the Spanish Government
seems to outperform the other alternatives. For this particular period, the CLI results are
in line with those obtained by the consensus. Again, for the final forecasting period (2008–
2016), CLI provides the most accurate forecasts and the gain relative to the other alternatives
is statistically significant; see Table 6.

We test whether the differences in RMSE found in Table 5 are statistically significant
using the Diebold and Mariano test of equal predictive accuracy of the CLI relative to the
other models in the panel. Statistical results in Table 6 confirm the evidence given in Table 5.
In particular, the CLI model provides significantly more accurate forecasts than the other 19
institutions for the whole and final forecasting periods. For the initial period (2001–2007),
however, the differences are not statistically significant.

15Detailed information about empirical results are available from the authors upon request. Also data for
the updated CLI vintages are available at http://uam-ucm-economic-indicators.es/ .

16Other forecasts accuracy measures results like Mean Absolute Error (MAE) or Mean Absolute Scaled
Error (MASE) are available from the authors upon request. However, their messages are identical to those
shown by the RMSE. For instance, the correlation coefficients between the RMSE and MASE for the three
forecasting periods in Table 5 are 0.91, 0.96 and 0.97, respectively.

http://uam-ucm-economic-indicators.es/
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Root Mean Square Error (RMSE) Relative RMSE over Consensus

Institution 2001–2016 2001–2007 2008–2016 2001–2016 2001–2007 2008–2016

AFI 1.582 0.720 2.011 0.931 0.970 0.877
BANKIA 1.652 0.782 2.091 0.972 1.053 0.912
BBVA 1.828 0.798 2.333 1.076 1.075 1.017
Cataluña Caixa 1.787 0.783 2.335 1.052 1.055 1.018
CEPREDE 1.788 0.763 2.288 1.053 1.028 0.998
Econ Intel Unit 1.760 1.130 2.002 1.036 1.522 0.873
Euro Comission 1.870 0.688 2.418 1.101 0.927 1.054
FMI 1.911 0.756 2.459 1.125 1.019 1.072
FUNCAS 1.610 0.867 2.006 0.948 1.168 0.875
IFL 1.656 0.765 2.103 0.975 1.030 0.917
ICAE 1.655 0.729 2.112 0.975 0.982 0.921
IEE 1.664 0.760 2.116 0.980 1.023 0.922
Intermoney 1.737 0.788 2.210 1.023 1.062 0.964
La Caixa 1.718 0.780 2.185 1.012 1.050 0.953
OCDE 1.820 0.720 2.205 1.072 0.969 0.962
Santander 1.715 0.895 2.032 1.010 1.205 0.886
Spanish Gov. 2.246 0.560 2.954 1.323 0.755 1.288
The Economist 2.014 0.978 2.403 1.186 1.318 1.048
UBS 1.602 1.014 1.827 0.943 1.366 0.796
Consensus 1.698 0.742 2.293 1.000 1.000 1.000

CLI 0.820 0.793 0.892 0.483 1.068 0.389

Table 5: Absolute and relative RMSE for individual institutions at different forecasting
periods
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Institutions 2001–2016 2001–2007 2008–2016

AFI 1.803
(0.931)

∗ −0.124
(0.333)

3.303
(1.190)

∗

BANKIA 2.023
(0.905)

∗∗ −0.030
(0.391)

3.620
(1.120)

∗∗

BBVA 2.638
(1.390)

∗ −0.001
(0.379)

4.692
(1.882)

∗∗

Cataluña Caixa 2.450
(1.085)

∗∗ −0.021
(0.058)

4.612
(1.340)

∗∗

CEPREDE 2.502
(1.320)

∗ −0.064
(0.340)

4.498
(1.764)

∗∗

EIU 2.428
(0.712)

∗∗∗ 0.943
(0.360)

∗ 3.171
(0.850)

∗∗∗

Eu Commision 2.790
(1.311)

∗ −0.163
(0.396)

5.087
(1.606)

∗∗

FMI 2.943
(1.409)

∗ −0.069
(0.387)

5.285
(1.687)

∗∗

FUNCAS 1.894
(0.868)

∗∗ 0.106
(0.291)

3.285
(1.239)

∗∗

Spanish Gov. 4.343
(2.336)

∗ −0.326
(0.363)

7.975
(3.086)

IFL 2.043
(0.928)

∗∗ −0.060
(0.353)

3.679
(1.166)

∗∗

ICAE 2.035
(0.925)

∗∗ −0.110
(0.244)

3.704
(1.173)

∗∗

IEE 2.065
(0.976)

∗∗ −0.066
(0.448)

3.728
(1.218)

∗∗

Intermoney 2.330
(1.087)

∗∗ −0.017
(0.355)

4.156
(1.415)

∗∗

La Caixa 2.533
(1.045)

∗∗ −0.032
(0.371)

4.032
(1.379)

∗∗

OCDE 2.669
(1.134)

∗∗ 0.066
(0.356)

4.115
(1.332)

∗∗

Santander 1.927
(0.910)

∗ 0.050
(0.392)

3.387
(1.239)

∗∗

The Economist 2.833
(1.207)

∗∗ 0.034
(0.531)

5.010
(1.290)

∗∗∗

UBS 4.002
(1.244)

∗∗∗ 4.817
(2.620)

∗ 3.368
(0.908)

∗∗∗

Table 6: Diebold and Mariano forecast test for individual institutions

(HAC standard errors are in parenthesis. The superscripts ***, ** and * indicate significance at the 1%,
5% and 10% level, respectively, of the Diebold and Mariano (1995) statistic for testing the null hypothesis
that the difference in Mean Square Error (MSE) of the Individual institutions and the CLI is equal to 0).

5.1 Do forecast combinations help?

When several forecasts of the same event are available, forecast combination seeks to reduce
the information in a vector of forecasts to a single combined forecast using weights which are
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chosen to minimize expected loss. A variety of methods have been proposed in the literature,
including performance-based combinations, principal components, projection on the mean,
optimal weighting and Bayesian shrinkage (see Timmermann, 2006, chap. 4 for details).
Moreover, empirical studies and extensive simulations (Genre, Kenny, Meyler, and Timmer-
mann, 2013) show that the estimated optimal forecast combination does not perform better
than the single arithmetic average, a phenomenon dubbed the “forecast combination puzzle”
—see Claeskens, Magnus, Vasnev, and Wang (2016) for a simple theoretical explanation—.
In this paper we will also assess two forecast combination procedures recently developed by
Arroyo and de Juan (2017). The main idea is to use the metric vector space of non-negative
weights adding up to one (the so-called simplex) as the natural sample space for vectors of
weights assigned to J forecasters. First, we apply usual multivariate statistics to log ratios
of weights to form combinations. Then, we select those forecasters with weights larger than
the benchmark average 1/J .

Again, absolute and relative RMSE results for alternative forecast combinations are
shown in Table 7 for different forecasting periods. Please, note that the whole period 2001–
2016 loses one observation since the computation of the two new combinations needs the
2001 forecast error to start their iterations. Also, the 2008–2016 forecast period has been
splitted into two sub-periods to differentiate the crisis (2007–2012) and the posterior recov-
ery (2013–2016). As in the previous section, the CLI shows the best forecasting results for
all periods but the initial 2002–2006 one where results are very similar among the different
combinations and the CLI. Interestingly, however, for this particular data set and time pe-
riod, the new two combinations seem to improve the consensus, particularly so in the case of
the last expansion period (2013–2016). When the CLI is included in the panel of forecasts
both combinations assign it a larger weight in their combinations than the fixed 1/J value
that it is used in the Consensus.

RMSE Relative RMSE over consensus
2002–2016 2002–2006 2007–2012 2013–2016 2002–2016 2002–2006 2007–2012 2013–2016

CLI 0.755 0.815 1.051 0.189 0.432 1.068 0.417 0.176
Consen. 1.747 0.763 2.519 1.071 1.000 1.000 1.000 1.000
Comb. 1.551 0.825 2.276 0.634 0.888 1.081 0.903 0.593
Selec. 1.421 0.719 2.105 0.528 0.814 0.942 0.836 0.493

Table 7: Absolute and relative RMSE of the CLI and alternative forecast combinations
(consensus, combination with CLI, and section with CLI).

Statistical significance of the previous results are shown in Table 8 using the Diebold
and Mariano (1995) test of equal predictive accuracy of the CLI relative to the alternative
combinations. The CLI model provides more accurate forecasts than the other alternative
combinations in three out of four forecasting periods. As before, however, for the initial
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period (2002–2006) the differences are not statistically significant.

Combinations 2002− 2016 2002− 2006 2007− 2012 2013− 2016

Consensus 2.451
(1.028)

∗∗ 0.251
(0.302)

5.205
(1.596)

∗∗ 3.837
(0.279)

∗∗

Combination 2.490
(0.849)

∗∗ 0.325
(0.195)

4.040
(0.854)

∗∗∗ 2.872
(2.277)

Selection 2.120
(0.826)

∗∗ 0.161
(0.241)

3.294
(0.772)

∗∗∗ 2.808
(2.309)

Table 8: Testing equal predictive accuracy for the combinations

Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors are in parenthesis. The super-
scripts ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively, of the Diebold-Mariano
(1985) statistic for testing the null hypothesis that the difference in MSE of the combination and the CLI is
equal to 0.

In summary, our CLI model produces more accurate forecasts than the other individual
models and their combinations by considerable margin. Also, as Figure 9 shows, our model
produces sharper and more accurate turning points estimates, both, for business cycles peaks
and throughs and captures very well the path of the double dip recession.

2000 2002 2004 2006 2008 2010 2012 2014 2016
−4

−2

0

2

4

GDP GR
Consensus

CLI

Figure 9: Observed and forecast annual GDP growth rates 2001–2016.
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6 Conclusions

In this article we have presented two new composite coincident and leading indicators de-
signed to capture the present state of the Spanish economy and to provide reliable statistical
forecasting power, respectively. One novelty of our approach is that both indicators are based
on IRW trend components of non-stationary monthly economic variables rather than on the
usual stationary transformations of seasonally adjusted series. This approach guarantees
that the resulting indicators are reasonably smooth and issue stable or persistent signals,
reducing the uncertainty shown in many coincident and leading indicators in the literature.
Such a volatility may be confusing for economic agents in interpreting future directions of
change. For the long period of time considered in this paper, the signaling quality of both
indicators remains intact over different samples and is not overly sensitive to the specific
crisis dating employed.

As regards the usefulness of our coincident indicator, this has been checked by comparing
it with the one recently proposed by the Spanish Economic Association, CF index. Both
indexes show a very similar behavior along the business cycle and our coincident indicator
seems to capture very well the beginning and end of the official AEE recessions and expan-
sion periods. Additionally, our coincident indicator tracks very well alternative mass media
indicators typically used in the political science literature. On the other hand, the suitability
of the leading indicator has been assessed through both historical (in-sample) behavior and
out-of-sample forecasting performance. When using the whole sample our leading indica-
tor systematically predicts the peaks and troughs of the CF index with leads that change
among different historical periods. It also provides significant aid in forecasting annual GDP
growth rates for the 2001–2016 period. Using only real data available at the beginning of each
forecast period, our leading indicator one-step-ahead forecasts shows sizable improvements
over other alternatives, including panels of individual professional forecasters and different
forecast combinations.

References

Ager, P., M. Kappler, and S. Osterloh (2009). The accuracy and efficiency of the consensus
forecasts: A further application and extension of the pooled approach. International
Journal of Forecasting 25 (1), 167–181.

Altissimo, F., R. Cristadoro, M. Forni, M. Lippi, and G. Veronese (2010). New eurocoin:
tracking economic growth in real time. The review of economics and statistics 92 (4),
1024–1034.
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Garćıa-Ferrer, A., R. Queralt, and C. Blazquez (2001). A growth cycle characterisation
and forecasting of the Spanish economy: 1970–1998. International Journal of Forecast-
ing 17 (3), 517–532.

Genre, V., G. Kenny, A. Meyler, and A. Timmermann (2013). Combining expert forecasts:
Can anything beat the simple average? International Journal of Forecasting 29 (1), 108–
121.

Ghysels, E. (2016). Macroeconomics and the reality of mixed frequency data. Journal of
Econometrics 193 (2), 294–314.

Ghysels, E., D. Osborn, and P. Rodrigues (2006). Leading indicators. In G. Elliot,
C. Granger, and A. Timmerman (Eds.), Handbook of Forecasting, pp. 659–711. Ams-
terdam: Elsevier.

Ghysels, E., P. Santa-Clara, and R. Valkanov (2006). Predicting volatility: getting the most
out of return data sampled at different frequencies. Journal of Econometrics 131 (1),
59–95.

Hannan, E. J. (1967, Apr). Measurement of a wandering signal amid noise. Journal of
Applied Probability 4 (1), 90–102.

Koopman, S. J. and N. Shephard (Eds.) (2015). Unobserved components and time series
econometrics. Oxford University Press.

Lam, C. and Q. Yao (2012). Factor modeling for high-dimensional time series: inference for
the number of factors. The Annals of Statistics 40 (2), 694–726.

Leamer, E. E. (2009). Macroeconomic Patterns and Stories. Berlin: Springer-Verlag.

Leamer, E. E. (2012). The context matters: Comment on Jerome H. Friedman,”Fast sparse
regression and classification”. International Journal of Forecasting 28 (3), 741–748.

Lischka, J. A. (2015). What follows what? relations between economic indicators, eco-
nomic expectations of the public, and news on the general economy and unemployment in
germany, 2002-2011. Journalism & Mass Communication Quarterly 92 (2), 374–398.

Lütkepohl, H. (1993, August). Introduction to Multiple Time Series Analysis (Second ed.).
Heidelberg, Germany: Springer.

Mariano, R. S. and Y. Murasawa (2003). A new coincident index of business cycles based
on monthly and quarterly series. Journal of applied Econometrics 18 (4), 427–443.

Matas-Mir, A., D. R. Osborn, and M. J. Lombardi (2008). The effect of seasonal adjustment
on the properties of bisiness cycle regimes. Journal of Applied Econometrics 23, 257–278.



REFERENCES 29

Niemira, M. P. and P. A. Klein (1994). Foresting Financial and Economic Cycle. Nueva
York: John Wiley & Sons.

Paap, R., R. Segers, and D. van Dijk (2009). Do leading indicators lead peaks more than
troughs? Journal of Business & Economic Statistics 27 (4), 528–543.

Peña, D. and P. Poncela (2006, april). Nonstationary dynamic factor analysis. Journal of
Statistical Planning and Inference 136 (4), 1237–1257.

Phillps, K. and M. Boldin (2017, June). Testing and adjusting for sharp breaks in seasonal
patterns: The case of US GDP data. Paper presented at the 37th International Symposium
on Forecasting Cairns, Australia.

Pierce, D. A. (1979, November). Signal extraction error in nonstationary time series. The
Annals of Statistics 7 (6), 1303–1320.

Poncela, P. (2012). Further research on conditionally heteroskedastic factor models. Inter-
national Journal of Forecasting 28, 94–96.
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