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Abstract

It is possible to partially order cities according to the informativeness of neigh-

borhoods about their ethnic groups. It is also possible to partially order cities

with two ethnic groups according to the Lorenz criterion. We show that a seg-

regation order satisfies four basic axioms if and only if it is consistent with the

informativeness criterion. We then use this result to show that for the two-group

case, the Lorenz and the informativeness criteria are equivalent.
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1 Introduction

Sociologists and economists have long been interested in how to adequately measure

segregation. While early studies restricted attention to segregation between two groups,

i.e., blacks and whites, or men and women, later ones developed measures for multi-

group cases.1 One of the difficulties of measuring segregation is that it is not clear

what segregation actually means. Massey and Denton [11] identified five dimensions of

segregation: evenness, exposure, concentration, centralization and clustering. Each of

these dimensions captures some aspect of the idea of segregation. Evenness refers to

the similarity among distributions of members of different groups across locations. The

more similar these distributions are, the less is the degree of segregation. Exposure, on

the other hand, refers to the degree of contact among members of the different groups.

For the two-group case, concentration refers to the relative amount of space occupied

by the minority group, and centralization to the tendency of the minority group to be

located in the center of an urban area. Finally, clustering refers to the tendency of the

areas populated by the minority group to be clustered together.

Not only do the various dimensions of segregation relate to different concepts, but

their concrete measurement requires different kinds of data. Indeed, while measures

of concentration, centralization and clustering require some sort of geographical data,

evenness and exposure require information only on the numbers of members of the

different groups found in the existing locations. Furthermore, for the measurement of

the evenness dimension of segregation only data on the different relative distributions of

individuals across locations are necessary. Although the number of segregation indices

is very large, it is safe to say that most of the segregation literature, both theoretical

and empirical, focuses on the evenness dimension, as does the present paper. 2

1See Reardon and Firebaugh [12] for an enumeration and analysis of various multigroup segregation

measures. For the two-group case, Massey and Denton [11] provide a comprehensive survey.

2For papers that model segregation differently, see Echenique and Fryer [6] and Ballester and
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For the two-group case, the literature on segregation borrowed the device of the

Lorenz curve from the income inequality literature and applied it to partially order

cities. A segregation curve in the context of segregation is the analogue of the Lorenz

curve in the context of income inequality. Indeed, recall that for each fraction p, the

Lorenz curve depicts the proportion of total income that is owned by the poorest pro-

portion p of the population. A segregation curve is essentially a Lorenz curve where

one group, say blacks, is treated as a population, and the other group, say whites, is

treated as income. With this convention, the lower the proportion of whites that live in

a neighborhood, the “poorer” is a black individual residing there. Thus, for each frac-

tion p, a segregation curve describes the proportion of the total number of whites that

share their neighborhoods with the “poorest” fraction p of blacks. Segregation curves

appear in the literature as early as in Duncan and Duncan [5]. The early literature on

segregation took advantage of segregation curves to partially order cities. Specifically,

given two cities, their corresponding segregation curves may or may not cross. If they

do not cross then the city whose segregation curve lies below that of the other one is

deemed, according to the Lorenz criterion, the more segregated one.

One can also borrow, this time from the literature on the value of information,

another device in order to partially order cities, even for the multigroup case. Indeed,

given a city, the location of a randomly selected individual is a signal that provides

information about the ethnic group he belongs to. In that sense, the collection of

distributions of the various ethnic groups across locations can be seen as an experiment

in the sense of Blackwell [3, 4], one in which locations play the role of signals and ethnic

groups play the role of states of nature. We can then borrow Blackwell’s partial order

of experiments according to their informativeness and apply it to partially order cities.

Specifically, a city whose locations are more informative than another city’s locations

will be considered more segregated than the latter.

In this paper we show that any segregation partial order of cities that satisfies four

Vorsatz[2].
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basic axioms must be consistent with the segregation order induced by the informa-

tiveness of their neighborhoods. We next use this characterization to show that when

restricted to cities with only two groups, the partial order derived from the segrega-

tion curves coincides with the partial order derived from the informativenes of the city’s

neighborhoods. In that sense, not only is the latter partial order applicable to the multi-

group case, but it is also a generalization of the standard order based on segregation

curves.

The fact that any partial order that satisfies the four axioms must be consistent with

the partial order derived from the segregation curves was stated without proof by James

and Taeuber [10]. Later, a proof of this result for the case where all locations contain the

same number of members of one group (e.g., all occupations contain the same number

of women), was proved by Hutchens [9]. Frankel and Volij [7] noted that any order that

satisfies three of the four axioms and weak form of the fourth one must be consistent with

the partial order associated with the informativeness of the cities’ experiments restricted

to the class of cities with the same ethnic distribution.3 We prove this result for the case

of all cities, independently of their ethnic distribution.

2 Notation

The basic model of segregation measurement consists of a list of locations containing

different numbers of members of various groups. Papers that focus on residential racial

segregation refer to the locations as neighborhoods, and to the groups as ethnic groups.

Papers dealing with occupational gender segregation usually use occupations as loca-

tions and classify the groups by gender. We will use the language of racial residential

segregation, and refer to the list of neighborhoods as cities.

Let G be a finite set of ethnic groups. This set will remain fixed for the whole

analysis until Section 4 where it will be restricted to contain two groups. A neighborhood

3See also Grant, Kajii and Polak [8], and Andreoli and Zoli [1] for related results.
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n is characterized by its racial composition, which is a vector (T g
n)g∈G of non-negative

numbers, at least one of which is positive. The number T g
n is the number of residents of

n that belong to ethnic group g. A city is a finite collection of neighborhoods such that,

for each ethnic group g, at least one neighborhood has a positive number of residents

of that group. Formally, a city is a system 〈N, ((T g
n)g∈G)n∈N〉 such that N is the set

of neighborhoods, for each ethnic group g ∈ G,
∑

n∈N T
g
n > 0, and for each n ∈ N ,

∑
g∈G T

g
n > 0.

Given a city X = 〈N, ((T g
n)g∈G)n∈N〉, we denote by T g(X) the total number of

residents of group g: T g(X) =
∑

n∈N T
g
n . When it is clear to which city we are

referring, we will write simply T g. We will denote by tgn the proportion of individuals

of ethnic group g that reside in neighborhood n. Formally, tgn = T g
n/T

g. Similarly,

pg
n = T g

n/
∑

g∈G T
g
n is the proportion of residents of n that belong to ethnic group g. The

ethnic distribution of a neighborhood n is given by (pg
n)g∈G = (T g

n)g∈G/
∑

g∈G T
g
n , and

the ethnic distribution of a city X is given by (T g)g∈G/
∑

g∈G T
g.

For any positive integer k, Ik denotes the k × k identity matrix. We will sometimes

apply certain operations on matrices by postmultiplying them with special Markov ma-

trices. A splitting matrix is one that is obtained from an identity matrix by splitting

some of its columns into several columns. Permuting the columns of a splitting matrix

also results in a splitting matrix. When a matrix is postmultiplied by a splitting matrix,

some of its columns are split into several proportional columns. A merging matrix is

one that is obtained from an identity matrix by replacing some of its columns by their

sum and then possibly permuting the columns. A product of merging matrices is also

a merging matrix. When a matrix is postmultiplied by a merging matrix, some of its

columns are replaced by their sum.
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3 The Blackwell partial order

Given a set of states of nature Ω = {1, . . . , I}, an experiment provides information

about the realized state. Specifically, when the realized state is i, the experiment issues

a signal with a distribution that depends on i. An experiment on Ω can be described by

a Markov matrix (mij), whose rows represent the possible states of nature, and whose

columns represent the possible signals, the entrymij being the probability that the signal

j is sent when the realized state is i. Conversely, every Markov matrix with I rows can be

interpreted as an experiment for Ω. Blackwell [4] partially ordered experiments according

to their informativeness, and showed that this partial order has a convenient description

in terms of the corresponding matrices.

In this section, we will make use of Blackwell’s informativeness order on experiments

in order to define a (segregation) partial order on cities. The idea is to consider a city as

an experiment where neighborhoods play the role of signals and ethnic groups the role of

states of nature, and say that city X is more segregated than city Y if the neighborhoods

of X are more informative about the ethnic group of its residents than the neighborhoods

of Y .

Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city. Also let φ : {1, 2, . . . , |N |} → N be an ordering

of the neighborhoods. The experiment matrix of X with respect to φ is the |G| × |N |

matrix

M(X,φ) = (mij)

where mij = tiφ(j) is the proportion of individuals of group i that reside in neighborhood

φ(j). Note that M(X,φ) is a Markov matrix. It represents an experiment in the sense

of Blackwell. Its generic entry mij is the probability that a randomly chosen individual

belongs to ethnic group i given that he resides in neighborhood φ(j).

Let M be the set of Markov matrices with |G| rows. These matrices can be par-

tially ordered according to their informativeness (Blackwell [4]). Given two matrices

A|G|×|NA|, B|G|×|NB | ∈ M, we say that A is at least as informative as B if there is an
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|NA| × |NB| Markov matrix Π such that

B = A · Π.

If A is at least as informative as B, it will remain so even after we permute each of the

matrices columns in any arbitrary way. Indeed, let PB be a |NB| × |NB| permutation

matrix and let PA be a |NA| × |NA| permutation matrix. If

B = A · Π

then

B · PB = A · PA · P T
A · Π · PB

Since P T
A ·Π ·PB is a Markov matrix, we conclude that if A is at least as informative as

B then A · PA is at least as informative as B · PB.

We now define a partial order on cities based on the informativeness of their respective

experiment matrices.

Definition 1 Let X = 〈NX , ((T
g
n)g∈G)n∈NX

〉 and Y =
〈
NY , ((T

′g
n′ )g∈G)n′∈NY

〉
be two

cities. We say that X is at least as segregated as Y according to Blackwell’s criterion,

denoted X <I Y , if M(X,φ) is at least as informative as M(Y, ψ) for some orderings

φ : {1, 2, . . . , |NX |} → NX and ψ : {1, 2, . . . , |NY |} → NY of the neighborhoods of X

and Y , respectively.

Note that segregation according to Blackwell’s criterion is well-defined since the

informativeness relation on M is invariant to permutations of columns. Since for most

of the analysis the particular ordering of neighborhoods φ that is chosen is not important

as long as it remains fixed, in what follows we will keep φ tacit and write, with some

abuse of notation, M(X) instead M(X,φ).
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3.1 Properties of the Blackwell partial order

Let C be the set of all cities. A segregation order is a partial order on C. For any X and

Y ∈ C, X < Y means that X is as least as segregated as Y according to <.4 Blackwell’s

relation <I defined above is an example of a segregation order. We will now inquire into

the properties that this particular segregation order satisfies.

We say that two cities, X = 〈NX , ((T
g
n)g∈G)n∈NX

〉 and Y =
〈
NY , ((T

′g
n′ )g∈G)n′∈NY

〉
,

are equivalent if there is a one-to-one mapping ϕ : NX → NY such that for all n ∈ NX ,

(T g
n)g∈G = (T ′g

ϕ(n))g∈G.

Equivalent cities differ only in the names of their neighborhoods. It is clear that

two equivalent cities have the same experiment matrices, up to permutation of columns.

Therefore, Blackwell’s order satisfies the following axiom.

Anonymity (ANON) A segregation order < satisfies anonymity if for any two equiv-

alent cities X and Y we have X ∼ Y .

Consider now the city X = 〈N, ((T g
n)g∈G)n∈N〉 and the city Y = 〈N, ((αgT

g
n)g∈G)n∈N〉

that is obtained from X by multiplying the number of group g individuals by αg > 0, for

g ∈ G. Since both cities have the same proportions tgn , we have that M(X,φ) = M(Y, φ)

for any ordering φ of N . Therefore, Blackwell’s order satisfies the following axiom.

Composition Invariance (CI) Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city and let Y =

〈N, ((αgT
g
n)g∈G)n∈N〉 be the city that is obtained fromX by multiplying the number

of agents of a group g, for g ∈ G, by the same nonzero factor αg > 0, in all

neighborhoods. A segregation order < satisfies composition invariance if for any

such cities we have Y ∼ X.

Composition invariance requires that only the relative distributions of members of

the various ethnic groups across neighborhoods affect segregation. In particular, the

city’s ethnic distribution does not affect segregation.

4Given <, the associated relations � and ∼ are defined as usual. X � Y ⇔ X < Y and not Y < X,

and X ∼ Y ⇔ X < Y and Y < X.
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Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city and consider the city Y that is obtained from

X by splitting a particular neighborhood (T g
n)g∈G into two neighborhoods, n1 and n2,

with the same ethnic distribution, namely, (T g
n1

)g∈G = (αT g
n)g∈G and (T g

n2
)g∈G = ((1 −

α)T g
n)g∈G for some α ∈ (0, 1). Then, their experiment matrices satisfy

M(Y ) = M(X) · I(n, α) (1)

where I(n, α) is the splitting matrix that is obtained from the identity matrix I|N | by

splitting the column that corresponds to neighborhood n into two columns, according

to the proportions α and (1 − α). Furthermore,

M(X) = M(Y ) · I(n1, n2) (2)

where I(n1, n2) is the merging matrix that is obtained from the identity matrix I|N |+1

by merging the two columns that correspond to n1 and n2 into one. Equations (1)

and (2) imply that M(X) and M(Y ) are equally informative, and therefore X ∼I Y .

Consequently, Blackwell’s order satisfies the following axiom.

Organizational Equivalence (OE) Let X ∈ C be a city and let (T g
n)g∈G be one of

its neighborhoods. Let Y be the city that results from dividing (T g
n)g∈G into two

neighborhoods, (T g
n1

)g∈G and (T g
n2

)g∈G, with the same ethnic distribution. Namely,

(T g
n1

)g∈G = (αT g
n)g∈G and (T g

n2
)g∈G = ((1 − α)T g

n)g∈G for some α ∈ (0, 1). A

segregation order < satisfies organizational equivalence if for any such cities we

have Y ∼ X.

Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city and consider the city Y that is obtained from

X by splitting a particular neighborhood (T g
n)g∈G into 2 neighborhoods, n1 and n2, but

now with different ethnic distributions. Then

M(X) = M(Y ) · I(n1, n2)
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where, as before, I(n1, n2) is the merging matrix that is obtained from the identity matrix

I|N |+1 by merging the two columns that correspond to n1 and n2 into one. Therefore,

Y <I X.

On the other hand, as the following lemma states, there is no |N |×(|N | + 1) Markov

matrix Π such that M(Y ) = M(X) · Π. Hence, Y �I X.

Lemma 1 Let A be an n×m Markov matrix and let B be an n×(m+1) Markov matrix

that is obtained from A by splitting one of A’s columns into two, but not proportionally.

Then, there is no Markov matrix Π such that B = A · Π.

Proof. See appendix.

Therefore, Blackwell’s order satisfies the following axiom.

Neighborhood Division Property (NDP) Let X ∈ C be a city and let (T g
n)g∈G

be a neighborhood of X. Let Y be the city that results from dividing (T g
n)g∈G

into 2 neighborhoods, (T g
n

1
)g∈G and (T g

n
2
)g∈G with different ethnic distributions.

Namely, (T g
n

1
)g∈G 6= (αT g

n)g∈G for any α ∈ [0, 1]. A segregation order < satisfies

the neighborhood division property if for any such cities we have Y � X.

We summarize the above observations in the following Proposition.

Proposition 1 The Blackwell segregation order <I satisfies ANON, CI, OE, and NDP.

We can now state our first result.

Theorem 1 Let < be a segregation order on C. It satisfies ANON, CI, OE and NDP

if and only if for all two cities X,Y ∈ C,

Y �I X ⇒ Y � X (3)

Y ∼I X ⇒ Y ∼ X (4)
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Theorem 1 states that all segregation orders that satisfy ANON, CI, OE and NDP

are consistent with Blackwell’s order. Namely, whenever Blackwell’s order ranks two

cities, any segregation order that satisfies the above four axioms must rank them in the

same way. And conversely, any segregation order that is consistent with Blackwell’s

order must satisfy the four axioms.

Proof. Let < be a segregation order that satisfies (3) and (4). We will show that it

satisfies the four axioms.

ANON: Let X and Y be two equivalent cities. Then, by Proposition 1, X ∼I Y . By

(4), X ∼ Y .

CI: Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city and let Y = 〈N, ((αgT

g
n)g∈G)n∈N〉 be the city

that is obtained by multiplying the number of agents of a group g by the same nonzero

factor αg > 0, for g ∈ G in all neighborhoods. Then, by Proposition 1, Y ∼I X. By (4),

Y ∼ X.

OE: Let X ∈ C be a city and let (T g
n)g∈G be a neighborhood of X. Let Y be the city

that results from dividing (T g
n)g∈G into 2 neighborhoods, (T g

n1
)g∈G and (T g

n2
)g∈G with the

same ethnic distribution. Then, by Proposition 1, Y ∼I X. By (4), Y ∼ X.

NDP: Let X ∈ C be a city and let (T g
n)g∈G be a neighborhood of X. Let Y be the city

that results from dividing (T g
n)g∈G into 2 neighborhoods, (T g

n1
)g∈G and (T g

n2
)g∈G with

different ethnic distributions. Then, by Proposition 1, Y �I X. By (3), Y � X.

We now show that any partial order that satisfies the four axioms must be consistent

with Blackwell’s criterion. Let now < be a segregation order that satisfies ANON, CI,

OE and NDP. Also, let X = 〈NX , ((T
g
n)g∈G)n∈NY

〉 and Y =
〈
NY , ((T

′g
n′ )g∈G)n′∈NY

〉
be

two cities such that Y <I X. We need to show that (3) and (4) hold. Since Y <I X,

there is a Markov matrix Π =
(
(πij)

|NY |
i=1

)|NX |

j=1
such that

M(X) = M(Y ) · Π.

But Π can be written as a product of two matrices

Π = β · γ
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where

β =





π11 · · · π1|NX | 0 · · · 0 · · · 0 · · · 0

0 · · · 0 π21 · · · π2|NX | · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 · · · π|NY |1 · · · π|NY ||NX |





and

γ =





I|NX |

I|NX |

...

I|NX |





Therefore,

M(X) = M(Y ) · β · γ (5)

Note that M(Y ) ·β is the matrix that is obtained from M(Y ) by splitting its ith column,

i = 1, . . . |NY |, into |NX | columns, in the proportions πij, j = 1, . . . |NX |. Also note that

M(Y ) · β · γ is obtained from M(Y ) · β by merging all the ith (mod(|NX |)) columns to-

gether. Therefore, (5) says that M(X) is obtained from M(Y ) by successively splitting

columns proportionally and then merging columns, which may or may not be propor-

tional to each other. Alternatively, matrix M(Y ) is obtained from M(X) by splitting

its columns, not necessarily in a proportional way, and then merging some proportional

columns. Consequently, by OE and NDP,

Y < X.

An analogous argument shows that if X <I Y we must also have X < Y . Consequently,

if Y ∼I X then Y ∼ X, which is implication (4).

In order to show implication (3) assume that Y �I X. We already know that matrix

M(Y ) is obtained from M(X) by splitting its columns, not necessarily in a proportional

way, and then merging some proportional columns. We now argue that Y �I X implies
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that at least one of the columns is split not in a proportional way. Indeed, if all the

columns of M(X) were split proportionally, we would have

M(Y ) = M(X) · β′ · γ′

for some splitting matrix β′ and merging matrix γ′. Since, as a product of Markov ma-

trices β′ · γ′ is a Markov matrix, this would imply that X <I Y , contradicting Y �I X.

Therefore, Y is obtained from X by splitting some neighborhoods into smaller neighbor-

hoods with different ethnic distributions, and then merging some neighborhoods with

the same ethnic distributions. By NDP and OE, Y � X, which shows the implication

in (3).

4 Two groups: The Lorenz partial order

There is another partial order defined on the class of cities with only two groups. It is

known as the Lorenz partial order and is based on what is known as segregation curves.

See Duncan and Duncan [5], James and Taeuber [10, 15] and Hutchens [9].

Let G be a set of two ethnic groups and denote by C2 the set of cities with these

two groups. For ease of exposition, we refer to members of the two ethnic groups as

blacks and whites, respectively. Let X = 〈N, (Bn,Wn)n∈N〉 ∈ C2 be a city, where for each

neighborhood n ∈ N , Bn andWn are the numbers of blacks and whites, respectively, that

reside in n. For each n ∈ N , denote by pn the proportion of whites in neighborhood n.

That is, pn = Wn/(Bn +Wn). Also, bn and wn denote the proportion of the city’s blacks

and whites, respectively that reside in neighborhood n. Formally, bn = Bn/
∑

n′∈N Bn

and wn = Wn/
∑

n′∈N Wn. We will now build the segregation curve associated with the

city X. Segregation curves, as experiment matrices in the |G|-group case analyzed in

Section 3, will allow us to define a partial order on the set of two-group cities. Segregation

curves, analogously to experiment matrices, are objects that do not depend on the cities’

ethnic distribution. That is, city X = 〈N, (Bn,Wn)n∈N〉 and city X̂ = 〈N, (bn, wn)n∈N〉,

which is obtained from X by normalizing the groups’ populations so that each group
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is of size one, will have the same segregation curve. In order to build the segregation

curve, let φ : {1, 2, . . . , |N |} → N be an ordering of the neighborhoods such that i ≤

j ⇒ pφ(i) ≤ pφ(j). Namely, φ orders neighborhoods in a non-decreasing way according to

their proportion whites. Note that

pn ≤ pm ⇔ wn/(bn + wn) ≤ wm/(bm + wm). (6)

That is, ordering the neighborhoods in N in non-decreasing order of the proportion of

whites in X or in its normalized version X̂ results in the same order. Let β0 = ω0 =

0, and for i = 1, 2, . . . , |N |, and let βi = βi−1 + bφ(i) and ωi = ωi−1 + wφ(i). That

is, βi is the proportion of blacks that reside in the i neighborhoods with the lowest

proportions of whites. Similarly, ωi is the proportion of whites that reside in these same

neighborhoods. The Lorenz segregation curve of X is the graph that is obtained by

plotting the points (βi, ωi)
|N |
i=0 and connecting the dots. Formally, it is the union of

the line segments seg[(βi−1, ωi−1), (βi, ωi)], i = 1, 2, . . . , |N |, where for any two points

x, y ∈ R
2, seg[x, y] = {αx+ (1 − α) y : α ∈ [0, 1]}. Note that the line segment that

connects the points
(
βi−1, ωi−1

)
and (βi, ωi) has a slope of wφ(i)/bφ(i). Therefore, given

(6), this slope is non-decreasing in i. Furthermore, the segregation curve is invariant to

the choice of ordering φ as long as it satisfies i ≤ j ⇒ pφ(i) ≤ pφ(j).

We can use the segregation curves to define a segregation order.

Definition 2 Let X and Y be two cities. We say that Y is at least as segregated as X

according to the Lorenz criterion, denoted Y <L X, if the Lorenz curve of Y is nowhere

above the Lorenz curve of X.

We can now state the main result of this section.

Theorem 2 The Blackwell and the Lorenz orders on C2 are the same.

Proof. It can be checked that the Lorenz order <L satisfies ANON, CI, OE and

NDP. Therefore, by Theorem 1, Y <I X =⇒ Y <L X.
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In order to show the converse implication, let X = 〈N, (Bn,Wn)n∈N〉 and Y =

〈N ′, (B′
n′ ,W ′

n′)n′∈N ′〉 be two cities in C2. Since both <I and <L satisfy CI, we can assume

without loss of generality that
∑

n∈N Bn =
∑

n′∈N ′ B′
n′ =

∑
n∈N Wn =

∑
n′∈N ′ W ′

n′ = 1.

Since both <I and <L satisfy ANON we can also assume that N = {1, . . . , I} and

N ′ = {1, . . . , I ′} and that the neighborhoods are ordered in a non-decreasing order of

proportion of whites. Therefore, we can denote X by (bn, wn)I

n=1 and Y by (b′n′ , w′
n′)

I′

n′=1

with w1/(b1 + w1) ≤ · · · ≤ wI/(bI + wI) and w′
1/(b

′
1 + w′

1) ≤ · · · ≤ w′
I′/(b

′
I′ + w′

I′).

Case 1: For each n ∈ N and n′ ∈ N ′, bn > 0 and b′n′ > 0.

Let’s build the following random variables: For each n ∈ N the random variable x

takes the value wn/bn with probability bn. For each n′ ∈ N ′ the random variable y takes

the value w′
n′/b′n′ with probability b′n′ . Note that E[x] = E[y] = 1.

Denote by Fx the cumulative distribution function of x and by Fy the cumulative

distribution function of y. Also denote their generalized inverses by F−1
x and F−1

y ,

respectively.5

By Theorem 3.A.5 of Shaked and Shanthikumar [13],
∫ p

0

F−1
x (t)dt ≥

∫ p

0

F−1
y (t)dt for all p ∈ [0, 1]

⇐⇒
∑

n∈N

bnφ(wn/bn) ≤
∑

n′∈N ′

b′nφ(w′
n/b

′
n) for all convex functions φ : R → R. (7)

By Sherman’s [14] theorem, (7) holds if and only if there is a I ′ × I Markov matrix

Π = {πn′n} such that

bn (wn/bn) =
∑

n′∈N ′

πn′nb
′
n′ (w′

n′/b′n′)

∑

n′∈N ′

πn′nb
′
n′ = bn

Or, in matrix notation,

M(X) = M(Y ) · Π

5The generalized inverse of a distribution function F : R+ → [0, 1] is defined as F−1 : [0, 1] → R+

such that F−1(p) = infs {s > 0 : F (s) > p}.
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Consequently,
∫ p

0
F−1

x (t)dt ≥
∫ p

0
F−1

y (t)dt for all p ∈ [0, 1] if and only if Y <I X. Since

the graphs of
∫ p

0
F−1

x (t)dt and
∫ p

0
F−1

y (t)dt are none other than the segregation curves of

X and Y respectively, we obtain the desired result, i.e., Y <L X ⇔ Y <I X.

Case 2: For each n ∈ N , bn > 0, and there is n′ ∈ N ′ with b′n′ = 0. Since both <I

and <L satisfy OE, we can assume without loss of generality that in Y , there is only

one neighborhood with no blacks. Furthermore, by OE we can assume without loss of

generality that |N ′| = |N | + 1. That is, I ′ = I + 1. Lastly, since both <I and <L

satisfy OE, we can assume without loss of generality that bn = b′n for all n ∈ {1, 2, . . . I}.

Therefore, we can denote X by (bn, wn)I

n=1 and Y by (bn, w
′
n)I+1

n=1 (where bI+1 = 0 and

w′
I+1 > 0). In this case, X <L Y is impossible. Assume, therefore, that Y �L X.

For each t = 1, . . ., let εt = 1
t
bI

w′

I+1

w′

I
+w′

I+1

, and let Yt = (btn, w
′
n)

I+1
n=1 be the city that is

obtained from Y by relocating εt blacks from neighborhood I to neighborhood I + 1.

That is, btn = bn for n = 1, . . . I−1, (btI , w
′
I) = (bI − εt, w

′
I) and

(
btI+1, w

′
I+1

)
=

(
εt, w

′
I+1

)
.

See Figure 1. Note that since εt ≤ bI
w′

I+1

w′

I
+w′

I+1

, the proportion of whites in neighborhood

X

YYt

0.2 0.4 0.6 0.8 1.0
Blacks

0.2

0.4

0.6

0.8

1.0
Whites

Figure 1: The segregation curves of X, Y and Yt

I is less than or equal to the proportion of whites in neighborhood I + 1. As a result,

Yt’s neighborhoods are ordered in a non-decreasing order of the proportion of whites.

Furthermore, it can be seen that Yt <L X. By construction, Yt has no neighborhoods

with 0 blacks. By Case 1, Yt <I X. That is, there is a I ′ × I Markov matrix Πt such
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that

M(X) = M(Yt) · Πt

Since the set of I ′ × I Markov matrices is compact, there is a subsequence {Πt`} that

converges to a Markov matrix Π. Since, M(Yt) →M(Y ), we obtain that

M(X) = M(Y ) · Π

which means that Y <I X.

Case 3: There is n ∈ N , and n′ ∈ N ′ such that bn = b′n′ = 0.

Since both <I and <L satisfy OE, we can also assume without loss of generality that

|N | = |N ′| = I. By OE, we can assume without loss of generality that both in X and in

Y , there is only one neighborhood with no blacks. Lastly, since both <I and <L satisfy

OE, we can assume without loss of generality that bn = b′n for all n ∈ {1, 2, . . . I}.

Assume that Y <L X. For each t = 1, . . ., let εt = 1
t
bI

wI

wI−1+wI
, and let Xt =

(btn, wn)
I

n=1 be the city that is obtained fromX by relocating εt blacks from neighborhood

I−1 to neighborhood I. That is, btn = bn for n = 1, . . . I−2, (btI , wI) = (bI−1 − εt, wI−1)

and (btI , wI) = (εt, wI). See Figure 2. Note that since εt ≤ bI
wI

wI−1+wI
the proportion

X Y

Xt

0.2 0.4 0.6 0.8 1.0
Blacks

0.2

0.4

0.6

0.8

1.0
Whites

Figure 2: The segregation curves of X, Y and Xt

of whites in neighborhood I − 1 is less than or equal to the proportion of whites in

neighborhood I. As a result, Xt’s neighborhoods are ordered in a non-decreasing order of

the proportion of whites. Furthermore, by construction, Y <L Xt. Also by construction,
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Xt has no neighborhoods with 0 blacks. By Case 2, Y <I Xt. That is, there is a I ′ × I

Markov matrix Πt such that

M(Xt) = M(Y ) · Πt

Since the set of I ′ × I Markov matrices is compact, there is a subsequence {Πt`} that

converges to a Markov matrix Π. Since, M(Xt) →M(X), we obtain that

M(X) = M(Y ) · Π

which means that Y <I X.

5 Appendix

Proof of Lemma 1: Let A be an n×m Markov matrix and let B be an n× (m + 1)

Markov matrix that is obtained from A by splitting one of A’s columns into two. Assume

that A’s kth column is the one that is split. Alternatively, A is obtained from B by

replacing B’s kth and (k + 1)th columns by their sum. Consequently,

A = B · Sk (8)

where

Sk =





Ik−1 0 0

0 1 0

0 1 0

0 0 Im−k




.

Let us now assume that there is an m× (m+ 1) Markov matrix Π such that

B = A · Π. (9)

We will show that B is necessarily obtained from A by splitting A’s kth column propor-

tionally.

18



Let Π′ be the matrtix that is obtained from Π by replacing Π’s kth and (k + 1)th

columns by their sum. That is,

Π′ = Π · Sk. (10)

Note that Π′ is a square m×m Markov matrix. Moreover, by (10), (9) and (8),

A · Π′ = A (11)

which means that each row of A is an invariant distribution of the matrix Π′.

Since Π′ is a Markov matrix, there exists r ≥ 1 and a permutation matrix P such

that P T · Π′ · P can be written in the following (almost block diagonal) form:





R′
1 0

R′
2 0 0

R′
3 0

0
. . .

...

R′
r 0

S ′
r+1,1 S ′

r+1,2 S ′
r+1,3 · · · S ′

r+1,r Q′





where for all j = 1, ..., r, R′
j are square (mj ×mj) irreducible Markov matrices and Q′

is an
(
n−

∑r

j=1mj

)
×

(
n−

∑r

j=1mj

)
reducible matrix. We can assume without loss

of generality that P is the identity matrix and thus that Π′ has the above form.6

Since R′
j, for j = 1, ..., r, is an irreducible Markov matrix, it has unique invariant

distribution qj = (qj
1, . . . , q

j
mj

), i.e., qj is the unique probability vector q that satisfies

q = qB′
j. Furthermore, any invariant distribution of Π′ can be written as

(α1q
1, α2q

2, . . . , αrq
r, 0, . . . , 0︸ ︷︷ ︸

n−
∑r

j=1
mj

)

for some α1, . . . αr ≥ 0 and
∑r

j=1 αj = 1 (see, for instance, Lucas and Stokey 1989 (The-

orem 11.1, pages 326-330)). Therefore, since each row of A is an invariant distribution

6Otherwise, the whole analysis can be done using and A ·P instead of A, Sk ·P instead of Sk, PT ·Π

instead of Π and PT · Π′ · P instead of Π′.
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of Π′, it can be written as

A =





α11q
1 α12q

2 · · · α1rq
r 0 · · · 0

...
...

...
...

...

αn1q
1 αn2q

2 · · · αnrq
r 0 · · · 0




, (12)

where for each i = 1, . . . , n and j = 1, . . . , r, αij ≥ 0 and
∑r

j=1 αij = 1. If B was

obtained from A by splitting column k in a disproportional way, it ought to be the case

that this column is one that has at least one positive entry.

Assume that column k corresponds to the hth block of Π′. Therefore we can write

R′
h =

(
R′

h1
, v′∗k, R

′
h2

)

where v′∗k = (v′1k, . . . , v
′
mhk)

T is the column of block B′
h that corresponds to the kth

column of Π′. Since Π is obtained from Π′ by splitting the kth column into two, Π can

be written as

Π =





R′
1 0 0 0 · · · 0 0

0
. . . 0 0 · · ·

...
...

R′
h1

v∗k v∗k+1 R′
h2

0 0

· · · · · · 0 0
. . . 0 0

0 · · · 0 0 0 R′
r 0

S ′
r+1,1 · · · S ′

r+1,h1
s∗k s∗k+1 S ′

r+1,h2
· · · S ′

r+1,r Q′





(13)

where v∗k and v∗k+1 are column vectors such that v∗k + v∗k+1 = v′∗k. Consequently, since

B = A·Π, using (12) and (13) we obtain that B’s kth column is
(
α1hq

hv∗k, ..., αnhq
hv∗k

)T

and, B’s (k+1)th column is
(
α1hq

hv∗k+1, ..., αnhq
hv∗k+1

)T
, which are proportional to each

other (the proportion is qhv∗k/q
hv∗k+1).
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