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1.Introduction

• In this paper, we propose a procedure to test the
cointegration rank, the number of lags and the form adopted
by the deterministic terms of a multivariate dynamic system
using an Information Criterion (IC).

• Extension of the paper “Selecting the rank of the
cointegration space and the form of the intercept using an
information criterion” By A. Aznar and M. Salvador (2002)
Econometric Theory, 18, 926-947



2. Models

• Consider the following four models
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2. Models

• Xt is a vector of p I(1) variables.
• β is a p  r matrix of the cointegrating vectors.
• is a p r matrix of adjustment coefficients.
• p is the number of variables, r is the cointegration rank and k     

is the number of lags.
• and       are vectors of r elements
• is a vector of p elements.
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2. Models

Reduced Rank Regression
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residuals of     
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3. The Information Criterion (IC)

• We will use an IC that chooses the model that minimizes the expression

Where is the maximized likelihood function,             is the number of 
parameters and        is a deterministic sequence that imposes a penalty to 
encourage the selection of a parsimonious model. We assume
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3. The Information Criterion
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3. The Information Criterion
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4. Proposed Strategy

1. Determine the cointegration rank

2. Determine the number of lags

3.     Determine the deterministic terms.   

The model finally chosen will be                    
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5. Cointegration Rank
Identificatio Rules

• In this paper, we use alternatively two of the
three identification rules considered in 
chapter 13 of Johansen. The first one satisfies

The second one that is convenient for the
mathematical analysis satisfies
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5. Cointegration Rank

• Lemma 4.1. Let . Assume that
0<r<p  and let and                . We
then have �,�,��       �,�,�� �,�,��

Notice that the result is valid independently of        . Next,  Theorem 4.1 
proves that The IC criterion selects the cointegration rank, independently of 
the number of lags, when the form of the drift is overspecified.

Theorem 4.1. Let
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6. Number of Lags

• Lemma 4.2 Let be defined as before assuming that is known. 
Then, for any k’, we have that if is the true DGP , then

,  where if ,                        and
.Lemma 4.2 permits to continue the analysis assuming that is

known. Note                
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6. Number of Lags

(10)

• The roots of                                             (2) are those
of                            (3)  and the eigenvectors of (2)  
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6. Number of Lags

• We have

because the space spanned by the r first eigenvectors of (2) 
converges to the space spanned by the first r unit vectors or
equivalently the space spanned by vectors with zeros in the last
p-r+1 coordinates.
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6. Number of Lags

• Now we have

Because ,        
and   

Similarly, 
The analysis can continue assuming
known
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6. Number of Lags

• Let M3,r,k be the true DGP. Then,

with
In this case,
For the same reasons given previously
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6.Number of Lags

• Then, we have

Because
and   

Similarly,
and the result follows.           
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6. Number of Lags

– Theorem 4.2. Let with a 
matrix of cointegrating vectors that is known and 
k<k’. If satisfies (21), then

a) If is the true DGP then
b) If is the true DGP then

The number of lags is consistently estimated
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7. Deterministic Terms

• In this section, we will show how the use of the IC criterion
allows us to consistently estimate the form of the drift of the
model.

• To discriminate between when
0<r<p we are going to introduce an slight modification

of the IC criterion when this is calculated for the three more 
restrictive models . 

• For these three models, the likelihood is estimated
substituting their parameters by their estimators obtained
from and we will use             .

0, , 1, , 2, , 3, ,, ,r k r k r k r kM M M against M
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7. Deterministic Terms

Lemma 5.1 Let be defined as in Section 2 
assuming that the values of the parameters are known. Denote  

if ,                     and                       .Let the
estimator of          calculated from . Then,  if
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Proof: Similar to that presented for Lemma 4.2    

( ), , , 0,1, 2,3i r k iU iθ =

iθ β= { }0,2i∈ ( )' '
1 0,θ β ρ= ( )' '

3 1,θ β ρ=
,3, ,i r kθ

iθ 3, ,r kM

, , ' , 0,1, 2,3,i r kM i =

( ) ( ), , 3, , , ,
1

j r k j r k j r k j PU U o
T

θ θ  = +  
 





7. Deterministic Terms

• Theorem 5.1. Let
If satisfies (21) then
a)  If is the true DGP then
b)  If is the true DGP then

Theorem 5.2  Let
If satisfies (21) then
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7. Deterministic Terms

• Theorem 5.3  Let
If satisfies (21), then

a) If is the true DGP then
b)  If is the true DGP then

Proof of Theorem 5.3:  a)                  is the true DGP. If we estimate using the same
model it is the case treated by Johansen (1995) Lemma 13.1. If we use M3,r,k to 
estimate the likelihood the results have been derived in Lemma 4.2. We have to 
compare
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7. Deterministic Terms

and hence

b) is the true DGP. We have
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7.Deterministic Terms

• On the other hand

We obtain

using
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Remaining questions

1. To carry out simulation exercises to confirm the theoretical
results.

2. Key question: In the first step, is the determination of the
cointegration rank really independent of the number of lags?

3. To derive the results in the third step estimating the
maximum likelihood of each model with the estimators
calculated with the corresponding model and not with the
estimators derived from the less restrictive model.


