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Paper contributions

Our approach aims at contributing to the definition and detection of
financial stress periods, within an explicit, rational and transparent
framework based on public market data, which is, in our opinion, of
major interest for macro-prudential regulation and the stability of the
financial system as a whole

From the methodological point of view, following Giglio et al. (2016),
we propose an aggregated index, called Index of Systemic Risk
Measures (ISRM), based on a Sparse-PCA applied to several systemic
risk measures

We endogeneize the sparsity parameter in such a way ISRM
Granger-cause extreme movements on the real side of the economy
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systemic risk indicators or on their comparison

Acharya, Pedersen, Philippon and Richardson, 2016, Measuring
Systemic Risk, RFS
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HEC WP
Bisias, Flood, Lo and Valavanis, 2012, A Survey of Systemic Risk
Analytics, ARFE
Brownlees and Engle, 2017, SRISK: A Conditional Capital Shortfall
Index for Systemic Risk Measurement, RFS
Giglio, Kelly and Pruitt,2016, Systemic Risk and the Macroeconomy:
An Empirical Evaluation, JFE
Hildebrand, 2016, Systemic Risk and Financial Regulation: Where Do
We Stand? in Progress and Confusion: The State of Macroeconomic
Policy, MIT Press
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Systemic Risk Measures

Bisias et al., 2012, report 31 systemic risk measures classified in two
families...

1 Individual systemic risk measures that quantify the contribution of a
single firm to the risk of the entire system (or to a specific systemic
event) or that measure the firms’ response to a systemic event in the
system

2 Global systemic risk measures that examine the system as a whole,
not just the response of a firm to the systemic event or the impact of
a firm on the system; in other words, they measure the response of
the system to a systemic event
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Systemic Risk Measures

We focus on a set of 16 systemic risk measures and indicators
proposed and used in the recent literature, namely...

1 Individual measures: the Value-at-Risk (VaR) [VaR] , the CoVaR and
∆CoVaR of Adrian and Brunnermeier (2011) [CoVaR] , the Marginal
Expected Shortfall (MES) of Acharya et al. (2010) [MES] , the
Component Expected Shortfall (CES) of Banulescu and Dumitrescu
(2012) [CES] , the Systemic RISK Measure (SRISK) of Acharya et al.
(2012) [SRISK] , and the Amihud (2002) Illiquidity Measure (AIM) [AIM]

2 Global measures: the Spillover Index (SI) of Diebold et Yilmaz
(2009) [SI] , the Herfindalh-Hirschman Index (HHI) [HHI] , the
Absorption Ratio (AR) of Kritzman et al. (2010) [AR] , the Turbulence
Index (TI) of Kritzman and Li (2010) [TI] , Volatility (Vol) [Vol] , the
Dynamic Causality Index (DCI) of Billio et al. (2012) [DCI] , the Term
Spread (TS) [TS] , the Default Yield Spread (DYS) [DYS] , the TED
Spread (TED) [TED]
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Data and sample

In a first step, we compute systemic risk measures and indicators on a
dataset of historical returns on 60 US financial institutions
(Bloomberg: USD, daily quotes) FinInstList

We consider two classical samples, taken from Brownlees and Engle
(2017) and Giglio et al. (2016)

Period 1: from the 01/2005 to the 12/2012 as in Brownlees and Engle
(2017)
Period 2: from the 09/2003 to the 12/2011 as in Giglio et al. (2016)

We combine those data with daily time series of other macro-finance
indicators needed to compute global risk measures
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Computing Systemic Risk Indicators

We compute most risk measures and risk indicators with a rolling
window approach and a window size of one year

Excluded cases are, for example, the spreads which are directly
computed

We aggregate individual risk measures by taking a simple average (an
equally weighted combination - in progress - robustness check: value
weighted combination)

Giglio et al. (2016) adopt a similar approach but focus on the 20
largest financial institutions

We transform the indicators into z-scores to equalize mean and scale
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Systemic Risk Indicators
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Systemic Risk Indicators
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Comparing Systemic Risk Indicators

Several measures and indicators have common patterns and are highly
correlated...

...but among these measures, is there an optimal one? Probably not...

Systemic risk is a multidimensional phenomenon (losses, capital
required during a crisis, liquidity, interconnections, credit,
exposures...)

Each measure insists on one (some) aspect(s) of the systemic risk

How can we obtain a composite measure that takes into
account the various aspects of the systemic risk?
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Comparing Systemic Risk Indicators

Recent contributions noted that a definition of a good measure of
systemic risk is still unresolved

Two relevant aspects are given by some redundancy in the available
systemic risk measure and in their exposure to model risk

The interdependence between systemic risk rankings and model risk
has been addressed by Benoit et al. (2017), Nucera et al. (2016),
Kouontchou et al. (2017)

How can we mitigate the model risk in evaluating the systemic
risk?
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Combining Systemic Risk Indicators

A possible solution: by aggregation of different systemic risk metrics,
Holló et al. (2012), Louzis and Vouldis (2012), Giglio et al (2016)

Giglio et al. (2016) adopt a classical PCA approach, a dimension
reduction method that allows obtaining a composite and more
informative measure of the systemic risk

We start from Giglio et al. (2016) and use Sparse PCA to compute
an aggregate index and then assess its link to the real economy (as
proxied by IPI growth)

The Sparse PCA is a variant of classical PCA, which we use to obtain
sparse loadings (few indicators are relevant) and a more stable (latent
- composite) factor dynamics

This allows us to identify the systemic risk measures that are most
relevant and at the same time to mitigate model risk
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Combining Systemic Risk Indicators

In addition, Sparse PCA is based upon an exogenous parameter that
can be fine-tuned to obtained a systemic risk index with the best
possible predictive content on severe macroeconomic downturns; this
is also of help given the known non-gaussianity and non-linearity of
financial returns (in particular during crises)

The distinctive element of our approach is the endogeneization of the
Sparce-PCA parameter which is estimated in such a way the estimated
composite index Granger-cause extreme variation on the real economy
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Sparse PCA and Regularized SVD

Notation: M is the T × P matrix containing the P systemic
aggregated risk indicators over a sample of size T ; F is the first
principal component extracted from M using classical PCA; ||.||p is a
Lp−norm

Sparse-PCA comes from the solution of the penalized minimization
problem

min
β∈Rp

||F −Mβ||2 + λ||β||1

where λ is the tuning parameter controlling sparsity

Note that F −Mβ might be read as a regression residual and thus
the sparsity constraint corresponds to a LASSO-type shrinking of
regression parameters

Shen and Huang (2008) suggest to obtain the sparse loadings by
solving an equivalent problem based on a regularized Singular Value
Decomposition of M
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Sparse PCA and Regularized SVD

SVD of M satisfies M = UDV ′, with U and V left and right singular
vectors, respectively, and D the diagonal matrix of singular values

Let ṽl = dlvl , i.e. the product of right singular vector and
corresponding singular value

The penalized minimization problem used (under a squared Frobenius
norm) is

min
ṽ1,u1∈Rp

||M − u1ṽ1||2F + λ||ṽ1||1

Shen and Huang (2008) propose an iterative algorithm to solve the
minimization problem and recover the loadings for a sparse PCA
based on regularized SVD (sPCA-rSVD)

Advantages of sPCA-rSVD over standard sPCA: computational (not
relevant for us), more precise in identifying null loadings i.e. to
identify the really relevant variables
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Sparse PCA and Regularized SVD

By varying the penalization parameter λ we recover alternative
versions of the first PC (PC1 from sPCA-rSVD) with different active
systemic risk indicators (choose λ to have 1, 2,. . . active indicators)
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Sparse PCA and Regularized SVD

Common patterns (they are all PC1) but varying composition

Focus on a subset of the PC1, the table report the PC1 loadings
(orthonormal) to systemic risk indicators

k 1 2 3 4 5 6 7

SI 1.00 .86 .71 .71 .71 .71 .71
HHI .00 .51 .58 .58 .58 .58 .58
AR .00 .00 .39 .39 .39 .40 .40

DYS .00 .00 .00 .01 .01 .02 .03
DCI .00 .00 .00 .00 .01 .01 .02

CoVaR .00 .00 .00 .00 .00 .01 .01
TS .00 .00 .00 .00 .00 .00 .01

where SI=Spillover Index, HHI=Herfindahl-Hirschman Index,
AR=Absorption Ratio, DYS=Default Yield Spread, DCI=Dynamical
Causality Index, TS=Term Spread
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Sparse PCA and Regularized SVD

Three most relevant systemic risk indicators, all of them are global
indicators and they monitor the system overall spillover (SI) focusing
on the diffusion of shocks/contagion, the system concentration
(HHI), a proxy of system fragility, and the market co-movement (AR)

Two open questions: 1) How to choose the optimal value of the
penalization parameter? 2) How is the systemic risk indicator
selection changing across different forms of the penalization function?

For the second question, we can easily replace LASSO penalization
with Ridge (L2-norm) or Elastic-net (combination of L1-norm and
L2-norm) and perform comparative analyses

For the first question, we might resort to the linear regression
representation of the problem and adopt information criteria or
(better) use the association between the ISRM and its link to the real
side of the economy
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Contrasting alternative ISRM

For the latter, we first need to identify a proxy of the economic
activity; we select the IPI and we thus need to aggregate ISRM to a
monthly frequency

We choose to aggregate by taking the ISRM monthly average (in
progress - robustness checks: median, end of month value)

Giglio et al. (2016) considered the impact of an aggregate systemic
risk index on the quantiles of IPI but we take a different perspective
and focus on causality

To evaluate the link between the ISRM and the economic activity we
thus first use a classical Granger causality approach
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Contrasting alternative ISRM

However, given that the systemic risk is a highly non-linear
phenomenon and thus an approach consistent with those non-linearity
should be adopted

Therefore, we also consider the non-linear Granger causality test
proposed by Diks and Panchenko (2006) Diks

Given the focus of Giglio et al. (2016) on quantiles, we take into
account a test for comovements in the tails of the distributions

In fact, we are interest in the causation from large positive movements
in the ISRM (an increase in risk) and large negative movements of IPI

To that purpose we adopt the approach of Hong et al. (2009) for
causality in distributions’ tails Hong , the quantile causality test of
Jeong et al. (2012) Jeong and the relation between ISRM and IPI
within a non-parametric quantile regression approach NPQ
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Contrasting alternative ISRM

Results for the Hong et al. (2009) test (other approaches in progress)

The test depends on a bandwidth that drives results

Larger bandwidths give more weights to close lags, i.e. observations
close in time contribute in a larger way to the construction of the test
statistics (a reasonable hypothesis)

We compare the ISRM with 10 components (10 systemic risk
indicators) with the ISRM based on 16 componets (all indicators); the
latter corresponds to classical PCA

In all cases we reject the null of no causation but the maximum
values of the test statistics change across bandwidth values and is
maximum for the ISDM(10)
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Contrasting alternative ISRM
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Robustness checks

ISRM(10) composition across competing Sparse PCA approaches -
orthonormal weights

rSVD LASSO Ridge EL.Net

SI 0.703 0.704 0.704 0.704
HHI 0.583 0.551 0.551 0.551
AR 0.403 0.384 0.384 0.384

DYS 0.036 0.034 0.034 0.034
DCI 0.027 0.000 0.000 0.000

CoVaR 0.025 0.142 0.142 0.142
VaR 0.000 0.157 0.156 0.156

Hong(10) 5.58 4.43 4.43 4.43
Hong(25) 7.97 4.92 4.92 4.92
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Robustness checks

Hong et al. (2009) test statistic for causality for ISRM and other
financial stress indexes (from the FED of St. Louis, Kansas City,
Cleveland)
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Robustness checks

Hong et al. (2009) test statistic for causality for ISRM and other risk
indicators (from Cleveland FED and ETF for Banking sector)
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Robustness checks

...in progress...

Different aggregation approaches for individual risk measures...

Different aggregation approaches for ISRM from daily to monthly...

Further causality testing tools from ISRM (quantiles) to real activity
(quantiles)

Sub-sample analyses...
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Concluding remarks

Through the analysis of various Systemic Risk Measures computed for
different firms, we have been able to build an Index of Systemic Risk
Measures (ISRM) which, per construction, encompasses the main
common information in the various Systemic Risk Measures

The ISRM is, among the various possibilities associated with Sparse
PCA techniques, the best index according to a number of criteria,
namely the causation of economic activity in the tails and
(preliminary finding) the predicting power for economic downturn

Several analyses still in progress to complete the work
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Concluding remarks

Thanks!
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Appendix

Appendix
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Spillover Index

SI proposed by Diebold and Yilmaz (2009) uses a forecast error
variance decomposition to monitor system contagion

Starting from a VAR of order p for N variables to forecast H periods
ahead as follow SI equals:

SIt =

∑H−1
h=0

∑N
i ,j=1
i 6=j

a2
h,ij∑H−1

h=0 trace(AhA
′
h)
× 100,

with Ah (with elements ah,ij) is the FEVD at lag h

The numerator represents the total spillover in the system whilethe
denominator corresponds to the total variance of the forecast error

In our study, we use a VAR(2) for a horizon of H = 10. [RiskList]
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Herfindahl-Hirschman Index

HHI is an index quantifying the concentration in the system

It captures the potential fragility of the system from its concentration
and the threat of the defaults of the largest companies

It is defined as the sum of the squared market values out of the
squared sum of these same market values such as:

HHIt = N

∑N
i=1(MEi ,t)

2

(
∑N

i=1 MEi ,t)2
,

with MEi ,t the market value of the institution i at time t and N the
number of financial institutions [RiskList]
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Value-at-Risk

VaR is the Value-at-Risk of the system or for a market index

It is the maximal potential loss for a given probability on a time
horizon,

P(ri ,t ≤ VaRi ,t(α)) = α,

with ri ,t returns of the institution i at time t for a given risk level α
(fixed at 5%) [RiskList]
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Absorption Ratio

AR was proposed by Kritzman et al. (2011) and it measures the
tendency of the markets to co-move in the same way:

ARt =

∑J
j=1 σ

2
Ej,t∑N

i=1 σ
2
ai ,t

,

with J the number of eigen vectors, σ2
Ej,t

the variance of the eigen

vector j and σ2
ai ,t

the variance of the asset i at time t

The eigen values and vectors are obtained from the sample covariance
matrix of the N asset returns at time t estimated on rolling one-year
periods

Only the J largest eigen values (we use 20% of the number of assets
returns series) are summed up to get the numerator while the
denominator is the trace of the sample covariance matrix. [RiskList]
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CoVaR and ∆CoVaR

CoVaR corresponds to the VaR of the system conditional on
institutions being under distress (Adrian and Brunnermeier, 2016):

P(rm,t ≤ CoVaRi ,t(α)|ri ,t(α)) = α,

∆CoVaR proposed also by Adrian and Brunnermeier (2016) is the
difference between the CoVaR of the institution i at a given risk level
α = 5% and the CoVaR of the same institution but at α = 50%
(median state).

∆CoVaRi ,t(α) = CoVaRi ,t(α)− CoVaRi ,t(0.5),

[RiskList]
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Marginal Expected Shortfall

MES was proposed by Acharya et al. (2012) and is defined as the
conditional mean returns of the institution i when the market, as a
whole, is in distress,

MESi ,t = (α = E (ri ,t |rm,t ≤ VaRm,t(α))) ,

with ri ,t , rm,t are the returns of the institution i and the returns of
the market and VaRm,t(α) is the VaR of the market portfolio for a
given risk level α, at time t

The MES is equal to the partial derivative of the Expected Shortfall
(ES) of the market portfolio with respect to the weights of the
institution i , and then measures its marginal systemic risk contribution

We compute it according to Brownlees and Engle (2017) based on a
DCC-MVGARCH(1,1,1,1) model. [RiskList]
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Term Spread

It measures the slope of the yield curve and which corresponds to the
yield spread between 10-year and 3-month Treasury bills

This variable is a leading indicator of economic activity (Estrella and
Trubin, 2006); [RiskList]
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Default Yield Spread

It represents the difference between the yield of corporate bonds rated
BAA and the ones rated AAA by Moody’s

Chen et al. (2009) show that this variable is an aggregated measure
of the robust credit risk to frictions (tax and liquidity) on the bond
market [RiskList]
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Component Expected Shortfall

CES was proposed by Banulescu and Dumitrescu (2015) and
quantifies the contribution of an institution to the risk of the system
by multiplying the MESi ,t of this institution at time t by its weight in
the system such as:

CESi ,t(α) = −wi ,tMESi ,t (α = E (ri ,t |rm,t ≤ VaRm,t(α))) ,

with ri ,t , rm,t are the returns of the institution i and the returns of
the market and VaRm,t(α) is the VaR of the market portfolio for a
given risk level α, at time t

The weight of the institution i denoted wi ,t is simply its market value
divided by the total market value of the system.

We compute it according to Brownlees and Engle (2017) based on a
DCC-MVGARCH model [RiskList]
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Volatility

Vol is the aggregated volatility of all the financial institutions in the
system or simply the volatility of a market index. It is defined as the
standard deviation of a one year period of opening days. [RiskList]
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Dynamic Causality Index

It measures the degree of interconnection in the system as the
number of significant Granger causalities divided by the total number
of Granger causalities (Billio et al., 2012):

DCIt =
#GC ∗t
#GCt

,

with #GC ∗t the number of significant Granger causalities and #GCt

the total number of Granger causalities at time t between the asset
returns (only considering them with no factor augmentation),
estimated. The maximum lag considered corresponds to a one-year
rolling window. [RiskList]

CCGM ISRM 40 / 54



SRISK

It corresponds to the amount of capital needed by a firm in distress
when the market is also in distress (Acharya et al., 2012 and
Brownlees and Engle, 2017),

SRISKi ,t(1−α) = max{0, γDi ,t − (1− γ)Wi ,t [1− LRMESi ,t(1−α)]},

with γ the prudential capital requirement required by the regulator,
Di ,t the amount of debt and Wi ,t the amount of liabilities of the
institution i at time t

LRMESi ,t(1− α) is the long run approximation (six months) of the
MESi ,t(1− α) of the institution i at time t and is defined such as:

LRMESi ,t(1− α) ≈ 1− exp[18×MESi ,t(1− α)].

[RiskList]

CCGM ISRM 41 / 54



Turbulence Index

TI reflects the excess volatility and compares the squared realized
returns to their historical volatility (Kritzman and Li, 2010),

TIt = (rt − µ)′Σ−1(rt − µ),

with rt the vector of the returns, µ = E (r) the historical mean returns
and Σ = E [(r − µ)2] the sample covariance matrix estimated over a
one-year rolling window of the returns [RiskList]

CCGM ISRM 42 / 54



TED Spread

It represents the difference between the LIBOR three-month rate and
sovereign interest rates to three months

An increase of this variable is the sign that lenders expect an increase
in credit risk in the interbank lending market. [RiskList]
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Illiquidity Measure

AIM was proposed by Amihud (2002) and captures the illiquidity level
of the trades on a given asset,

AIMi ,t =
1

K

t∑
τ=t−K

|ri ,τ |
VOLDi ,τ

,

where |ri ,τ | is the absolute return of the institution i and VOLDi ,τ the
daily volume in dollars of the same asset i at time τ , on a given
period from t − K to t

VOLDi ,τ represents all trade prices multiplied by the number of shares
relating to each price; it corresponds to the daily volume in dollar at
time τ [RiskList]
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Financial Institutions

Banks: Bank of America, BB&T, Bank of New York Mellon, Citigroup, Comerica
Inc, Huntington Bancshares, Hong Kong & Shanghai Banking Corporation, JP
Morgan Chase, Keycorp, M & T Bank Corp, Northern Trust, New York
Community Bancorp, Peoples United Financial, PNC Financial Services, Regions
Financial, Synovus Financial, Suntrust Banks, State Street, US Bancorp, Wells
Fargo & Co, Zion

Insurers: Aflac, American International Group, Allstate Corp, Aon Corp, Berkshire
Hathaway, Chubb Corp, CIGNA Corp, Cincinnati Financial Corp, CNA Financial
corp, Hartford Financial Group, Health Net, Humana, Lincoln National, MBIA,
Marsh & McLennan, Progressive, Torchmark, Travelers, Unitedhealth Group,
Unum Group

Brokers-Dealers: E-Trade Financial, Goldman Sachs, Morgan Stanley, Schwab
Charles, T. Rowe Price

Others: American Capital, TD Ameritrade, American Express, Franklin Resources,
Blackrock, Capital One Financial, Eaton Vance, Fifth Third Bancorp, Fannie Mae,
Freddie Mac, H&R Block, Legg Mason, SEI Investments Company, SLM Corp

FinInst
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Causality test of Jeong et al. (2012)

Let us define {yt}t∈T and {yt}t∈T the two series returns, and denote
Yt−1 ≡ (yt−1, . . . , yt−p),Xt−1 ≡ (xt−1, . . . , xt−p) and
Zt−1 ≡ (zt−1, . . . , zt−p), with lags p and q being greater than one. The
distributions of yt conditional on Zt−1 and Xt−1 are defined as
Fyt |Zt−1

(yt |Zt−1) and Fyt |Xt−1
(yt |Xt−1), respectively. For τ ∈ (0, 1), the

τ -th quantile of yt conditional on Zt−1 and on Yt−1 is
Qτ (Zt−1) ≡ Qτ (yt |Z )t−1)) and Qτ (Y(t − 1)) ≡ Qτ ((yt |Yt−1),
respectively. Following Jeong et al. (2012), we can say that xt does not
cause yt in its τ -th quantile if Qτ (Zt−1) 6= Qτ (Yt−1). Therefore, the
system of hypotheses to be tested is{

H0 : P[Fyt |Zt−1
(Qτ (Yt−1)|Zt−1) = τ ] = 1,

H0 : P[Fyt |Zt−1
(Qτ (Yt−1)|Zt−1) = τ ] < 1.
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Causality test of Jeong et al. (2012)/2

The test statistic proposed by Jeong et al. (2012) is equal to

ĴT =
1

T (T − 1)hm

T∑
t=1

∑
K

(
Zt−1 − Zt−s

h

)
ε̃t ε̃s ,

where m = p + q and K (·) is the kernel function with bandwidth h and
ε̃t = 1{yt≤Q̃τ (Yy−1)

}−τ . Back
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Hong et al. (2009)

Let us note yi ,t be a return series or changes in variable, and Qi ,t(α; θi )
the quantile at the order α of the distribution of yi ,t , with θi a vector of
parameters associated with the specification of the dynamic of yi ,t for
i = 1, 2. Hiti ,t(α; θi ) the dummy variable defined as:

Hiti ,t(α; θi ) =

{
1 if yi ,t ≤ Qi ,t(α, θi ),

0 otherwise.

The variable equals 1 when the return/change is extreme and negative.
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Hong et al. (2009)/2

The null hypothesis testing in Hong et al. (2009) is:

E [Hit1,t(α; θ1)|Ωt−1] = E [Hit1,t(α; θ1)|Ω1,t−1]

wherein the information sets on the date t − 1 are defined respectively by:{
Ωt−1 = {(y1,s , y2,s), s ≤ t − 1},
Ω1,t−1 = {y1,s ≤ t − 1}.
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Hong et al. (2009)/3

The test statistic proposed by the authors depends on a weighted sum of
the estimated correlations between Hit1,t(α, θ̂1) and Hit2,t(α, θ̂2) where θ̂1

and θ̂2 are consistent estimators of θ1 and θ2. This weighted sum is
defined by:

Z = T
T−1∑
j=1

κ2(j/d)ρ̂(j),

with the function κ(·) being a decreasing kernel, d the truncation
parameter and ρ̂(j) the cross-correlation of order j between Hit1,t(α, θ̂1)
and Hit2,t(α, θ̂2), that equals to:

ρ̂(j) =
γ̂(j)

ŝ1ŝ2
,

where ŝ1 and ŝ2 refer to the standard deviation of Hit1,t(α, θ̂1) and
Hit2,t(α, θ̂2) respectively, and γ̂(j) the cross-covariance of order j .
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Hong et al. (2009)/4

Under the null hypothesis of no causality in extreme movements, Hong et
al. (2009) demonstrate that:

U =
Z − CT (d)

[DT (d)]1/2
,

follows a standard normal distribution, with zero mean and unit variance,
where:

CT (d) =
T−1∑
j=1

(1− j/T )κ2(j/d),

and:

DT (d) = 2
T−1∑
j=1

(1− j/T )(1− (j + 1)/T )κ4(j/d).

Back
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Diks and Panchenko (2006)

Suppose we want to infer about the causality between two variables X and
Y using q and p lags of those variables, respectively. Consider the vectors
X q
t = (Xt−q+1, . . . ,Xt) and Y p

t = (Yt−p+1, . . . ,Yt), with q, p ≥ 1. The
null hypothesis that X q

t does not contain any additional information about
Yt+1 is corresponds to:

H0 = Yt+1|(X q
t ;Y q

t ) ∼ Yt+1|Y p
t .

The null hypothesis is equivalent to a statement on the invariance of the
distribution of the vector of random variables Wt(X

q
t ;Y p

t ,Zt) where
Zt = Yt+1. If we drop the time indexes, the joint probability density
function fX ,Y ,Z (x , y , z) and its marginals must satisfy the following
relationship:

fX ,Y ,Z (x , y , z)fY (y)−1 = fX ,Y (X ,Y )fY (y)−1fY ,Z (y , z)fY (y)−1,

for each vector (x,y,z) in the support of (X,Y,Z).
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Diks and Panchenko (2006)/2

Diks and Panchenko (2006) show that, for a proper choice of weight
function, g(x , y , z) = f 2

Y (y), the previous relationship is equivalent to:

q = E [fX ,Y ,Z (X ,Y ,Z )fY (Y )− fX ,Y (X ,Y )fY ,Z (Y ,Z )].

And they propose the following estimator q̂ such as:

q̂ = (n−1)[n(n−2)]−1
∑
i

[f̂X ,Y ,Z (Xi ,Yi ,Zi )f̂Y (Yi )−f̂X ,Y (Xi ,Yi )f̂Y ,Z (Yi ,Zi )],

where n is the sample size. This estimator is computed using a local
density estimator defined such as:

f̂W (Wi ) =
(2ε)−dW

n − 1

∑
j ,j 6=i

1Wi ,j .

where f̂W (·) is a local density estimator of a dW -variate random vector W
at Wi based on indicator functions 1Wi ,j = (|Wi −Wj | < ε).
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Diks and Panchenko (2006)/3

In the case of bivariate causality, the test is consistent if the bandwidth ε
is given by εn = Cn−β, for any positive constant C and β ∈ (1/4, 1/3).
The test statistic is asymptotically normally distributed in the absence of
dependence of the vectors Wi . For the choice of the bandwidth, Diks and

Panchenko (2006) suggest εn = max(C
−2/7
n , 1.5), were C can be

calculated based on the ARCH coefficient of the series. Back
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