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Abstract

This paper presents and evaluates estimation methods for dynamic nonlinear
correlated random e¤ects (CRE) models with unbalanced panels. Accounting
for the unbalancedness is crucial in dynamic non-linear models and it cannot be
ignored even if the process that produces it is completely at random. Available
approaches to estimate dynamic CRE models accounting for the initial condi-
tions problem were developed for balanced panels and they do not work with
unbalanced panels. In this type of dynamic models, just ignoring the unbal-
ancedness produces inconsistent estimates of the parameters. Another potential
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a balanced panel and then to estimate the model using the available methods.
Nonetheless, this approach is not feasible in some cases because the constructed
balanced panel might not contain enough number of common periods across
individuals. Moreover, when feasible, it discards useful information, which, as
we show, leads to important e¢ ciency losses. In this paper we consider several
scenarios in which the sample selection process can be arbitrarily correlated with
the permanent unobserved heterogeneity. The approaches we propose exploit all
the observations available, can be implemented using standard solutions to the
initial conditions problem, and can be easily applied in the context of commonly
used models, such as dynamic binary choice models.
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1 Introduction

The purpose of this paper is to present and evaluate estimation methods for dynamic

non-linear correlated random e¤ects (CRE) models with unbalanced panels. The CRE

approach represents a simple method to estimate this type of models. Examples of

applications using it are Hyslop (1999), Contoyannis et. al.(2004), Stewart (2007), and

Akee et. al.(2010). Although at a cost of imposing restrictive parametric assumptions

on the conditional distribution of the heterogeneity parameters, it is not subject to the

incidental parameters problem that the �xed-e¤ects (FE) approach su¤ers in nonlinear

models.1 Bias-corrected versions of FE estimators address the incidental parameters

problem, but they usually require a greater number of periods for the bias adjustments

to work than the available in many data sets.2 Under these circumstances, correlated

random e¤ects methods can be regarded as an useful alternative.

In a dynamic setting the main drawback of the CRE approach is that it gives rise

to the well-known initial conditions problem. Heckman (1981) and Wooldridge (2005)

propose solutions to deal with this problem, but these solutions are developed for

balanced panels and, in general, they cannot be directly implemented with unbalanced

panel data which, in practice, are the norm. For example, in large panel data sets

like the PSID for the U.S or the GESOEP for Germany, there are individuals who

drop out (potentially non-randomly) of the sample. In other cases, like in the so

called �rotating panels�, the unbalancedness is generated by the sample design and,

therefore, the missingness is completely at random (for instance, in the Monthly Retail

Trade Survey for the U.S, or in the Household Budget Continuous Survey for Spain).

The initial conditions problem present in dynamic models with balanced panel data

is augmented when the panel is unbalanced because it a¤ects to each �rst period of

observation in the data set. This implies that, as we will show, the unbalancedness

1For the purpose of this paper, FE methods are those that leave the distribution of the individual
speci�c parameter and its relation with the explanatory variables unrestricted, while CRE methods
are those that impose a certain amount of structure in the conditional distribution of the individual
e¤ects. For a review of the literature on non-linear FE models see Arellano and Honoré (2001) and
Arellano (2003).

2Some examples of bias-correcting the �xed e¤ects estimators in dynamic models are Carro (2007),
Fernandez-Val (2009), Bester and Hansen (2009), and Carro and Traferri (2014). Arellano and Hahn
(2007) o¤er a review of this literature, further references and a general framework in which the various
approaches can be included.
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cannot be ignored for consistent estimation of dynamic models even if it is completely

at random (i.e. independent of the process of the observables and the unobservables),

whereas unbalancedness completely at random allows us to ignore the unbalancedness

for consistent estimation of a static model. One solution typically applied by practi-

tioners is to take the subset of observations constituting a balanced panel, and then to

use the available methods (see Wooldridge, 2005, pp. 44). Nonetheless, this approach

is in some cases unfeasible because the constructed balanced panel might not contain

enough number of common periods across individuals. Moreover, when feasible, re-

ducing the data set to make the panel balanced will discard useful information, which

may imply important e¢ ciency losses.

It is important to note that previous problems are still present in the traditional

RE model that assumes that the heterogeneity is independent of the time-varying

covariates. The CRE case that we cover in detail contains the RE as a particular

case. Even if we extend the independency assumption of the RE to the unbalanced

process, the dynamic nature of the model would still give the inconsistency problems

previously pointed out when the panel is unbalanced.3

To the best of our knowledge only Wooldridge (2010) addresses the issue of es-

timating CRE models with unbalanced panels, but considering only static models.

Speci�cally, he proposes several strategies for allowing the unobserved heterogeneity

to be correlated with the observed covariates and the selection mechanism for unbal-

anced panels. However, the assumption of strict exogeneity of the covariates is very

restrictive, and the solutions in Wooldridge (2010) cannot be directly extended to dy-

namic models because, as said, the unbalancedness also a¤ects how we have to deal

with the initial conditions.

In this paper we present several scenarios in which the sample selection process can

be arbitrarily correlated with the time invariant unobserved heterogeneity. Our study

goes beyond a theoretical discussion on how to address the estimation of dynamic

CRE models with unbalanced panels and proposes practical solutions, describing how

they can be implemented using standard software typically used by practitioners. Al-

though our implementation section focuses on the dynamic binary probit model, our

3Examples of papers using the RE approach are Arulampalam and Stewart (2009), Campa (2004),
or Bernard and Jensen (2004).
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theoretical discussion covers other commonly used models, such as the ordered probit

or the Tobit model, and our proposals for implementing the estimation in practice can

be directly extended to these other nonlinear models.

The paper is organized as follows. Section 2 presents the model, the likelihood that

accounts for the unbalancedness, and the consequences of that for existing estimators.

Section 3 describes how the estimation of dynamic models with unbalanced panels can

be implemented and other practical issues. In Section 4 we study the �nite sample

properties of the proposed estimators in a binary probit model with a single lagged

dependent variable by means of Monte Carlo simulations. Finally, Section 5 concludes.

2 Model framework

2.1 The general case

We present a general approach that can be applied to dynamic non-linear panel data

models. Let us denote

Yi = (yi1; :::; yiT )
0 ;

Xi = (X
0
i1; :::; X

0
iT )

0
;

Si = (si1; :::; siT )
0 ;

where i = 1; :::; N represents cross-sectional units, yit is the potentially observed out-

come, and Xit are potentially observed covariates. The possibility of having an unbal-

anced panel is captured through a set of selection indicators, sit; which take the value

1 if unit i is observed in period t, that is

sit =

�
1 if yit and Xit are observed
0 otherwise

Notice that the balanced situation can be seen as a particular case of the unbalanced

one, when sit = 1 for all i and t. We only consider cases in which either both yit and

Xit are observed or both are not observed. We de�ne ti as the �rst period in which

unit i is observed, i.e.

ti = ft : sit = 1 and sij = 0 8 j < tg ,
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and

Ti =

TX
t=1

sit

is the number of periods we observe for unit i: Another characteristic of the panels

considered is that all the observations for unit i are consecutive. This means that

sit = 1 8 t 2 [ti; ti + Ti]

sit = 0 8 t < ti or t > ti + Ti

We denote by J de number of di¤erent Si sequences that we have in the panel. Finally,

we consider panels where N is large and T and J are small relative to N .

We are interested in the conditional distribution F (yit j yit�1; Xi; �i) where �i de-

notes the vector of permanent unobserved heterogeneity. Through this paper we make

the following assumption:

Assumption 1:

F (yit j yit�1; Xi; �i; Si) = F (yit j yit�1; Xi; �i)

It means that the sample selection process sit is strictly exogenous with respect to

the idiosyncratic shocks to yit, although it is allowed to be correlated with �i and the

observed covariates. This assumption is present also in most analysis with unbalanced

panels taking the �xed e¤ects approach.

Let f(yit j yit�1; Xi; �i; Si; �) be the correctly speci�ed density for the conditional

distribution on previous equation and h(�ijXi; Si; ��) a correctly speci�ed density of

F (�ijXi; Si).

The density of (si1yi1; : : : ; siTyiT ) for a given individual is

f (si1yi1; : : : ; siTyiT jXi; Si) =
TY
t=1

f (yitjyit�1; Xi; Si)sitsit�1 f (yitjXi; Si)
sit(1�sit�1) (1)

=

ti+TiY
t=ti+1

f (yitjyit�1; Xi; Si) f (yitijXi; Si)

Previous equation can be written as

f (si1yi1; : : : ; siTyiT jXi; Si) =

Z
�i

ti+TiY
t=ti+1

f (yitjyit�1; Xi; Si; �i) f (yitijXi; Si; �i)h(�ijXi; Si)d�i;

(2)
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or as

f (si1yi1; : : : ; siTyiT jXi; Si) =

"Z
�i

ti+TiY
t=ti+1

f (yitjyit�1; Xi; Si; �i)h(�ijyiti ; Xi; Si)d�i

#
f (yitijXi; Si)

(3)

depending on whether we integrate out the unobserved e¤ect by specifying the density

for the �rst observation in each sub-panel conditional on the unobserved e¤ect and

the density of the unobserved e¤ect, or we specify the density of the unobserved e¤ect

conditional on the �rst observation.

Given that previous equations depend on unobservables, �i, if the start of the

sample does not coincide with the start of the stochastic process, the �rst obser-

vation will not be independent of �i. Moreover, f (yitijXi; Si; �i) in equation (2) or

h(�ijyiti ; Xi; Si) in equation (3) are di¤erent for each sub-panel with di¤erent observed

periods Si. Writing an equation for f (yi1jXi; �i) and h(�ijXi; Si), or for h(�ijyi1; Xi),

as Heckman (1981) and Wooldridge (2005) do respectively for the balanced case,

is not enough to solve the initial conditions problem. In general, unless ti = 1;

f (yitijXi; Si; �i) 6= f (yi1jXi; �i) and h(�ijyiti ; Xi; Si) 6= h(�ijyi1; Xi):

The framework considered so far includes situations in which the selection mecha-

nism Si is correlated with the individual e¤ect, �i. If we write the likelihood of the data

using expression (2), a di¤erent distribution of the initial conditions and of the unob-

served e¤ects for each sub-panel are required. That is, the densities f(yitijXi; Si; �i; �Si)

and h(�ijXi; Si; ��Si) in (2) depend on a vector of parameters di¤erent for each sub-

panel. This implies that f(yiti j Xi = x; �i = �; Si) 6= f(yjtj j Xj = x; �j = �; Sj) for

Si 6= Sj, and they will be the same whenever Si = Sj = s.

In equation (3), we need to specify the density of �i conditional on the initial

observation, h(�ijyiti ; Xi; Si; �Si). This will depend on di¤erent parameters for each

sub-panel, and we can discard f (yitijXi; Si) because that term is outside the integral.

Notice that the unbalancedness Si is completely de�ned by two elements: the period

each sub-panel starts, ti, and the number of periods of each sub-panel, Ti. Depending

on the unbalancedness structure, we could have that the correlation between Si and

�i is only through ti.4 In that case, previous densities will depend on di¤erent vectors

4Notice that, unless determined by sample design, whether �i is correlated with Si or only with ti
should be part of the assumptions made about the process.
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of parameters for each starting period (i.e. di¤erent ti instead of di¤erent Si).

2.2 Unbalancedness independent of the individual e¤ect

In this case, in addition to Assumption 1, we assume,

Assumption 2: Unbalancedness is independent of �i.

This assumption is relevant, for instance, when having rotating panels. Assumption

2 means that h(�ijXi; Si) = h(�ijXi), that is, the conditional distribution �ijXi; Si does

not depend on Si. However, even under Assumption 2 f(yiti j Xi; �i; Si) is di¤erent

for each Si simply because the process has been running a di¤erent number of periods

until that �rst observation, and we are not assuming that the process is on steady

state.

Likewise, even though we have assumed that the sample selection process Si is

independent of �i, the density of the unobserved e¤ects conditional on the initial con-

ditions, h(�ijyiti ; Xi; Si) will be di¤erent for each ti, unless the process is not dynamic

or it is in its steady state since period t = 0.

2.3 Ignoring the unbalancedness

In this subsection we study under which assumptions it is possible to ignore the un-

balancedness and to treat the data as if they were balanced. Suppose that the correct

joint density of (si1yi1; : : : ; siTyiT jXi; Si) is given by equation (2). Instead, the density

used to write the likelihood when ignoring the unbalancedness is

f (si1yi1; : : : ; siTyiT jXi) =

Z
�i

ti+TiY
t=ti+1

f (yitjyit�1; Xi; �i) f (yitijXi; �i)h(�ijXi)d�i: (4)

Given that under Assumption 1 the sample selection process Si is strictly exogenous

with respect to the idiosyncratic shocks to yit we have that

f (yitjyit�1; Xi; Si; �i) = f (yitjyit�1; Xi; �i)

In order to have density functions (2) and (4) leading to the equivalent Maximum Like-

lihood (ML) Estimators of the parameters of the conditional distribution of yitjyit�1; Xi; �i
we need:
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(i) h(�ijXi) in (4) to satisfy

h(�ijXi) =

Z
Si

h(�ijXi; Si)dGSi ;

(ii) Regarding f (yitijXi; Si; �i), model (4) imposes that all units have the same

distribution for the initial condition regardless the period ti at which they enter the

panel. That is, (4) is imposing that

f (yi1jXi; �i) = f (yi2jXi; �i) = ::::;

and these densities are di¤erent, except if

1. the process is in the steady state (or the initial observations yti come from the

same exogenous distribution or rule for all units and ti)

and

2. Si is independent from the shocks to the initial conditions.

Unless these two conditions are both satis�ed, the estimates obtained by ignoring

the unbalancedness are inconsistent.

Notice that the assumption that Si is independent from the shocks to the initial

conditions is not enough to ensure that the conditional densities for each initial ob-

servational period coincide. For example, suppose that we have two individuals, that

yit starts in yi0 for both i, and that both follow the same process for yit. However, we

start observing one individual in period ti = 1 and the other in period ti = 2, and this

is decided randomly. Therefore, we are in a case in which Si is determined completely

at random. Then,

Pr(yi1 j �i; Si) =
X
yi0

Pr(yi1 j yi0; �i; Si) � Pr(yi0 j �i; Si) =
X
yi0

Pr(yi1 j yi0; �i) � Pr(yi0 j �i)

Pr(yi2 j �i; Si) =
X
y1

Pr(yi2 j yi1; �i) � Pr(yi1 j �i)

The two probabilities are di¤erent unless yi1 is at the steady state.

Also, notice that Si being independent from �i (Assumption 2), is not enough to

allow us to ignore the unbalancedness. Under Assumption 2, condition (i) above is

satis�ed, but, again, that does not imply that condition (ii) is satis�ed.
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2.4 Taking the balanced sub-sample

Wooldridge (2005) points out that a potential solution to the unbalancedness under

independence between Si and the idiosyncratic shocks to yit is to use the subset of

observations constituting a balanced panel. Then, one could apply to that balanced

sample the standard Heckman�s or Wooldridge�s methods to solve the initial condi-

tions problem. Nonetheless, this approach has two limitations: (i) it discards useful

information leading to an e¢ ciency loss, and (ii) the balanced sample may not con-

tain enough number of common periods across individuals, making the estimation

unfeasible.5 Let us look at this approach in more detail.

Suppose that the correct conditional density of si1yi1; : : : ; siTyiT jXi; Si is given by

(3), excluding the term for the initial observations f (yitijXi; Si). Instead of that, the

likelihood function that is maximized when making the panel balanced is

f (si1yi1; : : : ; siTyiT jXi) =

Z
�i

min(ti+Ti)Y
t=max ti+1

f (yitjyit�1; Xi; �i)h(�ijyimax ti,Xi)d�i (5)

Under Assumption 1 f (yitjyit�1; Xi; Si; �i) = f (yitjyit�1; Xi; �i). Thus, in order to

have a consistent ML Estimator of the parameters of the conditional distribution of

yitjyit�1; Xi; �i based on (5) we need

h(�ijyimax ti,Xi) =

Z
Si

h(�ijyimax ti ; Xi; Si)dGSi :

So, as long as the h(�ijyimax ti,Xi) we specify satis�es this condition and we have enough

periods in the balanced sample, the MLE based on (5) will be consistent, though less

e¢ cient. However, depending on the nature of h(�ijyimax ti ; Xi; Si) (i.e. depending on

the nature of the relations between �i and Si and the evolution of the distribution of yit

across periods and sub-panels) approximating h(�ijyimax ti,Xi) may require a complex

distribution even if h(�ijyimax ti ; Xi; Si) is the standard normal distribution.6

For completeness we should mention another way of obtaining a balanced sub-

panel from the original sample. Since the entire unbalanced panel contains several

5For example, in a rotating panel with T = 5 with three subpanels where each subpanel lasts for
three periods (i.e. Ti = 3), the �rst subpanel starts at ti = 1, the second at ti = 2, and the third at
ti = 3, the subpanels only have one period in common, less than the 3 periods needed for estimation.

6See next Section for a discussion of the problems with the practical implementation of this
approach.
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balanced sub-panels, one can just take one of these (of course, one as long as possible

in the time dimension). In many cases, this would be the sub-sample of individuals

present in all the waves of the original panel. For example, Contoyannis et. al. (2004)

obtain a balanced sub-sample in this way. More generally, one can take the sub-set

of individuals observed only in all of some speci�c consecutive waves. For example, it

may be the case that nobody is observed in all the periods of the panel, but a group

of individuals is observed from the second to the last wave of the panel; we can take

this group as our balanced sub-sample.

Although this way of obtaining a balanced sample produces an e¢ ciency loss due to

discarding a potentially high proportion of the sample, it avoids the potential infeasi-

bility problem when there are no enough periods in which all individuals are observed.

However, this does not allow to identify the average marginal e¤ect of covariates be-

cause, although the common parameters of the conditional model may be correctly

estimated using only this sub-sample, the conditional distribution of the heterogenous

individual e¤ects will only be valid for this particular sub-group of individuals. Unless

Assumption 2 (Unbalancedness independent of �i) is imposed, the distribution of �i for

this balanced sub-sample is di¤erent from the distribution of �i for the entire sample.

Given that we focus on methods that, if feasible, can be valid both under Assump-

tion 2 and under the more general case that allows for correlation between �i and the

unbalancedness, in the rest of the paper we will only consider the way of obtaining a

balanced sub-sample described in the previous paragraphs of this section.

3 Implementation and other practical issues

In this Section we show how the results from previous Section can be applied with

speci�c assumptions about parametric distributions. We have chosen one of the most

common distribution assumed in empirical works, but it can be generalized to other

non-linear models and parametric distributions.
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3.1 A general case that allows for correlation between �i and
the unbalancedness

Let us consider the following dynamic discrete choice model:

yit = 1 f�yit�1 + �0 +X 0
it� + �i + "it � 0g (6)

�"itj yit�1; Xi; �i; Si �
iid
N(0; 1) (7)

The probability of a given random sample of N unit observations is

Pr (S 01Y1; : : : ; S
0
NYN jX1; : : : ; XN ; S1; : : : ; SN) =

NY
i=1

Pr (S 0iYijXi; Si) =
NY
i=1

Pr (si1yi1; : : : ; siTyiT jXi; Si)

Thus, for each i = 1; :::; N;

Pr (si1yi1; : : : ; siTyiT jXi; Si) =
TY
t=1

Pr (yitjyit�1; Xi; Si)sitsit�1 Pr (yitjXi; Si)
sit(1�sit�1)

(8)

=

ti+TiY
t=ti+1

Pr (yitjyit�1; Xi; Si) Pr (yitijXi; Si) ;

where Pr (yitjyit�1; Xi; Si; �i) is given by the model in equations (6) and (7). Therefore,

we have

Pr (yit = 1jyit�1; Xi; Si; �i) = Pr
�
�"it � �yit�1 + �0 +X 0

it� + �ijyit�1; Xi; Si; �i
�

= Pr
�
�"it � �yit�1 + �0 +X 0

it� + �ijyit�1; Xi; �i
�

= �(�yit�1 + �0 +X
0
it� + �i)

If we decide to make a distributional assumption about the conditional density of

the �rst observation Pr (yitijXi; Si; �i) we can write the probability in (8) as

Pr (si1yi1; : : : ; siTyiT jXi; Si) =

Z
�i

ti+TiY
t=ti+1

Pr (yitjyit�1; Xi; Si; �i) Pr (yitijXi; Si; �i)h(�ijXi; Si)d�i

(9)

To solve the initial conditions problem, we can follow Heckman�s (1981) suggestion

and use for the �rst observation the same parametric form as the conditional density

for the rest of the observations. Then, using normal distributions,

Pr (yiti = 1jXi; Si; �i) = Pr (yit = 1jXit; Si; �i; sit�1 = 0; sit = 1)

= �
�
�0Si +X

0
iti
�Si + �Si�i

�
; (10)
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where we have di¤erent distributions for each value of Si. If, instead, we allow only

for correlation between ti and �i, equation (10) will be di¤erent for each ti:

For h(�ijXi; Si) we follow Chamberlain (1980) to allow for correlation between the

individual e¤ect and the explanatory variables:

�ijXi; Si � N
�
X
0
i��Si ; �

2
�Si

�
; (11)

where X i contains the within-means of the time-varying explanatory variables. Notice

that (11) allows for correlation between the sample selection process, Si, and the

permanent unobserved heterogeneity �i. If we assume that Si is independent of �i,

then, h(�ijXi; Si) = h(�ijXi) and

�ijXi; Si � N
�
X
0
i��; �

2
�

�
(12)

Alternatively, we could assume that �ijXi; Si depends only on ti but not on the rest

of Si, that is, but not on the duration of the sub-panel.

If we decide to consider the distribution conditional on the initial period observa-

tion, we can write the probability in (8) as

Pr (si1yi1; : : : ; siTyiT jXi; Si) =

"Z
�i

ti+TiY
t=ti+1

Pr (yitjyit�1; Xi; Si; �i)h(�ijyiti ; Xi; Si)d�i

#
Pr (yitijXi; Si)

(13)

To solve the initial conditions problem in this case we can followWooldridge (2005) and

specify an approximation for the density of �ijyiti ; Xi; Si in (13), discarding Pr (yitijXi; Si)

since that term is outside the integral. Continuing with the Normal case, we have

�ijyiti ; Xi; Si � N
�
�0Si + �1Siyiti +X

0
i�2Si ; �

2
�Si

�
(14)

or

�ijyiti ; Xi; Si � N
�
�0ti + �1tiyiti +X

0
i�2ti ; �

2
�ti

�
(15)

depending on whether we allow for correlation between Si and �i, or only between

the moment at which we �rst observe each individual, ti, and �i.7 As previously

noticed, even if we assume that the sample selection process Si is independent of �i,

7Note that hereXi =
1

Ti�1
Pti+Ti

t=ti+1
xit for the reasons given in Rabe-Hesketh and Skrondal (2013).
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h(�ijyiti ; Xi; Si) will be di¤erent for each ti, i.e. it will be as in (15), unless the process

is not dynamic or it is in its steady state since t = 0 (or yti comes from the same

exogenous distribution or rule for all units and ti).

Previous models can be estimated by Maximum Likelihood (ML). The contribution

to the likelihood function for individual i in model (9) is given by

Li =

Z
�i

�
�
�0Si +X

0
iti
�Si + �Si�i

�
(2yiti � 1) (16)(

ti+TiY
t=ti+1

� [(�yit�1 + �0 +X
0
it� + �i) (2yit � 1)]

)
h(�ijXi; Si)d�i;

where h(�ijXi; Si) is the distribution in (11) or in (12) or any other distribution of

�ijXi; Si like a discrete �nite distribution. In model (13) the contribution to the

likelihood function for individual i is given by

Li =

Z ti+TiY
t=ti+1

�
h�
�yit�1 +X

0
it� + �0Si + �1Siyiti +X

0
i�2Si + a

�
(2yit � 1)

i 1

��Si
�

�
a

��Si

�
da

(17)

The log-likelihood function is L =
PN

i=1 logLi and it will be maximized with respect

to
�
�; �0; f�0jgJj=1 ; f�1jg

J
j=1 ; f�2jg

J
j=1 ; f��jg

J
j=1

�
.

For balanced panels, it is well known since Wooldridge (2005) that modelling condi-

tional on the �rst observation of the dependent variable plus the normality assumption

for �ijyi1; Xi produces a very simple estimation method that can be implemented with

standard random-e¤ects probit software.8 Also, for the model that follows the Heck-

man�s solution to the initial conditions problem, Arulampalam and Stewart (2009)

propose an implementation procedure using the �gllamm�command in Stata. How-

ever, in the unbalanced case maximizing the likelihood in (16) or (17) is cumbersome

and cannot be done using the standard built-in commands in econometric software.9

Simpler and direct implementation: MD estimation The computational prob-

lems with the maximization of the log likelihood L =
PN

i=1 logLi come from having

8See Stewart (2007) for an application where this is estimated using the Stata command for
standard random-e¤ects probit models, �xtprobit�.

9Altough in theory it is possible to obtain these ML estimates by using the �gllamm�and/or �gsem�
commands in Stata 13 (or higher), in practice this is not computationally feasible in many cases. See
the Appendix for details.
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parameters that are speci�c to each sub-panel.10 The estimation of the model for each

sub-panel separately takes us back to the same situation we face when having a bal-

anced panel. To estimate the model in each sub-panel we can use standard software

like the following commands in Stata: the �xtprobit�command when estimating (13),

and the �gllamm�and �gsem�commands when estimating (9). Once we have estimated

the model for each sub-panel, we compute the weighted average of the estimates of

the parameters that are common: � and �0. See the Appendix for details on how all

this can be done.

A simpler distributional assumption Notice that if in (13), instead of making the

assumption (14) or (15), we impose that the variance of the distribution of �ijyiti ; Xi; Si
is constant across di¤erent sub-panels, that is

�ijyiti ; Xi; Si � N
�
�0Si + �1Siyiti +X

0
i�2Si ; �

2
�

�
; (18)

or

�ijyiti ; Xi; Si � N
�
�0ti + �1tiyiti +X

0
i�2ti ; �

2
�

�
; (19)

the estimation by ML becomes much easier since it can be done by using the simple

and fast �xtprobit�command in Stata as we show in the Appendix.

Practical problems when taking the balanced sub-sample: At this point it

is worth mentioning the potential problems of assuming Normal distributions when

making the panel balanced to deal with the initial conditions problem. We have seen

in the previous section that the only theoretical problem of this approach is that

it disregards information (sometimes too much information so it is not possible to

implement it). But from a practical point of view, if there is correlation between �i and

Si and the distribution of �ijyimax ti ; Xi; Si is Normal for each sub-panel, making the

panel balanced and assuming that �ijyimax ti ; Xi follows a normal distribution �which

would allow to use the simple practical solution by Wooldridge (2005) explained in

Section 5.1�is incorrect: �ijyimax ti ; Xi does not follow a normal distribution in that
10By sub-panel we mean the part of the panel formed by units that have the same Si. This means

that in each unbalanced panel we have J subpanels.
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case.11 This also poses a problem for using the comparison between the estimates

taking the balanced sub-sample with the estimates ignoring the unbalancedness to

decide whether or not the unbalancedness is ignorable, as done in some applied papers.

If normality about the distribution of �i is incorrectly assumed in both cases, these two

estimators will tend to produce similarly biased estimates. Therefore the comparison

between them can lead to incorrectly conclude that the unbalancedness is ignorable.

3.2 Implementation when the unbalancedness is independent
of the individual e¤ect

If we specify the likelihood based on expression (9), under Assumption 2 there is a

simpli�cation in terms of computation because there is only one common distribution

of �i for all the sub-panels. It is the distribution in (12). This makes feasible obtain-

ing the MLE from (16) using the �gllamm�and �gsem�commands in Stata. See the

Appendix for details.

In contrast with that, if we use the likelihood based on (13), Assumption 2 does

not lead to a conditional distribution of �i that is common to all sub-panels. As can

be seen in (15), �ijyiti ; Xi; Si still depends on when each sub-panel starts even under

independence of the unbalancedness from �i. This, as said, cannot be done using the

standard built-in commands in econometric software.

3.3 Summary of estimators and notation

In this section we list all the di¤erent estimators that could be used in practice when

having an unbalanced panel and present the notation that will be used in next sec-

tion. The di¤erent estimators arise mostly from the assumptions we are willing to

make about the relation between the unbalancedness and the permanent unobserved

heterogeneity.� H�and �W�denote that we use the Heckman�s or the Wooldridge�s

approach to address the initial conditions problem, respectively.

11Of course, balancing the panel will work if the distribution of �ijyimax ti ; Xi assumed were the
correct one: h(�ijyimax ti ,Xi) =

Z
Si

h(�ijyimax ti ; Xi; Si)dGSi , which, when h(�ijyimax ti ; Xi; Si) is the

normal density, is a mixture of normals with as many components as subpanels. This would be a
di¢ cult, though not unfeasible, model to estimate in practice. Certantly it is much more di¢ cult to
implement than the case that assumes normality.
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A1H and A1W: Standard ML estimators for balanced panels using the subset of

observations constituting a balanced panel.

A2H and A2W: ML estimators with unbalanced panels that allow for correlation

between the unbalancedness (S) and �. They come from the likelihoods in (16)

and (17).

A2H_MD and A2W_MD: The same as A2H and A2W, but estimating by Min-

imum Distance. See subsection 3.1.

A2bW: The same as A2W, but with the simpler assumption on the conditional dis-

tribution of � indicated in (18). This makes estimation by ML much simpler in

practice than in A2W.

A3H and A3W: ML estimators with unbalanced panels that allow for correlation

between the unbalancedness and �i but only through the moment at which we

�rst observe each individual, ti: The number of periods each individual is ob-

served is assumed to be independent of �i. For A3W this also corresponds with

the case in which we assume that the unbalancedness is independent of �i. See

equation (15) and the comments that follow that equation, and comments in

subsection 3.2.

A3H_MD and A3W_MD: The same as A3H and A3W, but estimating by Min-

imum Distance.

A3bW: It is like A3W, but with the simpler assumption on the conditional distri-

bution of � indicated in (19). This makes estimation by ML much simpler in

practice than in A3W.

A4H: ML estimator when assuming independence between the unbalancedness and

�, that is when assuming that �ijXi; Si follows the distribution in (12). As com-

mented in subsection 3.2, this simpli�es the implementation of the ML estimator.
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4 Simulations: Finite sample performance

In this section we use Monte Carlo techniques to illustrate the behavior of the estima-

tors. We are particularly interested in the �nite sample performance of the estimators

under di¤erent degrees of unbalancedness.

4.1 Data Generating Process and unbalancedness

The baseline speci�cation is:

yit = 1f�yit�1 + �i + "it � 0g t = 1; :::; T ; i = 1; :::; N (20)

"it �
iid
N(0; 1)

�i �
iid
N(��; �

2
�) (21)

yi0 = 1f�0 + �1�i + vi0 � 0g; vi0 �
iid
N (0; 1) ; (22)

where � = 0:75, N = 500, �� = 0, �2� = 1, �0 = �1:25, and �1 = 0; so the initial

condition of the process is exogenous and it is not drawn from the steady state.12

The unbalancedness is randomly generated, independently of everything else, and

the sub-panels vary in both when individuals enter and when they leave the sample.

The degree of unbalancedness in the sample is governed by a parameter J , which

indicates the number of sub-panels. The set of individuals that are observed the same

periods form a sub-panel. J = 0 indicates that the panel is balanced. If J = 2, there

are two sub-panels: the �rst half of units (N
2
) are observed from 1 to T � 1 and the

second half of units are observer from 2 to T . If J = 4, a quarter of units are observed

from 1 to T � 1, the second quarter of units are observed from 1 to T � 2, the third

are observed from 2 to T , and the last quarter of units is observed from 3 to T . And

the same for higher values of J . Table 1 shows this structure of unbalancedness up to

J = 6 for a case with T = 6. Given this way of generating the unbalancedness, J can

only take even values. We also impose the following restrictions on the values of J :

(i) the maximum value is Jmax = minf2 � T � 3; N30g; where 2 � T � 3 guarantees that
12In the simulations we consider the model without other covariates because this model already

contains all the problems we want to address and it reduces computational time. Actually, a model
with strictly exogenous covariates may have a better performance and then this would be like a worse
case scenario. In any case, both our theoretical study and our discussions on how to implement the
estimators we propose include other covariates.

16



all sub-panels have at least 3 periods and N
30
guarantees that there is at least 30 units

in all sub-panels, and (ii) the minimum value is Jmin = maxf2 � T � 15; 0g; where the

restriction 2 � T � 15 is to have sub-panels with less than 8 periods.13

After the baseline DGP is simulated, it is changed to evaluate the �nite sample

performance along the following dimensions:

1. Unbalancedness only from the left, i.e., sub-panels di¤er only on the period

they start but all are observed until T . Here J can take both even and odd

values. Table 2 contains an example of the unbalanced structure in this case.

Apart from the balanced case (J = 0), J goes from Jmin = maxfT � 6; 4g

to Jmax = minfT � 2; N
30
g. Jmin cannot be smaller than 4 because since the

unbalancedness is only from the left, a smaller J would be a case too close to a

balanced situation and we have not considered it.

2. Di¤erent values of N . In particular we have considered N = 200 and N = 1000,

in addition to the baseline case N = 500.

3. Di¤erent values of �, to evaluate the sensitivity to di¤erent degrees of persistence.

We have considered � = 0:5 and � = 1.

4. Initial condition correlated with �i: �1 = 0:5.

5. Both initial condition and unbalancedness correlated with �i: �1 = 0:5 and �i is

generated as follows:

�ijSi �
iid
N(��S; �

2
�S);

where ��S and �2�S are di¤erent for each sub-panel, so that there is correlation

between the values of �i and being observed (Si). ��S and �2�S are generated

randomly but in a way such that ES(�2�S) = �2� = 1, ES(��S) = �� = 0, and

��S is increasing in S. Thus, the value of �i is more likely to be larger the larger

the value of S, i.e. for the last sub-panels. In the left-side unbalancedness it

means that individuals with higher �i tend not to be observed the �rst periods.

Notice that since �i follows a normal distribution for each sub-panel, its aggregate

13When the time lenght is long, �xed e¤ects approaches may be prefereable. For example, simula-
tions in Carro (2007) show cases where a modi�ed MLE �xed e¤ects estimator performs well with 8
periods.

17



distribution over the entire set of individuals is not normal, but a mixture of

normals.

4.2 Monte Carlo results

For the sake of brevity not all estimators are used in all the simulation exercises.

Our general criteria has been to study in each simulated DGP the performance of

estimators whose assumptions correspond with those made in the DGP. For instance,

even though A2H and A2W will give consistent estimates in all the cases considered in

this paper, when the unbalancedness is generated at random, only the estimators based

this assumption (or a weaker version of it) are used. Nonetheless, for completeness,

there will be a few simulations in which other estimators, including those that are

known to be incorrect, are used too.

Table 3 and Table 4 show the results on the �nite-sample performance of several of

the estimators discussed in this paper in our baseline speci�cation. Under this setting,

and irrespective of the unbalancedness, it is known that all the proposed approaches

that do not ignore the unbalancedness give consistent estimates. We observe that all

the �ve approaches considered here provide estimated values of the parameter � very

close to its true value. However, there exists some other relevant points that are worth

noting. Solution approaches that use Wooldridge�s proposal to address the initial

condition problem and those that use Heckman�s proposal have similar performance

in terms of Root Mean Square Error (RMSE), independently of T , J , and the type

of unbalancedness. This similar performance is maintained even when Heckman�s

proposal allow to have an estimator that speci�cally uses the independence of the

unbalancedness and �i, A4H, whereas in the Wooldridge�s proposal the estimator is

the same as in the case of correlation between ti and �i. As a consequence of that, and

given that this paper is not about comparing this two proposals to deal with the initial

conditions problem, we will only use Wooldridge�s proposal in the rest of simulations

because it tends to be faster to compute.

More relevant to our aim, the solutions that employ standard methods after bal-

ancing the sample, namely A1H and A1W, have two important drawbacks compared

to any of the other approaches. First, those solutions cannot be employed in many
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cases, including some where the unbalancedness is moderate: for J = 4 with T = 6

or J = 6 with T = 8. Second, those solutions imply an important loss of e¢ ciency

in terms of RMSE when they can be employed compared to the approaches proposed

in this paper. Our proposals always dominates the usual solutions in terms of RMSE

and they can have as less as one half of its RMSE. This is true both if we consider

double unbalancedness (Table 3) or only left-side unbalancedness (Table 4) and, again,

losses are remarkable even for moderate unbalancedness. For instance, Table 3 shows

that for T = 8 and J = 4 the RMSE of A1H and A1W is around 0:17 compared with

around 0:09 for A3W, A3Wb and A4H. Table 4 displays a similar picture: for T = 8

and J = 5, for instance, the RMSE of A1H and A1W is around 0:16, compared with

around 0:09 for A3W, A3Wb and A4H.

In Table 5 we have the same baseline speci�cation as before but with a smaller

(N = 200) and a larger (N = 1000) sample size in Panels A and B, respectively.

Although the RMSE of all the solutions is reduced (increased) when the sample size

increases (decreases), the relative loss of e¢ ciency of the approach that takes only the

observations that constitute a balanced sample, A1W, remains as with N = 500. Also,

the performance of A1W quickly deteriorates even with moderate unbalancedness. For

instance, Table 5 Panel B shows small di¤erences for T = 8 and J = 2 in RMSE (0:06

of A1W compared with 0:05 of A3W and A3Wb), but if unbalancedness is just a

bit more intense, J = 4, the RMSE of A1W almost doubles to 0:11, whereas the

RMSE of A3W and A3Wb barely changes. All this is in addition to the fact that the

approach cannot be employed for many of the unbalanced structures. These results

remain unchanged when in Table 6 and Table 7 we consider lower and higher state

dependence, � = 0:50 and � = 1, respectively. Moreover, the RMSE does not seem to

diminish with smaller state dependence.

In Table 8 the initial condition is correlated with �. As can be seen, this does not

change the �nite sample performance of the estimators. The endogeneity of the initial

condition does not play a role here because the problem with unbalanced panels, when

the unbalancedness is exogenous, comes from the dynamics of the model and not from

the initial condition.

Finally, Table 9 presents a situation in which not only the initial condition but also
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the unbalancedness is correlated with �i, as explained in point 5 in section 4.1. The

results for this simulation show a similar pattern than in previous Tables regarding the

comparison between the estimator that balance the sample (A1W) and our preferred

solution (A2W_MD): A1W cannot be employed in many cases, and it implies an im-

portant loss of e¢ ciency in terms of RMSE. However, the performance of A1W is now

worse than in previous DGPs, re�ecting the extra di¢ culty of having to approximate

a potentially complicated relation between � and S assuming that there is a common

distribution of � that does not change across sub-panels in a given period.

The estimator that accounts for the unbalancedness but imposing a common vari-

ance on the distribution of �ijSi (A2Wb) performs worse than A2W_MD both in

terms of bias and RMSE. This is not surprising, since the assumption of common

variance across sub-panels is much less reasonable when there is correlation between

�i and the unbalancedness. As opposed to that, in previous DGPs the estimator that

imposes common variance slightly outperforms the MD estimator because it makes an

e¢ cient use of all the information and, when � and S are independent, it seems to

approximate reasonably well the true distribution of �.

Last column in Table 9 presents the ML estimates of the most general model that

does not impose a common variance of the distribution of �ijSi (A2W). Estimating this

model is computationally cumbersome so we just report simulations up to T = 8 and

J = 8. As opposed to the MD estimator, in this case there is no a potential problem of

lack of variability in certain sub-panels. Table 10 reports the percentage of simulations

that achieved convergence for the MD estimator. We see that the percentage of failures

is below 10% up to simulations with a very high degree of unbalancedness, and even

in this cases it does not seem to perform worse than the ML estimator, although this

result could be due to the fact that a di¤erent maximization routine is used in both

cases.

Average Marginal E¤ects So far we have discussed only how well our proposed

approaches perform to estimate the parameter �. However, practitioners estimating

non-linear models are ultimately interested in marginal e¤ects. Therefore, we consider

the �nite-sample performance of the estimated Average Marginal E¤ect (AME) in the
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model speci�cation of Table 8 to see if the conclusions reached for the estimation of

the parameters are valid for the marginal e¤ects. Since the true AME (slightly) varies

with the sample drawn in each Monte Carlo simulation, Table 11 reports the true

expected AME along with the estimated AME and the RMSE of the estimator. As

can be seen in Table 11, the same conclusions we have reached with respect to � apply

to the estimation of the marginal e¤ects too.

5 Conclusions

The main results that emerged from our analysis are the following:

� First, we show that the approach that disregards information by balancing the

sample presents important e¢ ciency losses in comparison with the di¤erent ver-

sions of the approaches proposed in this paper that exploit the unbalancedness

structure.

� Second, the problem is specially severe when the unbalanced process is corre-

lated with the individual e¤ect. Approximating the distribution of the individual

e¤ect conditional on the covariates and the unbalancedness can be very di¢ cult

if doing it for the entire sample, which could even a¤ect the consistency if the

approximation is poor. In contrast with that the methods we propose accom-

modate very easily the fact that the distributions of the individual e¤ect may be

totally di¤erent for each subpanel.

� Third, the unbalancedness and the dynamics of the model can produce an initial

condition problem even if the initial condition of the process is exogenous.

� Finally, the approaches proposed in this paper can be implemented relatively

easily using standard software and perform well, including the simple Minimum

Distance estimation.
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6 Appendix

The di¤erent models can be estimated using standard software as, for instance, Stata. In what

follows, we present the Stata codes used in each case, as well as the main problems we have found

to implement them. Some models can be easily estimated using the command �xtprobit�, while for

others we have used the �gsem�and �gllamm�commands. Finally, in some cases it is necessary to

write a speci�c likelihood maximizing program.

6.1 Using the balanced panel (A1H, A1W)
For the estimator A1W it is possible to obtain ML estimates using the �xtprobit� command. The

likelihood function to be maximized for A1W is

Li =

Z min(ti+Ti)Y
t=max ti+1

�
h�
�yit�1 +X

0
it� + �0 + �1yimax ti +X

0
i�2 + a

�
(2yit � 1)

i 1
��
�

�
a

��

�
da;

Thus, if the variable id is the individual indicator, and y0 is the initial condition, this model can

be estimated, after selecting the balanced sub-sample (A1W), using the following Stata code:

qbys id: gen y0 = y[1]

xtprobit y l.y y0 x m_x, re iter(#) intpoints(#)

where l:y is the �rst lag of y, while x and m_x are vectors of the explanatory variables and their

means, respectively.14 The symbol �#�indicates the number of iterations (iter) and the number of

quadrature points (intpoints). In our simulations these have been set to 50 and 24, respectively.

For the estimator A1H one can use the �gllamm� command, as in Arulampalam and Stewart

(2009). Nonetheless, we have found that, in the absence of convergence problems, the �gsem�com-

mand reaches the optimum faster. Therefore, in our Monte Carlo study we have tried �rst the �gsem�

command using Stata V13 and if convergence is not achieved after a certain number of iterations (10

iterations), we have switched to �gllamm�. The likelihood function to be maximized is

Li =

Z
�i

�
�
�0 +X

0
imax ti� + ��i

�
(2yimax ti � 1)8<:

min(ti+Ti)Y
t=max ti+1

� [(�yit�1 + �0 +X
0
it� + �i) (2yit � 1)]

9=;h(�ijXi)d�i;
for A1H.

The syntax of the �gsem�command requires to specify two equations: one for the main dynamic

equation and another for the initial condition. Moreover, we have to set a latent variable, the

individual e¤ect, common to both equations. Thus, if the variable time indicates the period number

each observation corresponds to (time=1,2,...), we use the following Stata code:

gen yy1 = y if time>1

gen yy0 = y if time==1

gen ly = l.y

gen xx1 = x if time>1

gen xx0 = x0 if time==1

14Note that hereXi =
1

Ti�1
Pti+Ti

t=ti+1
xit for the reasons given in Rabe-Hesketh and Skrondal (2013).
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gsem (yy1 <- ly xx1 I[id], probit) ///

(yy0 <- xx0 I[id], probit), intp(#) iter(10)

On the other hand, the �gllamm�command can be used to estimate this model, following the

notation proposed by Arulampalam and Stewart (2009). Speci�cally, they suggest to combine the

equations for the initial condition and for the rest of observations as follows. Thus, taking into account

the assumption

�ijXi; Si � N
�
X
0
i��; �

2
�

�
;

we can write

Pr[yit = 1jyit�1; Xi; Si; �i] =

�
h
(1� d0i )(�yit�1 +X 0

it� + �0 +X
0
i�� + b) + d

0
i (X

0
iti� + �0 + �(X

0
i�� + b))

i
= �

h
(1� d0i )�yit�1 + (1� d0i )X 0

it� + (1� d0i )X
0
i�� + �0 + d

0
iX

0
iti� + d

0
i (�0 � �0) +X

0
i�� + b+ d

0
i (X

0
i�� + b)(�� 1)

i
;

where d0i is a dummy variable equal to 1 for the �rst observation, and 0 otherwise, and b � N
�
0; �2�

�
.

Before running gllamm we have to de�ne one equation to specify the variables that multiply the

random e¤ect. The syntax is as follows:

gen d0=(time==1)

gen const = 1

eq etai: const d0

qbys id: gen Ly = y[_n-1]

replace Ly=0 if time==1

gllamm y Ly x1 d0 m_x x0,i(id) nrf(1) eqs(etai) nip(#) fam(binom) link(probit) ///

adapt trace iterate(#)

where the nrf(1) option indicates that there is one random e¤ect, and the equation �etai�speci�es

the variables associated to it: a constant variable, const, and the variable d0: The variable Ly equals

to the �rst lag of the dependent variable y but taking the value 0 for the �rst observation, since the

regressor is the interaction between yit�1 and (1� d0i ).

6.2 Allowing for correlation between the unbalancedness and
the individual e¤ect (A2H, A2W, and A3H, A3W)

In these cases performing the ML estimates is computationally cumbersome. Although in principle

these could be obtained using the �gsem�and the �gllamm�commands, this is so time consuming that

makes infeasible in practice to perform a Monte Carlo study. Therefore, to obtain the ML estimates we

have written the expressions for the likelihood functions in a speci�c likelihood maximizing program

available upon request. Nonetheless, we provide an explanation on how to estimate these models

with �gsem�and �gllamm�because for one estimate they could be feasible to implement.

For the model A2H, the likelihood function to be maximized is

Li =

Z
�i

�
�
�0Si +X

0
iti�Si + �Si�i

�
(2yiti�1)

(
ti+TiY
t=ti+1

� [(�yit�1 + �0 +X
0
it� + �i) (2yit � 1)]

)
h(�ijXi; Si)d�i

The generalization of the �gsem�command to the unbalanced case with correlation basically consists

on specifying one initial condition equation di¤erent for each sub-panel, while the dynamic equation
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for the rest of observations is common to all the individuals. For instance, suppose that we have two

sub-panels and that JJ is a variable that indicates the sub-panel to which the individual belongs to.

In our example, JJ can take the values 1 or 2. Before calling the gsem command we have to generate

the initial conditions for each sub-panel, y0_1 and y0_2:

gen y0_1=y if time==1 & JJ==1

gen y0_2=y if time==1 & JJ==2

Equally, we have to generate x0_1 and x0_2:

gen x0_1=x if time==1 & JJ==1

gen x0_2=x if time==1 & JJ==2

Then, the gsem command is speci�ed as follows:

xi:gsem(y1<-l.y x1 I[id], probit) ///

(y0_1<-J[id] x0_1, probit) ///

(y0_2<-K[id] x0_2, probit)

Notice that a di¤erent latent variable should be included in each equation to ensure that the

unobserved e¤ect follows a di¤erent distribution in each sub-panel.

Unfortunately, the gsem command has an important drawback for our purposes, because as the

number of sub-panels increases the number of equations to include in the command also increases.

Therefore, the estimation procedure followed by this command becomes increasingly complex and it

often fails to achieve convergence.

For similar reasons, the implementation of the �gllamm�command for this model is also di¢ cult.

Following with the previous example of two sub-panels, using the gllamm command requires to state

that there are two random e¤ects, one for each sub-panel, each of them with a di¤erent constant,

const_1 and const_2, and di¤erent dummy variables for each initial condition, d0_1 and d0_2.

Therefore, we need to generate:

gen const_1=(JJ==1)

gen const_2=(JJ==2)

gen d0_1=(time==1 & JJ==1)

gen d0_2=(time==1 & JJ==2)

The Stata code is as follows:

eq etai_1:const_1 d0_1

eq etai_2:const_2 d0_2

gllamm y Ly x1 d0_1 d0_2 x0_1 x0_2 mx_1 mx_2, i(id) nrf(2) eqs(etai_1 etai_2) ///

nip(#) fam(binom) link(probit)adapt trace iterate(#)nocorrel,

where the nocorrel option speci�es zero correlation between the two random e¤ects.

For the model A2W, the likelihood function is the following:

Li =

Z ti+TiY
t=ti+1

�
h�
�yit�1 +X

0
it� + �0Si + �1Siyiti +X

0
i�2Si + a

�
(2yit � 1)

i 1

��Si
�

�
a

��Si

�
da

Notice that this model can not be estimated with the xtprobit command. We have to use the gllamm

command. It requires to specify that there are two conditional distributions for the random e¤ects,

one for each sub-panel and to include two di¤erent constants and initial conditions in the main

equation, as follows:
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eq etai_1:const_1

eq etai_2:const_2

gllamm y l.y x const_1 const_2 y0_1 y0_2 mx_1 mx_2, i(id) nrf(2) eqs(etai_1 etai_2) ///

nip(#) fam(binom) link(probit)adapt trace iterate(#) nocorrel noconst

where mx_1 and mx_2 are the vector of means of the explanatory variables interacted with

const_1 and const_2, respectively.

As previously pointed out, as the number of sub-panels increases the implementation of these

commands becomes infeasible.

Notice that if the unbalancedness is de�ned only in terms of di¤erent initial periods for each

individual, and not also on the di¤erent duration of the sub-panels, the de�nition of the indicator JJ

changes. That is, for estimating models A3H and A3W JJ takes di¤erent values depending only on

the di¤erent initial periods available in the sample, while for estimating models A2H and A2W JJ

takes di¤erent values depending on the combination of di¤erent initial and last periods.

Minimum Distance estimation An easy alternative estimation procedure is the Minimum

Distance. MD estimation involves the estimation of the coe¢ cients for each sub-panel in a �rst

stage. In the second stage, the estimator is derived by minimizing the weighted di¤erence between

the coe¢ cients obtained in the �rst stage. In Stata, the estimation of the model A2W_MD can be

easily performed by using the �xtprobit�command for each sub-panel. The Stata code for the case

of two sub-panels is the following:

forvalues Z=1/2 {

xi:xtprobit y l.y y0 x m_x,re iter(#) intpoints(#), if JJ==�Z�

matB=e(b)

matV=e(V)

scalar accum1 = accum1+B[1,1]/V[1,1]

scalar accum2 = accum2+1/V[1,1]

}

Notice that we compute the optimum MD estimator. Then, the MD estimates are obtained as

return scalar coef1 = accum1/accum2

return scalar SE1 = sqrt(1/accum2)

Equally, for the MD estimation of model A2H we can apply the �gsem�or the �gllamm�com-

mands inside the loop for each sub-panel, as previously explained.

It is important to note that, although computationally feasible, the practical problem with the

MD estimator is the potential lack of variability in a speci�c sub-panel. This problem is less likely to

appear when using the whole sample as the ML does.

Constant variance of �i Finally, the simplifying assumption that the variance of the con-

ditional distribution of �i is constant across sub-panels, makes the implementation of the ML of

previous model (A2bW) feasible. That is, if we assume that

�ijyiti ; Xi;Si � N
�
�0Si + �1Siyiti +X

0
i�2Si ; �

2
�

�
;

ML estimates can be easily obtained by using the �xtprobit�command. For the two sub-panels case,

we have to generate two di¤erent constants, const_1 and const_2, and two di¤erent initial conditions

for each sub-panel, y0_1 and y0_2: The Stata code used is the following:
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xtprobit y l.y x const_1 const_2 y0_1 y0_2 mx_1 mx_2, re iter(#) intpoints(#) noconst

6.3 Using unbalanced panels and assuming independence be-
tween the unbalancedness and the individual e¤ect

In this case the estimator of the model that speci�es the density of the unobserved e¤ect conditional

on the �rst observation to deal with the initial conditions problem when we assume independence is

the same as the one that allows for correlation between ti and � (A3W). Therefore, in this subsection

we just focus on the model that speci�es the density of the unobserved e¤ect conditional on the

�rst observation to deal with the initial conditions problem (A4H), for which ML estimates can be
obtained by using the �gsem�or the �gllamm�commands. Notice that the di¤erence with respect

to the correlated case is that there is only one common distribution for the unobserved e¤ects in all

sub-panels. The likelihood function to be maximized is

Li =

Z
�i

�
�
�0Si +X

0
iti�Si + �Si�i

�
(2yiti�1)

(
ti+TiY
t=ti+1

� [(�yit�1 + �0 +X
0
it� + �i) (2yit � 1)]

)
h(�ijXi)d�i

(23)

The Stata code to implement the �gsem�command for case in which we have two di¤erent sub-panels

is

gsem(y1<-l.y x1 I[id],probit) ///

(y0_1<-I[id] x0_1, probit) ///

(y0_2<-I[id] x0_2, probit)

where the di¤erence with respect to the correlated case is that the same latent variable, I[id], is

included in all the equations.

As in previous cases, the Stata code to implement the A4H estimator using the �gllamm�com-

mand can be easily understood using the Arulampalam and Stewart (2009) notation:

Pr[yit = 1jyit�1; Xi; Si; �i] = �
h
(1� d0Si)�yit�1 + (1� d

0
Si)X

0
it� + (1� d0Si)X

0
i�� + �0 + d

0
SiX

0
iti�

+d0Si(�0 � �0) +X
0
i�� + b+ d

0
Si(X

0
i�� + b)(�� 1)

i
Thus, it only requires to specify one equation for the random e¤ect, with one constant, const,

and two di¤erent dummy variables for the initial conditions, d0_1 and d0_2:

eq etai:const d0_1 d0_2

gllamm y Ly x1 d0_1 d0_2 x0_1 x0_2 mx_1 mx_2, i(id) nrf(1) eqs(etai) ///

nip(#) fam(binom) link(probit)adapt trace iterate(#)
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7 Tables

Table 1: Example of double unbalancedness

t = 1 2 3 4 5 6
J = 0 For N units si = 1 1 1 1 1 1
J = 2 For N=2 units si = 1 1 1 1 1 0

For N=2 units si = 0 1 1 1 1 1
J = 4 For N=4 units si = 1 1 1 1 1 0

For N=4 units si = 1 1 1 1 0 0
For N=4 units si = 0 1 1 1 1 1
For N=4 units si = 0 0 1 1 1 1

J = 6 For N=6 units si = 1 1 1 1 1 0
For N=6 units si = 1 1 1 1 0 0
For N=6 units si = 1 1 1 0 0 0
For N=6 units si = 0 1 1 1 1 1
For N=6 units si = 0 0 1 1 1 1
For N=6 units si = 0 0 0 1 1 1

Table 2: Example of left-side unbalancedness

t = 1 2 3 4 5 6 7
J = 0 For N units si = 1 1 1 1 1 1 1
J = 2 For N=2 units si = 0 1 1 1 1 1 1

For N=2 units si = 0 0 1 1 1 1 1
J = 3 For N=3 units si = 0 1 1 1 1 1 1

For N=3 units si = 0 0 1 1 1 1 1
For N=3 units si = 0 0 0 1 1 1 1

J = 4 For N=4 units si = 0 1 1 1 1 1 1
For N=4 units si = 0 0 1 1 1 1 1
For N=4 units si = 0 0 0 1 1 1 1
For N=4 units si = 0 0 0 0 1 1 1
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Table 5: Monte Carlo Simulation results. Baseline Speci�cation with N = 200 and
N = 1000

Panel A: N=200
� = 0:75 A1W A3W_MD A3Wb A1W A3W_MD A3Wb

mean b� RMSE
T=4 J=0 0.7525 0.7525 0.7525 0.1866 0.1866 0.1866

J=2 0.7798 0.7360 0.3327 0.3263
T=6 J=0 0.7496 0.7496 0.7496 0.1289 0.1289 0.1289

J=2 0.7490 0.7530 0.7451 0.2420 0.1623 0.1599
J=4 0.7667 0.7452 0.1884 0.1822
J=6 0.7658 0.7387 0.2151 0.2108

T=8 J=2 0.7525 0.7531 0.7497 0.1491 0.1211 0.1205
J=4 0.7513 0.7555 0.7477 0.2621 0.1337 0.1313
J=6 0.7645 0.7494 0.1440 0.1398

T=10 J=6 0.7534 0.7509 0.7458 0.2653 0.1116 0.1098
Panel B: N=1000

� = 0:75 A1W A3W_MD A3Wb A1W A3W_MD A3Wb
mean b� RMSE

T=4 J=0 0.7487 0.7487 0.7487 0.0839 0.0839 0.0839
J=2 0.7549 0.7392 0.1497 0.1454

T=6 J=0 0.7477 0.7477 0.7477 0.0573 0.0573 0.0573
J=2 0.7519 0.7483 0.7432 0.1076 0.0707 0.0702
J=4 0.7494 0.7411 0.0782 0.0771
J=6 0.7573 0.7400 0.0925 0.0881

T=8 J=2 0.7517 0.7518 0.7488 0.0659 0.0533 0.0530
J=4 0.7590 0.7517 0.7472 0.1157 0.0563 0.0560
J=6 0.7527 0.7468 0.0607 0.0602
J=8 0.7560 0.7465 0.0690 0.0665
J=10 0.7586 0.7455 0.0738 0.0719

T=10 J=6 0.7619 0.7516 0.7482 0.1158 0.0489 0.0486
J=8 0.7512 0.7472 0.0515 0.0512
J=10 0.7517 0.7466 0.0546 0.0530
J=12 0.7529 0.7456 0.0586 0.0574
J=14 0.7544 0.7449 0.0632 0.0615

T=15 J=16 0.7493 0.7468 0.0413 0.0412
J=18 0.7496 0.7465 0.0427 0.0425
J=20 0.7506 0.7467 0.0443 0.0440
J=22 0.7511 0.7459 0.0471 0.0465
J=24 0.7511 0.7452 0.0497 0.0488

Note: In the baseline speci�cation � = 0:75, �� = 0, �2� = 1, �0 = �1:25, �1 = 0 so
the initial condition of the process is exogenous and not drawn from the steady state,
and there is Double Unbalancedness at random.
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Table 6: Monte Carlo Simulation results. Smaller state dependence: � = 0:50

Panel A: Double Unbalancedness
� = 0:50 A1W A3W_MD A3Wb A1W A3W_MD A3Wb

mean b� RMSE
T=4 J=0 0.5014 0.5014 0.5014 0.1199 0.1199 0.1199

J=2 0.5107 0.4887 0.2168 0.2094
T=6 J=0 0.4964 0.4964 0.4964 0.0801 0.0801 0.0801

J=2 0.4991 0.4999 0.4966 0.1516 0.1007 0.1000
J=4 0.5020 0.4946 0.1150 0.1119
J=6 0.5168 0.4959 0.1330 0.1268

T=8 J=2 0.5024 0.5017 0.5001 0.0942 0.0771 0.0767
J=4 0.5109 0.5018 0.4994 0.1550 0.0821 0.0817
J=6 0.5020 0.4984 0.0871 0.0862
J=8 0.5060 0.4980 0.0962 0.0938
J=10 0.5108 0.4964 0.1059 0.1028

T=10 J=6 0.5128 0.4998 0.4981 0.1488 0.0660 0.0658
J=8 0.4996 0.4974 0.0701 0.0698
J=10 0.5001 0.4959 0.0743 0.0737
J=12 0.5037 0.4959 0.0789 0.0780
J=14 0.5061 0.4952 0.0845 0.0824

T=15 J=16 0.4964 0.4946 0.0543 0.0543
Panel B: Left-side Unbalancedness

� = 0:50 A1W A3W_MD A3Wb A1W A3W_MD A3Wb
mean b� RMSE

T=4 J=0 0.5014 0.5014 0.5014 0.1199 0.1199 0.1199
J=2 0.5063 0.4844 0.1597 0.1552

T=6 J=0 0.4964 0.4964 0.4964 0.0801 0.0801 0.0801
J=4 0.5079 0.4812 0.1199 0.1164

T=8 J=4 0.5041 0.5020 0.4939 0.1141 0.0874 0.0858
J=5 0.5074 0.5048 0.4917 0.1542 0.0933 0.0908
J=6 0.5097 0.4895 0.1018 0.0992

T=10 J=4 0.5003 0.5000 0.4959 0.0775 0.0626 0.0625
J=5 0.4968 0.4992 0.4941 0.0920 0.0665 0.0665
J=6 0.4956 0.4998 0.4926 0.1093 0.0870 0.0697
J=7 0.4795 0.5032 0.4918 0.1517 0.0751 0.0739
J=8 0.5060 0.4907 0.0805 0.0792

T=15 J=9 0.5006 0.4995 0.4962 0.0798 0.0534 0.0534
J=10 0.5016 0.4987 0.4948 0.0919 0.0559 0.0561
J=11 0.5030 0.4998 0.4941 0.1136 0.0590 0.0588
J=12 0.5065 0.5013 0.4933 0.1539 0.0604 0.0603
J=13 0.5035 0.4937 0.0627 0.0625

Note: As in the baseline speci�cation, N = 500, �� = 0, �2� = 1, �0 = �1:25, �1 = 0
so the initial condition of the process is exogenous and not drawn from the steady
state, and the unbalancedness is at random. However, here � = 0:50.
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Table 7: Monte Carlo Simulation results. Higher state dependence: � = 1

Panel A: Double Unbalancedness
� = 1 A1W A3W_MD A3Wb A1W A3W_MD A3Wb

mean b� RMSE
T=4 J=0 1.0029 1.0029 1.0029 0.1206 0.1206 0.1206

J=2 1.0167 0.9890 0.2136 0.2065
T=6 J=0 1.0016 1.0016 1.0016 0.0856 0.0856 0.0857

J=2 1.0112 1.0072 0.9987 0.1691 0.1096 0.1080
J=4 1.0161 0.9952 0.1249 0.1181
J=6 1.0220 0.9944 0.1381 0.1331

T=8 J=2 1.0030 1.0017 0.9969 0.1042 0.0829 0.0822
J=4 1.0140 1.0010 0.9937 0.1761 0.0889 0.0879
J=6 1.0037 0.9917 0.0981 0.0953
J=8 1.0078 0.9895 0.1051 0.1014
J=10 1.0106 0.9884 0.1152 0.1111

T=10 J=6 1.0184 1.0014 0.9954 0.1854 0.0730 0.0724
J=8 1.0030 0.9947 0.0772 0.0757
J=10 1.0060 0.9932 0.0834 0.0807
J=12 1.0104 0.9934 0.0879 0.0852
J=14 1.0100 0.9931 0.0929 0.0892

T=15 J=16 1.0001 0.9939 0.0592 0.0584
Panel B: Left-side Unbalancedness

� = 1 A1W A3W_MD A3Wb A1W A3W_MD A3Wb
mean b� RMSE

T=4 J=0 1.0029 1.0029 1.0029 0.1206 0.1206 0.1206
J=2 1.0089 0.9885 0.1608 0.1575

T=6 J=0 1.0016 1.0016 1.0016 0.0856 0.0856 0.0857
J=4 1.0232 0.9898 0.1344 0.1277

T=8 J=4 1.0050 1.0033 0.9891 0.1367 0.0923 0.0900
J=5 1.0044 1.0095 0.9864 0.1865 0.1012 0.0976
J=6 1.0113 0.9832 0.1135 0.1083

T=10 J=4 1.0031 1.0015 0.9936 0.0923 0.0718 0.0715
J=5 1.0012 1.0010 0.9913 0.1086 0.0765 0.0759
J=6 1.0005 1.0040 0.9902 0.1352 0.0823 0.0803
J=7 1.0034 1.0076 0.9883 0.1878 0.0890 0.0857
J=8 1.0081 0.9861 0.0940 0.0912

T=15 J=9 1.0055 1.0033 0.9976 0.0934 0.0604 0.0595
J=10 1.0051 1.0027 0.9958 0.1061 0.0626 0.0620
J=11 1.0080 1.0048 0.9951 0.1350 0.0661 0.0645
J=12 1.0085 1.0067 0.9948 0.1873 0.0691 0.0674
J=13 1.0065 0.9945 0.0718 0.0706

Note: As in the baseline speci�cation, N = 500, �� = 0, �2� = 1, �0 = �1:25, �1 = 0
so the initial condition of the process is exogenous and not drawn from the steady
state, and the unbalancedness is at random. However, here � = 1.
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Table 8: Monte Carlo Simulation results. Initial condition correlated with �

Panel A: Double Unbalancedness
� = 0:75 A1W A3W_MD A3Wb A1W A3W_MD A3Wbb� RMSE
T=4 J=0 0.7535 0.7535 0.7535 0.1258 0.1258 0.1258

J=2 0.7658 0.7411 0.2207 0.2134
T=6 J=0 0.7506 0.7506 0.7506 0.0852 0.0852 0.0852

J=2 0.7580 0.7565 0.7519 0.1642 0.1067 0.1057
J=4 0.7596 0.7489 0.1203 0.1164
J=6 0.7727 0.7499 0.1403 0.1323

T=8 J=2 0.7518 0.7519 0.7497 0.1007 0.0815 0.0812
J=4 0.7615 0.7521 0.7488 0.1676 0.0873 0.0867
J=6 0.7528 0.7475 0.0928 0.0915
J=8 0.7569 0.7458 0.1006 0.0982
J=10 0.7608 0.7447 0.1098 0.1074

T=10 J=6 0.7672 0.7505 0.7481 0.1657 0.0709 0.0707
J=8 0.7514 0.7480 0.0749 0.0742
J=10 0.7526 0.7463 0.0803 0.0790
J=12 0.7574 0.7471 0.0855 0.0832
J=14 0.7594 0.7474 0.0905 0.0874

T=15 J=16 0.7482 0.7455 0.0562 0.0560
Panel B: Left-side Unbalancedness

� = 0:75 A1W A3W_MD A3Wb A1W A3W_MD A3Wbb� RMSE
T=4 J=0 0.7535 0.7535 0.7535 0.1258 0.1259 0.1258

J=2 0.7596 0.7387 0.1659 0.1611
T=6 J=0 0.7506 0.7506 0.7506 0.0852 0.0852 0.0852

J=4 0.7684 0.7406 0.1329 0.1268
T=8 J=4 0.7537 0.7525 0.7435 0.1230 0.0903 0.0888

J=5 0.7554 0.7577 0.7419 0.1664 0.0989 0.0943
J=6 0.7594 0.7391 0.1075 0.1038

T=10 J=4 0.7506 0.7499 0.7454 0.0837 0.0690 0.0688
J=5 0.7473 0.7489 0.7433 0.0987 0.0725 0.0724
J=6 0.7468 0.7492 0.7413 0.1199 0.0770 0.0764
J=7 0.7466 0.7525 0.7401 0.1648 0.0831 0.0816
J=8 0.7552 0.7390 0.0879 0.0861

T=15 J=9 0.7540 0.7511 0.7477 0.0842 0.0547 0.0546
J=10 0.7533 0.7508 0.7466 0.0961 0.0574 0.0573
J=11 0.7563 0.7521 0.7460 0.1219 0.0605 0.0598
J=12 0.7568 0.7541 0.7455 0.1655 0.0629 0.0620
J=13 0.7589 0.7454 0.0664 0.0654

Note: As in the baseline speci�cation, � = 0:75, N = 500, �� = 0, �2� = 1,
�0 = �1:25, and the unbalancedness is at random. However, here �1 = 0:5 so the
initial condition of the process is correlated with �.
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Table 9: Monte Carlo Simulation results. The initial condition and the unbalancedness
are both correlated with �

Panel A: Double Unbalancedness
� = 0:75 A1W A2W_MD A2Wb A2W A1W A2W_MD A2Wb A2Wb� RMSE
T=4 J=0 0.7535 0.7535 0.7534 0.7535 0.1258 0.1258 0.1258 0.1257

J=2 0.7444 0.7555 0.7280 0.2254 0.2618 0.2284
T=6 J=0 0.7506 0.7506 0.7506 0.7506 0.0852 0.0852 0.0852 0.0853

J=2 0.7398 0.7464 0.7520 0.7418 0.1709 0.1124 0.1264 0.1122
J=4 0.7409 0.7565 0.7290 0.1178 0.1267 0.1199
J=6 0.7494 0.7623 0.7250 0.1348 0.1449 0.1398

T=8 J=2 0.7465 0.7493 0.7570 0.7488 0.1099 0.0847 0.1105 0.0867
J=4 0.7465 0.7477 0.7590 0.7434 0.1765 0.0889 0.0923 0.0885
J=6 0.7517 0.7644 0.7418 0.0880 0.0967 0.0917
J=8 0.7529 0.7656 0.7361 0.0964 0.1041 0.0978
J=10 0.7380 0.7637 0.1025 0.1119

T=10 J=6 0.7527 0.7520 0.7617 0.1751 0.0740 0.0779
J=8 0.7443 0.7571 0.0755 0.0811
J=10 0.7470 0.7612 0.0799 0.0869
J=12 0.7434 0.7591 0.0873 0.0912
J=14 0.7339 0.7581 0.0887 0.0948

T=15 J=16 0.7437 0.7559 0.0610 0.0641
Panel B: Left-side Unbalancedness

� = 0:75 A1W A2W_MD A2Wb A1W A2W_MD A2Wbb� RMSE
T=4 J=0 0.7535 0.7535 0.7534 0.1258 0.1258 0.1258

J=2 0.7440 0.7553 0.1670 0.1939
T=6 J=0 0.7506 0.7506 0.7506 0.0852 0.0852 0.0852

J=4 0.7490 0.7610 0.1215 0.1290
T=8 J=4 0.7446 0.7460 0.7574 0.1242 0.0833 0.0913

J=5 0.7428 0.7464 0.7575 0.1866 0.0914 0.1005
J=6 0.7469 0.7612 0.0956 0.1031

T=10 J=4 0.7499 0.7489 0.7570 0.0973 0.0734 0.0764
J=5 0.7458 0.7490 0.7589 0.1097 0.0734 0.0763
J=6 0.7465 0.7481 0.7581 0.1389 0.0757 0.0809
J=7 0.7459 0.7457 0.7568 0.1787 0.0824 0.0865
J=8 0.7479 0.7589 0.0842 0.0888

T=15 J=9 0.7514 0.7487 0.7564 0.0935 0.0607 0.0628
J=10 0.7481 0.7445 0.7520 0.1115 0.0590 0.0622
J=11 0.7551 0.7464 0.7557 0.1367 0.0618 0.0644
J=12 0.7589 0.7472 0.7556 0.1857 0.0643 0.0666
J=13 0.7477 0.7579 0.0677 0.0701

Note: As in the baseline speci�cation, � = 0:75, N = 500, �� = 0, �2� = 1,
�0 = �1:25. However, here �1 = 0:5 so the initial condition of the process is
correlated with �, and the unbalancedness is also correlated with � the way it is
explained in point 5 in section 4.1.
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Table 10: Percentage of Monte Carlo Simulations that achieved convergence for the
Minimum Distance estimation

Higher Correlated Correlated IC and
Baseline State Dependence Ini. Condit. Unbalancedness

A3W_MD in A3W_MD in A3W_MD in A2W_MD in
Tables 3 and 4 Table 7 Table 8 Table 9

Panel A: Double Unbalancedness
T=4 J=0 100.0 100.0 100.0 100.0

J=2 100.0 100.0 100.0 99.0
T=6 J=0 100.0 100.0 100.0 100.0

J=2 100.0 100.0 100.0 99.4
J=4 100.0 99.9 100.0 97.5
J=6 99.8 99.4 99.9 93.0

T=8 J=2 100.0 100.0 100.0 99.6
J=4 100.0 100.0 100.0 98.3
J=6 100.0 100.0 100.0 96.6
J=8 100.0 100.0 100.0 92.5
J=10 99.1 95.5 98.5 87.1

T=10 J=6 100.0 100.0 100.0 96.5
J=8 100.0 100.0 100.0 95.0
J=10 100.0 100.0 100.0 92.0
J=12 100.0 99.7 100.0 89.6
J=14 95.0 89.2 93.9 79.2

T=15 J=16 100.0 99.9 100.0 86.0
Panel B: Left-side Unbalancedness

T=4 J=0 100.0 100.0 100.0 100.0
J=2 100.0 100.0 100.0 98.6

T=6 J=0 100.0 100.0 100.0 100.0
J=4 100.0 99.7 100.0 96.2

T=8 J=4 100.0 100.0 100.0 97.2
J=5 100.0 100.0 100.0 95.3
J=6 99.9 99.3 99.9 92.7

T=10 J=4 100.0 100.0 100.0 96.3
J=5 100.0 100.0 100.0 96.0
J=6 100.0 100.0 100.0 92.9
J=7 100.0 100.0 100.0 90.5
J=8 99.5 98.3 99.5 86.8

T=15 J=9 100.0 100.0 100.0 90.1
J=10 100.0 100.0 100.0 85.5
J=11 100.0 99.9 100.0 83.7
J=12 100.0 99.7 100.0 77.5
J=13 96.8 91.3 96.8 73.8

Note: In other speci�catons all simulations converged or the percentage of
convergence very was close to 100%.
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Table 11: Monte Carlo Simulation results on the estimation of the AMEs. The initial
condition is correlated with �

Panel A: Double Unbalancedness
A1W A3W_MD A3Wb A1W A3W_MD A3Wb

AME \AME AME \AME AME \AME RMSE
T=4 J=0 0.2019 0.2034 0.2019 0.2034 0.2019 0.2034 0.0416 0.0416 0.0416

J=2 0.2019 0.2092 0.2019 0.2014 0.0764 0.0732
T=6 J=0 0.2021 0.2024 0.2021 0.2024 0.2021 0.2024 0.0273 0.0273 0.0273

J=2 0.2021 0.2088 0.2021 0.2052 0.2021 0.2033 0.0602 0.0362 0.0355
J=4 0.2021 0.2068 0.2021 0.2022 0.0414 0.0397
J=6 0.2021 0.2093 0.2021 0.2023 0.0476 0.0449

T=8 J=2 0.2021 0.2039 0.2021 0.2031 0.2021 0.2021 0.0339 0.0265 0.0262
J=4 0.2021 0.2109 0.2021 0.2034 0.2021 0.2019 0.0612 0.0286 0.0281
J=6 0.2021 0.2038 0.2021 0.2015 0.0306 0.0299
J=8 0.2021 0.2048 0.2021 0.2009 0.0333 0.0323
J=10 0.2021 0.2045 0.2021 0.2004 0.0360 0.0354

T=10 J=6 0.2020 0.2133 0.2020 0.2025 0.2020 0.2016 0.0625 0.0229 0.0227
J=8 0.2020 0.2030 0.2020 0.2016 0.0244 0.0240
J=10 0.2020 0.2032 0.2020 0.2009 0.0264 0.0256
J=12 0.2020 0.2043 0.2020 0.2011 0.0279 0.0270
J=14 0.2020 0.2040 0.2020 0.2011 0.0296 0.0285

T=15 J=16 0.2021 0.2018 0.2021 0.2011 0.0180 0.0178
Panel B: Left-side Unbalancedness

A1W A3W_MD A3Wb A1W A3W_MD A3Wb

AME \AME AME \AME AME \AME RMSE
T=4 J=0 0.2019 0.2034 0.2019 0.2034 0.2019 0.2034 0.0416 0.0416 0.0416

J=2 0.2019 0.2065 0.2019 0.1975 0.0589 0.0547
T=6 J=0 0.2021 0.2024 0.2021 0.2024 0.2021 0.2024 0.0273 0.0273 0.0273

J=4 0.2021 0.2086 0.2021 0.1981 0.0462 0.0425
T=8 J=4 0.2021 0.2058 0.2021 0.2042 0.2021 0.2002 0.0436 0.0304 0.0292

J=5 0.2021 0.2081 0.2021 0.2060 0.2021 0.1995 0.0614 0.0335 0.0312
J=6 0.2021 0.2055 0.2021 0.1983 0.0369 0.0346

T=10 J=4 0.2020 0.2036 0.2020 0.2026 0.2020 0.2009 0.0285 0.0226 0.0223
J=5 0.2020 0.2028 0.2020 0.2023 0.2020 0.2002 0.0340 0.0239 0.0236
J=6 0.2020 0.2032 0.2020 0.2026 0.2020 0.1995 0.0423 0.0256 0.0250
J=7 0.2020 0.2048 0.2020 0.2037 0.2020 0.1991 0.0605 0.0280 0.0269
J=8 0.2020 0.2037 0.2020 0.1987 0.0297 0.0286

T=15 J=9 0.2021 0.2051 0.2021 0.2031 0.2021 0.2022 0.0286 0.0178 0.0176
J=10 0.2021 0.2051 0.2021 0.2030 0.2021 0.2018 0.0331 0.0188 0.0185
J=11 0.2021 0.2071 0.2021 0.2035 0.2021 0.2017 0.0435 0.0199 0.0194
J=12 0.2021 0.2093 0.2021 0.2040 0.2021 0.2015 0.0612 0.0208 0.0202
J=13 0.2021 0.2039 0.2021 0.2015 0.0218 0.0213

Note: As in the baseline speci�cation, � = 0:75, N = 500, �� = 0, �2� = 1,
�0 = �1:25, and the unbalancedness is at random. However, here �1 = 0:5 so the
initial condition of the process is correlated with �.
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