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Abstract 
 
 

When time series data is used in econometrics serially correlated errors are most likely to 
appear.  Autocorrelation will also be detected in regression analysis as an indication of a 
false specification between two variables.  This study examines the problem of serially 
correlated errors in the context of spurious regression showing evidence of removing the 
presence of this phenomenon both theoretically as well as empirically by applying the 
Cochrane-Orcutt procedure.   
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The pioneer work of Granger and Newbold (1974) was simply the introduction of a new 

concept in regression analysis, known as spurious regression, although this phenomenon 

was initially presented by Yule (1926).  Using a Monte Carlo analysis, Granger and 

Newbold (1974) showed that the regression of two independent random walk processes 

without drift will produce strong evidence of a linear relationship.  This unique result was 

left to Phillips (1986) to prove it mathematically and it was extended to two independent 

stationary processes by Granger et al. (2001).   

 In addition, Granger and Newbold (1974) pointed out that along with the large t-

values strong evidence of serially correlated errors will appear in regression analysis, 

stating that, when a low value of the Durbin-Watson statistic is combined with a high 

value of the coefficient of determination, the relationship is not true.  This result is 

examined by Marmol (1995) who generalized the work of Phillips (1986) and showed 

that the Durbin-Watson statistic will converge in probability to zero.  Moreover, the 

presence of serially correlated errors in the context of spurious regression was also 

investigated by Newbold and Davies (1978), for non-stationary moving average 

processes, by Agiakloglou (2009), for two independent stationary AR(1) processes, and 

by Agiakloglou et al. (2015), for two independent stationary spatial autoregressive 

SAR(1) processes.  Actually, one can get the same misleading statistical results regarding 

the existence of a linear relationship between two independent variables by simply 

applying the test associated to the correlation coefficient of these two variables, as 

Agiakloglou and Tsimpanos (2012) have showed for two independent stationary AR(1) 
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processes.  However, in this case, the analyst will have no evidence of false specification, 

such as the case of serially correlated errors in regression analysis.   

 The prevailing low values of the Durbin-Watson statistic, in the context of 

spurious regression, gave the incentive to several analysts to examine even further this 

phenomenon searching for solutions.  Granger et al. (2001) proposed a new method, the 

so called BART method, which improved the statistical behavior of this phenomenon 

reaching asymptotically the right nominal levels, but for moderate and even for large 

sample sizes the spuriocity was not removed.  Contrary, Agiakloglou (2013) was able to 

obtain better results for small and moderate sample sizes for two independent stationary 

AR(1) processes and for two non-stationary I(1) processes by estimating the original 

simple regression model either with a lagged dependent variable or in first differences 

respectively.   

 Therefore, it is still very interesting to further understand this phenomenon and to 

handle the presence of serially correlated errors in the context of spurious regression.  For 

this purpose, the problem of autocorrelated errors is examined first theoretically, where 

the use of the correct variance does improve the statistical results and second, 

empirically, where the Cochrane-Orcutt procedure improves even better the performance 

of the test, despite the fact that Granger et al. (2001) have stated that Cochrane-Orcutt 

procedure will be inefficient to cure this problem compared to using a wider 

specification, a statement that was also found in Granger and Newbold (1974) for the 

case of two non-stationary I(1) processes.  The findings of this research are astonishing 

showing that the Cochrane-Orcutt procedure does resolve the spurious phenomenon for 

two independent stationary AR(1) processes.   
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2.  Simulation results  

 

Consider the following regression model:   

 t t tY Xα β ε= + +  (1) 

where the error term εt is assumed to be iid normally distributed with mean zero and 

constant variance σε
2, i.e., εt ~ iidN(0, σε

2) and the variables Yt and Xt are generated by 

the following DGP:   

 1t t ytY Yϕ ε−= +  (2) 

 1t t xtX Xϕ ε−= +  (3) 

where the errors εyt and εxt are white noise processes independent of each other and the 

autoregressive parameter is allowed to take values of 0.0, 0.2, 0.5, 0.8, 0.9 and 1.0.  

Clearly, for all values of the autoregressive parameter less than one both processes are 

stationary first-order autoregressive processes, i.e., AR(1), whereas for φ = 1 both 

processes are non-stationary random walk processes without drift.  For φ = 0 both 

processes are white noise processes.   

 The existence of a linear relationship between these two variables is investigated 

by testing for the significance of the coefficient of the independent variable and the test is 

executed using the following t statistic:   

 

 � =
��

������
 (4) 
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where ��  and ��(��) are the estimated coefficient of β and its standard error respectively, 

obtained through OLS estimation of model (1) for given sample size T.  The t statistic 

follows a t distribution with (T - 2) degrees of freedom and the null hypothesis that β = 0 

will be rejected if its absolute value is greater than the critical value, indicating statistical 

evidence of a linear relationship between the two variables.   

 Unfortunately, as it is known, false statistical conclusions will be drawn from time 

series data using independent non-stationary or stationary processes.  For the case of two 

independent non-stationary processes, i.e., for random walk processes without drift, the 

null hypothesis will be rejected not only too often but also the number of rejections is 

strongly affected by the sample size, i.e., it increases as sample size increases, showing 

even stronger evidence of false specifications.  For example, the null hypothesis is 

rejected 76% and 93% at the nominal 5% level for sample sizes of 100 and 1,000 

observations respectively, based on 10,000 replications, reaching the level of 100% 

rejections for larger sample sizes, a result that it highly related to the distribution of the t 

statistic which does not convert to a standard normal distribution.  In fact, the value of its 

standard deviation diverges from one and it increases as the ample size increases.  For 

example, the standard deviation of the t statistic is equal to 7.294 for sample size of 100 

observations and 23.83 for sample size of 1,000 observations, based on 10,000 

replications, although its mean value remains close to zero.  Phillips (1986) pointed out 

that the problem of this abnormal behavior of the t statistic arises from the variance of the 

estimated coefficient.   

 Equivalently, the null hypothesis will also be rejected very often for two 

independent stationary AR(1) processes, but in this case the number of rejections is only 
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affected by the magnitude of the autoregressive parameter and not by the sample size, as 

Table 1 reports (see also Granger et al., 2001, Agiakloglou & Tsimpanos, 2012 and 

Agiakloglou & Agiropoulos, 2016) and one will get more rejections as the value of the 

autoregressive parameter increases.  For example, for values of φ = 0.5 and 0.9 the null 

hypothesis will be rejected 13% and 52% respectively at the 5% nominal level, regardless 

of sample size, a result that it is also related to the distribution of the t statistic which does 

not convert to a standard normal distribution, as Table 1 reports.  In fact, as can be seen 

from this table, the value of the standard deviation of the t statistic is not equal to one for 

all values of the autoregressive parameter and it increases as the value of φ increases.  For 

example, the standard deviation of the t statistic is equal to 1.288 and 3.049 for φ = 0.5 

and 0.9 respectively, regardless of sample size.  Apparently, as in the case of two 

independent random walk processes without drift (non-stationary processes), the behavior 

of the t statistic is strongly affected by the variance of the estimated coefficient, which is 

smaller than it should be, producing larger t values, so that the null hypothesis is rejected 

too often, as Granger et al. (2001) have indicated.   

 

Table 1 

Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level  

(|t| > 1.96) along with the standard deviation of the t statistic for two independent 

stationary AR(1) processes for all sample sizes based on 10,000 replications  

 
φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 5 6 13 35 52 

St. dev. 1.003 1.046 1.288 2.138 3.049 
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Table 2  

Mean values of the Durbin-Watson statistic based on 10,000 replications 

 φ 

Sample 

Size 
0.0 0.2 0.5 0.8 0.9 1.0 

50 2.0014 1.6479 1.1237 0.6203 0.4693 0.3332 

100 1.9981 1.6222 1.0613 0.5081 0.3216 0.1735 

500 2.0003 1.6049 1.0123 0.4265 0.2240 0.0360 

1000 1.9995 1.6021 1.0061 0.4102 0.2119 0.0183 

10000 2.0009 1.6010 1.0009 0.4010 0.2010 0.0018 

 

 Moreover, Agiakloglou (2009) showed that along with the large number of 

rejections evidence of serially correlated errors will also appear in regression analysis in 

the context of spurious regression even for two independent stationary AR(1) processes.  

For this purpose, Table 2 reports the mean values of the Durbin-Watson statistic obtained 

through the estimation process of model (1), based on 10,000 replications, showing that 

their magnitude is not only affected by the magnitude of the autoregressive parameter but 

also by the sample size.  In particular, the mean values of the Durbin-Watson statistic 

decrease as the value of the autoregressive parameter increases and/or as the sample size 

increases.  It seems though that for given value of the autoregressive parameter the mean 

value of the Durbin-Watson statistic converges to some predetermined value, as Marmol 

(1995) has indicated that for two non-stationary processes the Durbin-Watson statistic 

will converge to zero.  Indeed, the Durbin-Watson statistic (d) converges to 2, 1.6, 1.0, 
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0.4, 0.2 and 0 for φ equal to 0, 0.2, 0.5, 0.8, 0.9 and 1 respectively, values that can easily 

be obtained from d = 2(1 – ρ), i.e., for φ = 1, d = 0, and for φ = 0.9, d = 0.2.   

 

 

3.  Dealing with autocorrelated errors for two independent stationary AR(1) 

processes 

 

Let us consider now that the errors of model (1) are generated by the following 

autoregressive AR(1) process:   

 

 �� = ����� + �� (5) 

 

where the absolute value of the autoregressive coefficient ρ is less than one, i.e., |ρ| < 1, 

and the error term ut is considered to be iid normally distributed with mean zero and 

constant variance σu
2, i.e., ut ~ iidN(0, σu

2).    

 Estimation of model (1) with OLS, under the assumption of serially correlated 

errors, given by model (5), will produce the same estimate of the β coefficient, which will 

still be unbiased, but with different variance.  Specifically, the variance of the new 

estimator �� will be obtained as:  

 

 
������� =

��
�

∑(�� − ��)� �1 + 2�
∑(�� − ��)(���� − ��)

∑(�� − ��)� + 2�� ∑(�� − ��)(���� − ��)
∑(�� − ��)� + ⋯ � 

 

or equivalently as:   
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where Var(��) is the OLS variance of ��  without the presence of serially correlated errors, 

i.e.,  

 
������� =

��
�

∑(�� − ��)� 
 

r is the sample autocorrelation of the independent variable, knowing that Xt follows an 

AR(1) process, and ρ is the correlation coefficient of the error term.  Hence, equation (6) 

can be written as:   

 

 

where A is a positive number defined as:  

 

and its value can be obtained either as an approximation of the first two terms, i.e., as:  

 

�� = 1 + 2�� 

 

or as an infinite sum of a geometric process, i.e., as:  

 

 ������� = ���(��)[1 + 2�� + 2���� + ⋯ ] (6) 

 ������� = ���(��)� (7) 

 � = [1 + 2�� + 2���� + ⋯ ] (8) 
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�� = 1 + 2��(1 + �� + ���� + ⋯ ) = 1 + 2��
1

1 − ��
=

1 + ��
1 − ��

 

 

 Clearly, the value of A defines the ratio of the two variances, as can be seen from 

equation (7).  For small values of ρ and r both approximations of A will take the same 

value, i.e., for ρ = r = 0.2, A1 = A2 = 1.08, whereas for large values of ρ and r the two 

approximations of A, A1 and A2, will take different values, i.e., for ρ = r = 0.8, A1 = 2.28 

and A2 = 4.56.  Hence, if the presence of serially correlated errors is ignored and the 

incorrect variance, Var(��), is used to calculate the relevant t statistic, instead of the 

correct variance, Var(��), the values of the t statistic will be larger, resulting to more 

rejections of the null hypothesis, since the incorrect variance is smaller than the correct 

variance.  In this case, the variance of the estimator is underestimated, the magnitude of 

which depends on the approximation of A that is used.  For small values of ρ and r the 

variance will be underestimated equally at a small level, while for large values of ρ and r 

the underestimation will differ significantly.  For example, for ρ = r = 0.2 the variance is 

underestimated 7.4%, whereas for ρ = r = 0.8 the variance is underestimated 56% using 

the A1 approximation and 78% using the A2 approximation.  Thus, the use of the incorrect 

variance alters the distribution of the t statistic, which does not convert to a standard 

normal distribution, and therefore producing misleading statistical results.   

 As stated, spurious regression is related to serially correlated errors and therefore 

it makes sense to tackle this phenomenon as an autocorrelated errors problem.  The 

objective in this case is to terminate the false behavior of the t statistic by importing the 

correct variance so that the test will have the right performance, knowing that the 

variance that was used was smaller than the correct variance.  Thus, keeping the same 
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simulation process alive, the relevant t statistic, for testing the null hypothesis that β = 0, 

is now calculated by replacing the OLS incorrect variance with the correct variance, 

obtained under autocorrelated errors and given by equation (7), using both 

approximations of A.1  In other words, the following two t statistics are calculated:   

 

 �� =
��

���������
 (9) 

 

 
  

 �� =
��

���������
 (10) 

 

 
  

and their standard deviations along with the percentage of rejections of the null 

hypothesis that β = 0, based on 10,000 replications, are presented on Table 3.   

 Perhaps, the most remarkable result of this table is that the performance of the test 

has significantly improved simply by correcting the variance of the estimator, regardless 

of the formula that is used.  In particular, using the A1 approximation of A, the relevant t1 

statistic has the same behavior as that of the classical t statistic, meaning that the number 

of rejections of the null hypothesis is only affected by the magnitude of the 

autoregressive parameter and not by the sample size, but the null hypothesis is rejected 

less frequently than using the classical t statistic for every value of the autoregressive 

parameter and sample size, as can be seen from Tables 3 and 1.  For example, using the 

                                                 
 
1 The values of A1 and A2 are calculated individually in every trial using the sample correlation coefficient r 
of Xt and the estimated value of ρ obtained by estimating model (5) using the residuals obtained from the 
OLS estimation of model (1).  The whole simulation process is conducted in R.  
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classical t statistic the null hypothesis is rejected 52% and 35% for values of φ equal 0.9 

and 0.8 respectively at the 5% nominal level, whereas now the null hypothesis is rejected 

30% and 17.5% respectively, using the t1 statistic.  Thus, the problem of getting spurious 

results has decreased, but not removed, simply because the values that the A1 

approximation of A was taking were not large enough to significantly increase the 

variance of the estimator and, therefore, the distribution of the t1 statistic did not convert 

to a standard normal distribution, as can be seen from the reported on Table 3 standard 

deviations.    

Table 3 

Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level 

(|t| > 1.96) using the �� and �� statistics along with their standard deviations for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 

observations, based on 10,000 replications 

 
φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 

50 
�� 5.8 5.9 7.9 18.1 28.4 
�� 5.8 5.8 7.0 10.4 13.8 

100 
�� 5.6 6.0 7.5 17.7 30.0 
�� 5.6 5.9 6.4 8.2 10.8 

500 
�� 5.1 5.4 6.9 17.5 31.4 
�� 5.1 5.4 5.7 6.2 6.8 

1000 
�� 5.0 4.9 6.3 17.3 30.4 
�� 5.0 4.8 5.0 5.2 5.9 

st. dev. 

50 
�� 1.027 1.038 1.115 1.504 1.907 
�� 1.027 1.036 1.075 1.234 1.397 

100 
�� 1.025 1.031 1.093 1.465 1.940 
�� 1.025 1.029 1.047 1.127 1.243 

500 
�� 1.007 1.013 1.073 1.441 1.944 
�� 1.007 1.011 1.020 1.039 1.068 

1000 
�� 0.998 0.999 1.051 1.421 1.920 
�� 0.998 0.998 0.998 1.015 1.032 
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 On the other hand, using the A2 approximation for A, the relevant t2 statistic 

produced much better results, than the t1 statistic, showing even evidence of convergence 

to the right nominal levels.  Hence, the issue of getting spurious results for two 

independent stationary AR(1) processes can totally be removed asymptotically, as can be 

seen from Table 3, since for large sample sizes the empirical levels are very close to the 

nominal levels regardless of the value of the autoregressive parameter and the standard 

deviations of the t2 statistic converge to 1.  Actually, the performance of the t2 statistic 

depends not only on the value of the autoregressive parameter but also on the sample 

size.  For small and moderate sample sizes the percentage of rejections of the null 

hypothesis increases as the value of the autoregressive parameter increases.  For example, 

for sample size of 100 observations the null hypothesis at the 5% nominal level is 

rejected 5.9%, 6.4%, 8.2% and 10.8% for values of φ = 0.2, 0.5, 0.8 and 0.9, respectively.  

For large sample sizes though the percentage of rejections of the null hypothesis 

decreases for all values of the autoregressive parameter, reaching happily to the nominal 

level.  For example, for φ = 0.9 the null hypothesis is rejected 13.8%. 10.8%, 6.8% and 

5.9% at the nominal 5% level for sample sizes of 50, 100, 500 and 1000 observations, 

respectively.  It seems, therefore, that in this case the value of A2 was large enough to 

alter the magnitude of the variance and produce smaller number of rejections.    

 Clearly, the use of the correct variance, when serially correlated errors are 

detected in regression analysis, improves the test results, regardless of the approximation 

that is used, but it does not remove the spurious regression phenomenon for small sample 

sizes.  The test behaves better using the A2 approximation of A than the A1, especially for 

large sample sizes and large values of the autoregressive parameter.  For small values of 
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the autoregressive parameter both approximations work equally well.  However, as 

pointed out for small and moderate sample sizes and for large values of the 

autoregressive parameter the empirical levels are not close to the nominal ones using the 

t2 statistic.   

 A more thoroughly examination of the simulation process suggests that the source 

of this problem, along with the asymptotic behavior of the t2 statistic, comes from the 

values of ρ and r used to calculate the value of A2, since these values are not close enough 

to their theoretical ones for small and moderate sample sizes.  In fact, their mean values 

are smaller than the theoretical ones (see also Agiakloglou and Agiropoulos, 2016), but 

as sample size increases, these values become identical to the generated ones.  This 

finding suggests that the value of A2, unlike the value of A1, will strongly be affected by 

the values of ρ and r obtained through the simulation process.  For example, for known 

values of ρ = r = 0.9, A2 = 9.526 and A1 = 2.62, whereas for sample sizes of T = 50, 100, 

500 and 1000 observations, based on 10,000 replications, when these values of ρ and r 

are replaced by their mean values, which are respectively: a) 0.763 & 0.852, b) 0.836 & 

0.876, c) 0.888 & 0.895 and d) 0.893 & 0.897, one will get respectively the following 

values for A2 and A1, i.e., a) A2 = 4.716 and A1 = 2.300, b) A2 = 6.472 and A1 = 2.465, c) 

A2 = 8.745 and A1 = 2.590 and d) A2 = 9.097 and A1 = 2.604.   

 One way of dealing with this issue is to run the same simulation process using the 

generated values to calculate A1 and A2.  In this case, the correct variance is calculated 

using constant values for A1 and A2 throughout the simulation process and the percentage 

of rejections of the null hypothesis along with the standard deviations of the relevant ��
�  

and ��
�  statistics are reported on Table 4.  As can be seen from this table, the performance 
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of test using the ��
�  statistic, based on the A1 approximation of A, has not been affected at 

all, simply because, as previously discussed, the value of A1 is small enough to 

significantly change the magnitude of the variance, whereas using the A2 approximation 

of A the convergence was obtained.   

Table 4 

Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level 

(|t| > 1.96) using the ��
�  and ��

�  statistics along with their standard deviations for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 

observations, based on 10,000 replications 

 
φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 

50 
��

�  5.7 5.6 6.8 15.1 25.2 
��

�  5.7 5.6 5.6 4.8 3.3 

100 
��

�  5.6 5.8 6.7 16.3 28.3 
��

�  5.6 5.8 5.4 5.1 4.4 

500 
��

�  5.1 5.3 6.8 17.2 31.1 
��

�  5.1 5.3 5.4 5.4 5.2 

1000 
��

�  5.0 5.0 6.4 17.2 30.3 
��

�  5.0 4.9 4.8 4.9 5.0 

st. dev. 

50 
��

�  1.026 1.026 1.070 1.398 1.751 
��

�  1.026 1.024 1.015 0.989 0.919 

100 
��

�  1.024 1.024 1.070 1.414 1.864 
��

�  1.024 1.023 1.015 1.000 0.977 

500 
��

�  1.007 1.011 1.068 1.431 1.929 
��

�  1.007 1.010 1.013 1.012 1.012 

1000 
��

�  0.998 0.999 1.049 1.416 1.912 
��

�  0.998 0.997 0.995 1.002 1.003 
 

 

 Indeed, as can be seen from Table 4, the performance of the test using the ��
�  

statistic, based on the A2 approximation of A, has produced very astonishing results, since 

for all values of the autoregressive parameter and for all sample sizes the empirical levels 
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of this test are very close to the nominal levels, indicating that the value of A2 was large 

enough to significantly change the magnitude of the variance of the estimator and the 

relevant statistic did convert to a standard normal distribution.2  In practice, though, it is 

very unlikely to visualize a scenario like this, in which the analyst will a priori know the 

true values of ρ and r.  Therefore, it is very interesting to investigate further this 

phenomenon, as an effort to increase even more the magnitude of the correct variance, 

through the estimation procedure, hoping that the performance of the test will become 

better, especially, for small sample sizes.   

 One possible way of improving the size of the test can be obtained from the use of 

the unbiased estimate of the variance of the error term.  In fact, if ρ = 0, OLS uses:   

 

 

since 

 

 

If, on the other hand, � ≠ 0, then  

 

                                                 
 
2 For small sample size and for large value of the auto regressive parameter, i.e., for φ = 0.9 and n = 50, the 
test over performs, i.e., 3.3% rejection of the null hypothesis at the 5% nominal level, a result that is 
probably related to the mixed use of estimated and true values.   

 ��
� =

1
� − 2

� ��̂
� (11) 

 � �� ��̂
�� = (� − 2)��

� (12) 

 � �� ��̃
�� = [(� − 1) − �]��

� (13) 
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and therefore the unbiased estimate of the variance will be obtained as:  

 

 

where A is given by equation (8).3  Notice that if ρ = 0, A = 1 and both expressions (11) 

and (14) are identical.   Therefore, equation (14) can be written as:   

 

 

where  

� =
� − 2 

[(� − 1) − �]
 

 

and K is a positive number greater than one defining the ratio of the two estimated 

variances of the error term.  Clearly, if autocorrelation is not in presence, i.e., if ρ = 0, 

then K = 1 and, therefore, both variances are identical, where K will also take the value of 

one asymptotically, as sample size increases.  Thus, if there is any significant 

contribution to the magnitude of the variance using the unbiased estimate of the variance 

of the error term that will be expected to happen only for small sample sizes and for large 

values of the autoregressive parameter.  For example, for ρ = r = 0.8 and for sample size 

of 50 observations, K = 1.08, whereas for T = 500, K = 1.0072, using the A2 

approximation of A, declaring an underestimation of the variance at the level of 7.4% and 
                                                 
 
3 The proof of equation (13) is similar to the proof of equation (12), where the residuals for both case are 
identical, since the presence of autocorrelated errors does not affect the estimates of the model.   

 ��
� =

1
[(� − 1) − �]

� ��̂
� (14) 

 ��
� = � ��

� (15) 
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0.71% respectively, which will be even smaller using the estimated values of ρ and r 

and/or using the A1 approximation of A.   

 Thus,  

 

and the test is implemented, using the A1 and A2 approximations of A, as:   

 ��
�� =

��

�����������
 (17) 

   

 ��
�� =

��

�����������
 (18) 

 

where their standard deviations along with the percentage of rejections of the null 

hypothesis that β = 0, based on 10,000 replications, are presented in Table 5.   

 Apparently, as can be seen from this table, in lieu with the results reported on 

Table 3, the performance of the test has improved only for small sample sizes and for 

large value of the autoregressive parameter, but only by a very small amount.  For 

example, for T = 50 and for φ = 0.9 the percentage of rejections of the null hypothesis at 

the 5% nominal level is now 12.7% instead of 13.8% that it was before, using the A2 

approximations of A.  This result indicates that the use of the unbiased estimator of the 

variance of the error term did not significantly change the spurious behavior for small 

sample sizes and for large values of the autoregressive parameter.   

 

 

 

�������� = ���(��)�� (16) 
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Table 5 

Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level 

(|t| > 1.96) using the ��
�� and ��

��statistics along with their standard deviations for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 

observations, based on 10,000 replications 

 
φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 

50 
��

��  5.8 5.9 7.8 17.6 27.8 
��

�� 5.7 5.8 6.9 9.9 12.7 

100 
��

��  5.6 6.0 7.5 17.5 29.7 
��

�� 5.6 5.9 6.3 7.8 10.0 

500 
��

��  5.1 5.4 6.8 17.4 31.3 
��

�� 5.1 5.4 5.7 6.1 6.6 

1000 
��

��  5.0 4.9 6.3 17.3 30.4 
��

�� 5.0 4.8 5.0 5.2 5.8 

st. dev. 

50 
��

��  1.027 1.038 1.110 1.488 1.883 
��

�� 1.027 1.036 1.070 1.209 1.351 

100 
��

��  1.025 1.030 1.090 1.456 1.926 
��

�� 1.025 1.029 1.044 1.112 1.212 

500 
��

��  1.007 1.013 1.072 1.439 1.941 
��

�� 1.007 1.011 1.019 1.035 1.060 

1000 
��

��  0.998 0.999 1.051 1.420 1.918 
��

�� 0.998 0.998 0.998 1.013 1.028 
 

 

 So far this is study has shown that the spurious regression phenomenon, which is 

related to serially correlated errors, can be asymptotically removed for all values of the 

autoregressive parameter for two independent stationary AR(1) process, if the correct 

variance is used to calculate the relevant t statistic.  For small and moderate sample sizes 

and for large values of the autoregressive parameter the performance of the test is still 

better than the one obtained using the incorrect OLS variance, but the empirical levels are 

not as close as they should have been to the nominal levels.  The answer to this behavior 
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comes from the values of ρ and r used to calculate the correct variance, since, as shown, 

their values are typically smaller than the theoretical ones for small sample sizes.  Hence 

the next step is to investigate possible alternatives of getting better estimated values for ρ 

and therefore better sizes for the test.     

 

 

3.  The Cochrane-Orcutt procedure  

 

When autocorrelated errors, generated by an AR(1) process, are observed in time series 

econometrics the classical way to deal with this issue, in regression analysis, is to apply 

the Cochrane-Orcutt (CO) procedure by transforming the original model (1) into the 

following model:.   

 

 �� − ����� = �(1 − �) + �(�� − �����) + �� −  ����� (19) 

 

known as the generalized difference equation model, where the initial values for both 

variables are obtained as  �� = �1 − ���� and �� = �1 − ����.   

 The Cochrane-Orcutt (1949) procedure is an iterative procedure aiming to obtain 

better values for ρ, something that has already been discussed as the main problem of the 

unfavorable behavior of the test.  The variance of the estimated coefficient β will equal 

asymptotically to:   

 

 
��������� =

(1 − ��)��
�

���
�[1 + �� − 2��]

 
 

and the relevant t statistic for testing the null hypothesis that β = 0 will be calculated as:   
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��� =
����

��������
 

 

where ���� and ��(����) are the estimated coefficient of β and its standard error 

respectively obtained through OLS estimation of model (19) for given sample size T.  

The results of this simulation procedure are reported on Table 6.   

 

Table 6 

Percentage of rejections of the null hypothesis that β = 0 at the nominal 5% level 

(|t| > 1.96) using the ��� statistic along with its standard deviation for two 

independent stationary AR(1) processes for sample sizes of 50, 100, 500 and 1000 

observations, based on 10,000 replications 

 
 φ 

0.0 0.2 0.5 0.8 0.9 

% of rej. 

50 6.8 6.8 7.0 7.6 7.9 

100 6.2 6.2 6.2 6.4 6.6 

500 5.3 5.3 5.3 5.3 5.3 

1000 5.0 5.0 5.0 5.0 5.0 

st. dev. 

50 1.069 1.070 1.076 1.100 1.133 

100 1.049 1.044 1.046 1.051 1.058 

500 1.012 1.012 1.012 1.011 1.011 

1000 0.999 0.999 0.999 1.000 1.000 
 

 

 Indeed, as Table 6 reports, the Cochrane-Orcutt procedure has significantly 

removed or erased the concept of spurious regression.  The empirical percentage of 
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rejections of the null hypothesis is very close to the nominal 5% level for all values of the 

autoregressive parameter and for all sample sizes, while at the same time the distribution 

of the t statistic has finally reached the standard normal distribution.  One possible 

explanation to this astonishing result is that this iterative procedure produced better 

estimates of ρ than OLS.  In fact, all estimates of ρ were larger than those obtained 

through OLS and closer to their theoretical values, even for small sample sizes.  For 

example, for sample size of 50 observations the mean value of ρ under OLS was 0.763, 

where under the Cochrane-Orcutt procedure is 0.807, for value of 0.9 based on 10,000 

replications.  This difference between these two mean values of ρ goes to zero as sample 

size increases, i.e. for sample size of 1,000 observations the estimated mean value of ρ 

under OLS was 0.893, where under the Cochrane-Orcutt procedure is 0.896, for value of 

0.9, based on 10,000 replications.   

 Clearly, the Cochrane-Orcutt procedure is not the only method used to cure 

serially correlated errors.  Alternatively, one may want to use GLS.  Simulation, results 

show that GLS method works very similarly if not identically to Cochrane-Orcutt.  Only 

for small sample size the percentage of rejections is slightly smaller.  For example for 

sample size of 50 observations and for φ = 0.9 the null hypothesis is rejected 7.4% 

instead of the 7.9% under Cochrane-Orcutt procedure at the 5% nominal level.    

 Finally, the Cochrane-Orcutt procedure is also applied to two independent random 

walk processes without drift producing empirical levels 9.5%, 7.5%, 5.4% and 5.1% for 

sample sizes of 50, 100, 500 and 1,000 observations respectively, based on 10,000 

replications, showing that even in this case the analyst will get most likely the right 

answer.  Recall, that Agiakloglou (2013) for this case obtained better test performance for 
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small sample sizes, i.e., 5.3% and 5.2% for T = 50 and 100, by regressing model (1) in 

first differences.   

 

 

4. Conclusion 

 

Dealing with spurious regressions is by far one of the most challenging issues in time 

series regression analysis.  This study shows that using the correct variance under the 

presence of serially correlated errors or the Cochrane_Orcutt procedure the spurious 

regression phenomenon can totally be removed.   
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