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Abstract

This paper investigate the distribution of the fixed and sunk costs associated with the
firm–level decisions of innovating, spending, and cooperating in R&D, adopting a dynamic
structural framework. The basic idea of the paper is to model the firms’ decisions to coop-
erate in R&D and to innovate with a dynamic discrete choice model. None of the existing
studies on heterogeneity of cooperation strategies or innovation processes deals with the non-
trivial dynamics deriving from uncertainty and sunk costs of investments. Identifying the
firms’ primitives on productivity and investment decisions is key to have an encompassing
understanding on what are the determinants on which the firm bases its choice to innovate
and/or cooperate. Additionally, the suggested structural framework of firm heterogeneity in
cost functions offers a straightforward extension to policy impact evaluation.

1 Introduction

An important source of productivity differentials across firms is related to R&D and inno-
vation activities. Many authors have studied the connection between spending for R&D
and productivity growth (Griliches, 1980; Jones and Williams, 1998; Hall and Mairesse,
1995; Crépon et al., 1998). As a result, a large number of empirical studies estimates
the effect of R&D investment on such growth, finding that R&D spending has a signifi-
cantly positive effect on productivity growth, with a rate of return that is about the same
size as (or to some extent larger than) the rate of return on conventional investments.
Crépon et al. (1998), examining the structural links between productivity, innovation in-
put, and innovation output at the firm level, find that the firm innovation output rises
with its research efforts, and the firm productivity correlates positively with a higher
innovative output.

Nonetheless, before Ericson and Pakes (1995), most of the empirical literature in in-
dustry dynamics assumes that firms are endowed with an exogenous level of productivity.
The “lucky” firms with high productivity survive and prosper, the others fail, and even-
tually exit the market.

The modern IO literature relaxes this exogeneity assumption by letting the produc-
tivity to be dependent on the investment decisions, so as to enhance the firms’ survival
chance (Ericson and Pakes, 1995; Doraszelski and Jaumandreu, 2008; Aw et al., 2011).
Typically, in this context, the investment taken into consideration is past R&D expendi-
ture (Doraszelski and Jaumandreu, 2008), or both R&D expenditure and export market
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participation (Aw et al., 2011). However, the firm that wants to survive must not only
be innovative, but also ready to outsource knowledge and develop research networks. In
fact, firms increasingly rely on the external acquisition of new technological knowledge,
as the institutional locations of such resources can be quite disparate. Although not the
primary source of produced knowledge, R&D outsourcing1 (or external R&D) has consid-
erably increased in importance and accounts for a substantial share of the total innovation
expenditure in a large number of firms.2

Therefore, in this paper we construct a model where firms invest in R&D activities
with or without a research partner to improve their productivity levels. In particular,
we develop and estimate a structural dynamic monopoly model to quantify the linkages
between R&D spending, innovation and cooperation investment choices, and endogenous
productivity. To our knowledge, our paper constitutes the first attempt to explicitly
model the different collaborative R&D investment decisions adopting a dynamic structural
framework.

All the other empirical studies aimed at determining whether research collaborations
affect firm-level productivity rely on reduced-form regression approach. For example,
Belderbos et al. (2004b), using data from two waves of the Dutch Community Innova-
tion Survey (1996, 1998), analyze the impact of R&D cooperation on firm performance,
regressing two measures of firm-level productivity growth on four different cooperation
strategies. They also control for the effect of both own R&D efforts as well as the impact
of incoming knowledge flows that are not due to cooperation. Carboni (2012) explores the
variables that determine a firms R&D collaborative expenditure, in a regression analysis
framework, correcting for heteroscedasticity and non-normality when dealing with a large
number of zero response data.

Differently from these studies, the model we propose derives the firms’ optimal R&D
investment decisions where these depend on the past R&D activities and on the past
level of productivity. Additionally, within the suggested framework we are able to model
and retrieve the current fixed or sunk costs relative to the different (collaborative) R&D
activities.

The literature on R&D cooperation shows that the risks and costs of innovation and
the need to exploit complementary resources are the main motives for cooperative be-
havior, and therefore, that cooperative behavior may be positively related to a number
of obstacles such as high risks and cost of innovation (Amoroso, 2011; Belderbos et al.,
2004a,b). R&D cooperations, in fact, allow firms to share costs or to reduce risks of
innovation. In this regard, we hypothesize that cooperating in research could reduce both
the fixed and the sunk costs of introducing an innovation in the market.

We merge data on sales and factor inputs of Dutch manufacturing firms extracted
from the Production Survey (PS), and three waves of the Community Innovation Survey
(CIS) for the Netherlands, covering the period from 2002 to 2008. The leading sectors
(chemicals, agri-food, transport, high-tech) in the Dutch manufacturing industry heavily
depend on research and innovation, and these are, in turn, driven by a wide range of fac-
tors, such as firm performance, market conditions, policy interventions, and government
requirements to reduce environmental damages. In this paper, we assume the firm bases
its decision of engaging in R&D or in innovation with or without a research partner on
past choices, firm-level total factor productivity, and a demand shifter, proxying for the

1R&D outsourcing refers to the contractually agreed, non-gratuitous and temporary performance of
R&D tasks for a client primarily by private contract research and technology organizations, but also by
some private non-profit and related hybrid organizations (Howells, 1999; Grimpe and Kaiser, 2010)

2Source: Eurostat. “Innovation in Europe. Results for the EU, Iceland and Norway.”
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industry characteristics.
In Section 2 we present the model that we use to retrieve information on both fixed and

sunk costs, and consequently on the optimal R&D, innovation, and cooperation decisions.
In Section 3, we discuss the empirical strategy used to retrieve estimates of the static
parameters of the model. Namely, we illustrate how we obtain a measure of firm-level
productivity, demand elasticity, and an aggregate demand shifter. Moreover, we present
estimates of the fixed costs associated with each investment choice, in the static case, i.e.,
when the firm does not take into account the future payoffs in its profits maximization.
Section 4 describes the steps of the algorithm developed by Imai et al. (2009) that is used
to obtain the dynamic parameters estimates. Section 4 and 5 describe the data and the
results, respectively. In Section 6 we present the results for a policy simulation and the
last section concludes.

2 Structural Framework

The empirical model builds on the class of models of dynamic entry games in IO, where
the dependent variable is the firm’s decision to enter or not in a market. In the same
spirit, this paper defines the entry decision as the adoption of a set of discrete decisions:
investing in research and development (R&D), cooperating, innovating, and innovation
cooperation. These decisions are assumed to be costly to reverse and, therefore, associ-
ated with sunk costs. As firms are assumed to be forward looking, they take into account
the implications of their decisions (and the associated costs) on their future payoffs. Time
is discrete and indexed by t. The single-agent dynamic optimization problem is solved for
the N firms operating in the market, which we index by i ∈ I = {1, 2, . . . , N}. Follow-
ing the standard setting of Ericson and Pakes (1995), and adapting it to a monopolistic
competitive setting, firms compete on two different dimensions: a static and a dynamic
dimension. Within the dynamic dimension, a firm makes the investment choice indexed by
k ∈ {na, rd, c, d, cd}, where the vector of choices is defined as ait = (nait, rdit, cit, dit, cdit)

′,
with ait ∈ Ai ≡ {0, 1}5. The firm-specific choice nait takes value one if the firm does not
engage in any activity other than operating in the market; rdit takes value one if the firm
decides to spend in R&D; choices cit and dit match firms’ decisions to start a research
collaboration and to invest in a technological upgrade, respectively; action cdit tags the
decision to both innovate and cooperate (with either another firm or a research institute
or a supplier/customer).

2.1 Static decisions

In every period, firms are competing in prices in a static Bertrand model. Let Pit, the
price, be the static decision variable of firm i at time t. The demand curve faced by the
monopolistically competitive firm is assumed to follow a Dixit–Stiglitz form:

QDit = Qjt (Pit/P
j
t )
ηeu

d
it (1)

where QDit is the demanded quantity for a firm i, Qjt and P jt are the sector j aggregate
production and price index, respectively, η < −1 is the constant elasticity of demand, and
udit is a demand shock.

The production function is assumed to take the form of a Cobb-Douglas, with the
gross output Qit of firm i at time t function of three specific inputs and productivity:

Qit = AitK
θiKt
it LθiLt

it MθiMt
it , (2)
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where Kit denotes capital, Lit labor, and Mit intermediate goods, consisting of materials
and energy, for firm i at period t. θiKt, θiLt, θiMt are the elasticities of output with respect
to capital, labor, and intermediate goods, respectively. Ait represents the Hicksian neutral
efficiency level of firm i at time t. The logarithm of Ait is defined as Ait ≡ exp(θ0 + ωit)
and is defined as the sum of the mean productivity level across firms and over time, θ0,
and the productivity shock which is observable by the firm, but not to the econometrician
(for example, managerial ability, quality of research), ωit..

Following the literature on imperfect competition in both product and labor mar-
kets (Bughin, 1993, 1996; Crépon et al., 2002; Dobbelaere, 2004; Abraham et al., 2009;
Dobbelaere and Mairesse, 2011; Amoroso et al., 2012), we relax the conventional assump-
tion of perfect competition in the labor market, allowing both firms and workers’ union
to have some market power. The workers bargain with the firm over both the levels of
employment, Lit, and of the wage, Wit. Additionally, we define the firm level profits as

Πit ≡ PitQit −WitLit − FC(Kit,Mit, ait), (3)

where FC(·) are the (avoidable) fixed costs (costs that do not vary with the quantity of
output produced, but are not irrevocably committed; (Wang and Yang, 2001)), depending
on capital, material, and innovative investment. Moreover, we define the union’s utility
function as

Uit(Wit, Lit) ≡ Lit(Wit − W̄it),

where W̄it is the reservation wage. Finally, the efficient bargaining model can be written
as a weighted average of the logarithms of workers’ aggregate gain from union membership
and the firm’s profits:

max
Lit,Wit

[φit log(Uit(Wit, Lit)) + (1− φit) log Πit] ,

where φit ∈ [0, 1] is the degree of union bargaining power. In the static setting, the firm
maximizes only with respect to the variable costs, namely, the cost of labor. Amoroso et al.
(2012) show that, maximizing with respect to labor, and taking into account the demand
curve faced by the monopolistically competitive firm, results in the following expression
for the elasticity of the labor input factor:

θiLt ≡

(

η

1 + η

)

WitLit
PitQit

(1− µWit ). (4)

Amoroso et al. (2012) define the bargained wage rate µWit ≡ Wit−W̄it
Wit

as the wage markup3

From (4), after solving for Lit (see technical appendix), we derive the following expression
for labor:

Lit =

[

(exp(θ0 + ωit)K
θK
it M

θM
it )

η+1

η
1

1− µW
η + 1

η

θiLt
Wit

P jt

(Qjt )
1/η

(exp(udit))
−1/η

]η/(η−θiLt(η−1))

(5)

Substituting (5) into (3), taking into account (2), and assuming, for simplicity, that the
elasticity of labor is constant across firms and time, we obtain the final short-run profit

3In their paper, Amoroso et al. (2012) also show how, maximizing with respect to wages leads to an
expression of the wage markup as a function of the bargaining parameter, φit, and the ratio between
profits and cost of labor, µW

it = φit

1−φit

Πit

WitLit

.
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function:

ΠSR(ωit,Wit,Kit,Mit, ψt) =

(

1− γ

γ1−δ

)

W 1−δ
it

[

(

exp(θ0 + ωit)K
θK
it M

θM
it

)
η+1

η
(

ψt(exp(u
d
it))

−1/η
)

]δ

(6)

where ψt ≡
P j
t

(Qj
t )

1/η
, γ ≡ θL

η+1
η

1
1−µW

, and δ ≡ η/(η − θiLt(η − 1)).

2.2 Dynamic decisions

The decisions of doing R&D, cooperating, or innovating cannot be revoked, so we assume
the costs associated with these actions to be sunk. We define the vector of fixed costs paid
in case of investment in research, cooperation, innovation, or both cooperation and inno-
vating as θFCi = (0, θFCi (rd), θFCi (c), θFCi (d), θFCi (cd))′. We also define the vector of sunk
costs associated with every investment choice k, θSCi = (0, θSCi (rd), θSCi (c), θSCi (d), θSCi (cd))′.
In particular, we assume that, besides the fixed and sunk costs of R&D and innovation,
there are sunk costs of finding an efficient research partner, or fixed costs of maintaining
the research alliance, such as managing the contractual costs (transaction costs).

Given their level of productivity, capital, materials, and present and past knowledge
investment decisions, ait and ait−1, the firm faces the following profit function:

Π(ait, ait−1, ωit,Wit,Kit,Mit, ψt) =

ΠSR(ωit,Wit,Kit,Mit, ψt)− FC(Kit,Mit, ait)− SC(ait, ait−1)

≡ ΠSR(ωit,Wit,Kit,Mit, ψt)− ˜FC(Kit,Mit)− θ′FCi ait − θ′SCi (1− ait−1)ait, (7)

where the function of the fixed costs of operation is defined as FC(Kit,Mit, ait) ≡
˜FC(Kit,Mit)− θ′FCi ait−1

To simplify the framework, while retaining the salient features of the model, we make
a set of assumptions. First, we omit the firm-level entry/exit decisions. Moreover, to
reduce the dimensionality of the state vector on which firms are assumed to base their
decisions, we consider a simpler framework, featuring imperfect competition only on the
output market, and where capital and materials are assumed to be flexible inputs, not
subject to adjustment costs. Assuming that the productivity, ωit, and the aggregate state,
ψt, are sufficient statistics for predicting the expected future profits, the short-run profit
function under these restrictions is derived in the Appendix and can be written as

Π(ait, ait−1, ωit, ψt) = ϕψt exp(ωit)
−(1+η) − θ′FCi ait − θ′SCi (1− ait−1)ait, (8)

where ϕ ≡ − 1
1+η

(

η
1+η

)η
.

2.2.1 State variables transition functions

We assume that the next period state of the aggregate variable ψt depends only on the
current state. In particular, we specify the evolution of the aggregate state variable as

ψt = f(ψt−1) = µ0 + ρψt−1 + ǫψ, (9)

where ǫψ is a normally distributed error term. Following Santos (2009), the variance of
ǫψ, σ

2
ǫ = σ2ψ(1 − ρ2), represents the aggregate uncertainty of the industry affecting the

firm’s investment choice.
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Concerning the productivity, we follow Doraszelski and Jaumandreu (2008), and Aw et al.
(2011), and model the evolution of the firm’s productivity as a Markov process, allowing
for the productivity to be affected by firms’ past choices of innovation, cooperation, and
R&D.4 We define the evolution process of productivity level ωit of firm i at time t as:

ωit ≡ ω(ωit−1, ait−1) + ξit (10)

where ξit is the normally distributed stochastic shock to productivity, and ω(·) is approx-
imated by a third degree polynomial.

In particular, we propose the evolution process of productivity level ωit of firm i at
time t as a nonlinearly persistent process, depending on a broader set of R&D activities,
namely (cooperative) research and innovation. The productivity transition becomes:

ωit = ω(ωit−1, cit−1, dit−1, cdit−1, rdit−1) + ξit (11)

= β0 + β1ωit−1 + β2ω
2
it−1 + β3ω

3
it−1 + β4cit−1 + β5dit−1

+β6cit−1dit−1 + β7rdit−1 + ξit.

The firm profit function as in (7) related to the set of choices a do not only differ
in their fixed costs intercepts, but also in their arguments. In fact, the productivity
process assumed in (11) depends on both the past level of productivity, and on the type
of technological upgrade. Therefore, the variable ωit associated with one choice might be
different from that of an alternative investment choice.

Figure 3 reports the schematic representation of what the profile of all the optimal
strategies for firm i and the relative payoffs, given the levels of productivity, could look
like. The firms with a productivity level above a certain threshold decide to either invest
in R&D (ωit > ωrd), or to cooperate with a research partner (ωit > ωc), as it might
provide higher profits than doing R&D by themselves. Cooperating yields higher profits
since firms reduce the costs and associated risks of research by sharing them. Enterprises
observing a level of productivity high enough to bear the sunk costs of introducing an
innovation, invest in a product or process improvement that offers a greater performance
or a reduced cost of production (ωit > ωd). Firms with productivity ωit > ωcd engage in
both activities and are thus assumed to be the most productive.

2.2.2 Value and policy functions

To retrieve information about the sunk costs of R&D, innovating, and cooperating, and to
identify the evolution of the productivity states depending on firms’ research investment
policies, we consider a dynamic programming problem in which a firm i makes a series of
discrete choices over its infinite lifetime.

Let ait be the control variable and let S be the set of space state points and let the
firms’ characteristics sit be an element of S. To simplify the framework, without losing
the generality of the model, we assume that the state of firm i at time t is defined only
by the level of productivity, ωit, the industry competition proxied by the aggregate state
ψt, and the past investment actions, ait−1; therefore the state vector is summarized as

4Doraszelski and Jaumandreu (2008) relax the exogeneity assumption usually made about produc-
tivity in the production function literature (see Olley and Pakes (1996), Levinsohn and Petrin (2003),
Ackerberg et al. (2006)), by letting the R&D spending and related activities to determine the differences
in and the evolution of productivity across firms and over time. Aw et al. (2011) take a step further and
assume that productivity evolves as a Markov process which depends on both investments in R&D and
export market participation.

6



sit = (ωit, ψt, ait−1). To fit the model to the data, we need to add unobserved hetero-
geneity. In particular, we introduce the vector of payoff shocks ǫit = {ǫit(k)}k∈{na,rd,c,d,cd}
observed only by the firm. The unobserved characteristics ǫit are independently and
identically distributed over time with continuous support and multivariate distribution
function Fǫ(ǫit). In particular, I assume that ǫit’s are i.i.d. extreme value distributed
and enter the profit function in an additively separable way. These assumptions are not
strictly necessary, but useful as they lead to a closed form likelihood function and a closed
form expression for the expected maximum of the choice-specific value functions.

The observed state variable ωit evolves as a Markov process depending stochastically
on the choices of the firm because of the assumption in equation (10) with the cumulative
distribution function given by Fω(ωit+1|ωit, ait). On the other hand, the stochastic evolu-
tion of the aggregate state is assumed to be independent from the research activities, and
therefore can be expressed as Fψ(ψt+1|ψt). Moreover, since we do not know the firm–level
production technology, we assume the sunk costs of R&D, innovating, and of partnering
in research to be drawn from a known joint distribution FSC(θ

SC
i ).

Let us define θΠi ≡ ((θFCi )′, (θSC)′)′, and θΠ ≡ {θΠi}i=1,...,N as the matrix of choice-
and firm-specific parameters that describe the profit function in (7). Finally, let θ =
(vec(θΠ)

′, θ′ω, θ
′
ψ, θ

′
ǫ, β)

′ ∈ Θ be the vector of the parameters of interest, where vec(θΠ) is
the vectorization of the θΠ matrix, and where θω and θψ are vectors of parameters that
describe the transition probability functions Fω and Fψ, respectively, θǫ represents the
parameters in the distribution of Fǫ, and β is the rate at which the firm discounts future
profits.

Assuming that firms behave optimally, the value function of firm i corresponds to the
maximum of the expected discounted sum of profits, conditional on the current level of
productivity and market indexes:

V (sit, ǫit; θ) ≡ max
ait,ait+1,...

E

[

∞
∑

τ=t

βτ−t (Π(aiτ , siτ ; θΠi) + ǫiτ ) |sit, ǫit

]

(12)

where β ∈ (0, 1), and Π(ait, sit; θΠi)+ǫit are the current profits of firm i with productivity
level ωit, in market aggregate condition ψt, choosing investment ait.

The problem is to determine, for all N firms, the set of optimal stationary decision
rules α = {αi}

N
i=1, where αi : S → Ai, that solves the stochastic/multiperiod optimization

problem expressed in (12). The method of dynamic programming offers the advantage
of translating the optimization problem in (12) into a sequence of simpler determinis-
tic/static optimization problems, where for β ∈ (0, 1) and for bounded Π(·), the value
of the objective function can be written (suppressing the subscript i) in the form of a
Bellman equation:

V (a, s, ǫ; θ) = Π(a, s; θΠ) + ǫ+ βEs′,ǫ′
[

V (s′; θ)|s, a
]

(13)

V (s, ǫ; θ) = max
a∈A

V (a, s, ǫ; θ)

where s′ and ǫ′ denote the next period state and shock. Therefore, when conditioning
on the value of the state and control variables, the optimal decisions of the firm do not
depend on time t, but only on current and next period state variables. The assumption of
the existence of a state variable that is designed to capture the productive and competitive
environment faced by the firm at each point might be quite restrictive in the context of
technological innovation. However, as in this paper, we consider the dynamic optimization
problem of a single agent, the stationary dynamic programming framework could still
capture the salient features of such a structural model.
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The expected value function for next period is equal to:

Es′,ǫ′
[

V (s′, ǫ′; θ)|s, a
]

=

∫

s′

∫

ǫ′
V (s′, ǫ′; θ)dFǫ(ǫ

′; θǫ)dFs(s
′|s, a; θ), (14)

where dFs(s
′|s, a; θ) ≡ dFω(ω

′|ω, a; θω)dFψ(ψ
′|ψ; θψ). Given that the optimal strategy,

α(s, ǫ), satisfies

α(s, ǫ) = argmax
a∈A

V (a, s, ǫ; θ),

and observing data (a,ω, ψ) ≡ {{ait, ωit}
N
i=1, ψt}

T
t=1, in order to estimate θ, we con-

struct the likelihood as the product of firms’ conditional choice probabilities (CCPs),
Pit(ait|sit; θ), as

Pit(ait|sit; θ) ≡ Pr(ǫ : V (ait, sit; θ) ≥ V (ãit, sit; θ)), ∀ãit

= Pr(ǫ : ait = α(sit, ǫit))

=

∫ 1{ait = α(sit, ǫit)}dFǫ.

The joint likelihood of the observed data is then:

L(a|s; θ) =
∏

i

∏

t

Pit(ait|sit; θ). (15)

Moreover, since ǫ follows a joint Gumbel (extreme value type I) distribution, independent
across alternatives k, the likelihood increment for firm i is

Pit(ait|sit; θ) =
exp {V (ãit, sit; θ)}

∑

ait 6=ãit
exp {V (ait, sit; θ)}

. (16)

In the next section, we discuss the empirical strategy to estimate the static structural
parameters, namely, the demand elasticity, the wage markup, the aggregate state proxying
the industry competitive environment, the productivity evolution parameters, the fixed
costs, and the dynamic parameters, i.e., the sunk costs, and the discount factor.

3 The estimation procedure

Estimation is done in three steps. In the first step, we estimate a production function that
allows us to retrieve estimates of the firm-level productivity, ωit, the parameters describing
the aggregate state and productivity evolution processes, f(ψt−1), and ω(ωit−1, ait−1),
repectively, and the structural parameters needed to construct the profit function as in
(6). In the second step, we retrieve the management costs concerning the research activity
adopted by the firm. In the last step, we obtain estimates of the dynamic structural
parameters, θΠ, θω, θψ, θǫ, by numerical approximation of the solution to the dynamic
programming problem at trial parameters.

3.1 Step 1: Static parameters

The production function and the demand parameters are estimated with the method pro-
posed by Amoroso et al. (2012). Within the Cobb-Douglas production function frame-
work, they relax the conventional assumption of perfect competition in the labor market,
allowing both firms and workers’ union to have some market power.
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In their study, Amoroso et al. (2012) report empirical evidence of the underestimation
of the true level of price–cost margins caused by the omission of direct effects of the wage
bill on marginal costs. In fact, the exclusion of frictions in the labor market (i.e., φit = 0
or Wit = W̄it) might lead to misestimating the firm’s market power. When there is no
imperfect competition in the labor market, firms set the wage at the lowest value possible,
ultimately equal to the competitive wage, i.e., Wit = W̄it (and, therefore, µ

W
it = 0). For

Wit that tends to W̄it, the wage markup decreases, given that the elasticity and the share
of labor are constant, which is inversely related to the output markup η

1+η .
Next to the labor market rigidities, Amoroso et al. (2012) also correct for the possible

bias in the estimated coefficients when deflated gross output is used instead of gross
physical output. Defining the log deflated output as yit, this can be rewritten as

yit = qit + (pit − pjt),

where pjt is the log industry price index. The firm-level price deviations (pit−p
j
t) will enter

the production function as an extra error component, introducing potential correlation
with the input choices. Substituting pit with the inverse Dixit-Stiglitz demand function,
and taking into account the labor input elasticity under imperfect competition in the
labor market,

θiLt

(

η + 1

η

)

≡ γiLt = siLt(1− µWit ), (17)

where siLt is the share of labor and it is defined as the ratio between cost of labor and

total sales
(

WitLit
Pit(Qit)Qit

)

, they estimate a log deflated revenue function that features both

labor and output market distortions:

yit = γ0 + γKkit + γMmit + (1− µWit )siLtlit −
1

η
qjt + ω̃it + ũit (18)

where kit, lit,mit are logs of deflated capital, labor, and deflated materials, respectively;
qjt is the log of the production index in sector j. The composite error term, ũit ≡ uqit+u

d
it,

includes the demand shock, ũdit ≡ −udit/η, and the measurement error, uqit. ω̃it ≡ ωit(1 +
η)/η is the productivity.

The production index is constructed as in De Loecker (2011), by proxying the total
demand for a sector j with a (market share) weighted average of deflated revenue, qjt =
∑Nj

i msityit. Both the intercept, γ0 ≡ θ0(1 + η)/η, and the factor elasticities of capital
and material, γk ≡ θk(1+ η)/η, k = K,M are divided by the output price markup defined
as ≡ η/(1 + η) for η < −1. The elasticity of labor is defined as in (17).

The firm–level productivity ωit is estimated as

ω̂it = η̂/(1+ η̂)ω̃it = η̂/(1+ η̂)

[

yit −

(

γ̂0 + γ̂Kkit + γ̂Mmit + (1− µ̂Wit )siLtlit −
1

η̂
qjt

)]

.

Identification of all the structural parameter of the deflated revenue function in (18)
is ensured by the presence of firm specific wages. To estimate all the relevant parameters,
they adopt a control function approach (Olley and Pakes, 1996) which consists in includ-
ing additional regressors to capture the endogenous part of the unobserved productivity.
In particular, the productivity ω̃it can be approximated by a third–degree polynomial
(Levinsohn and Petrin, 2003) in all three factor inputs kit, lit,mit. The productivity is
also assumed to evolve over time as a Markov process that depends on the firms’ in-
vestment choices, as in (11). The replacement function approach allows for dynamics

9



in the productivity process, but restricts the investment function, and consequently the
productivity process, to be homogeneous across firms. On the other hand, the instru-
mental variables approach comes at the cost of not allowing for the possibility that the
unobserved productivity could be correlated with past choices of inputs. Therefore, for
the problem at hand, we rely on the control function approach to identify the deflated
revenue function parameter, and our object of interest, the firm level productivity. The
estimation of (18) requires the following moment restrictions

E(ξit + ũit|mit, kit, lit−1,mit−1, kit−1, . . . , li1,mi1, ki1) = 0,

however, identification could hold with just current values and one lag in the conditioning
set.

Results of the estimation of the deflated revenue function under imperfect competition
in both output and labor markets (18), of the aggregate state transition function (9), and
of the nonlinearly persistent productivity process depending on technology upgrading (11)
are reported and discussed in Section 4. In the following subsection, we discuss the second
step of our estimation strategy, namely, how to retrieve the fixed costs of (cooperative)
research and innovation.

3.2 Step 2: Profit function parameters

It is well-known that, in general, the parameters of structural dynamic programming
problems are not identified (Rust, 1994). Magnac and Thesmar (2002) show that the
utility functions of the firms can be identified if the distribution function of the unob-
served preference shocks, the discount rate, and the value function of one the alternatives
(normalization) are fixed. Hence, it is theoretically possible to identify both fixed and
sunk costs of R&D and innovation. However, in practice the simultaneous identification
of such costs requires enough variation in the observed R&D investment decisions. To cir-
cumvent this problem, we recover the fixed cost parameters within the static framework,
after having estimated the production function parameters. In particular, we consider
the estimation of the fixed costs of innovative investments as a random utility model
(multinomial mixed logit model), where the alternative-specific utility function of firm i
is associated with the level of productivity and fixed costs represent the alternative-specific
firm-level random coefficients associated with the research ivestment k, i.e.,

V (ait, sit, ζit; θ
FC) = ϕψηt exp(ωit)

−(1+η) − θ′FCi ait + ζit.

The error term ζit is a random term assumed to be iid extreme value distributed. To
identify θFCi , we assume that the additive separable utility shock ζit is exogenous. Results
of this estimation are reported in Section 5.

3.3 Step 3: Dynamic parameters

The main limiting factor in estimating dynamic discrete choice (DDC) models is the com-
putational complexity resulting form the need to compute the continuation values as in
(14). The direct way of obtaining such continuation values has been to compute them
as the fixed point of a functional equation. For example, Rust (1987) proposes a com-
putational strategy named the nested fixed point (NFXP) algorithm, which is a gradient
iterative search method to obtain the maximum likelihood estimator of the structural
parameters. Unfortunately, the NFXP algorithm is computationally demanding because
it requires to obtain the fixed point of a Bellman operator (hence, it must run successive
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iterations of the value functions until convergence) for each point in the state space of the
structural parameters. Additionally, the number of state points grows exponentially with
the dimensionality of the state space. This concern about the computational burden of
implementing the NFXP algorithm, and the curse of dimensionality, have led to a num-
ber of estimators that are computationally faster (Bajari et al., 2007; Pakes et al., 2007).
For example, the two-step estimator by Hotz and Miller (1993), using nonparametric es-
timates of choice and state transition probabilities, yields a simple representation of the
choice-specific value functions for values in a neighborhood of the true vector of struc-
tural parameters.5 The main advantage of this two-step estimator is its computational
simplicity. The first step is a nonparametric regression to obtain the productivity and the
aggregate state transition functions, the second step is the estimation of a standard dis-
crete choice model (the policy functions) with a criterion function that is globally concave
(e.g., such as the likelihood of a multinomial logit model in our investment choice study
case). Thus, the agent’s continuation values can be obtained nonparametrically by first
estimating the agent’s choice probabilities at each state, and then inverting the choice
problem to obtain the corresponding continuation values. However, as with other ap-
proaches, there are limitations. First, since the two-step empirical strategy involves the
(nonparametric) estimation of the CCPs, the continuation values are estimated rather
than computed, and therefore they contain sampling error. This sampling error might be
significant if the state space of the model is large relative to the available data. The second
limitation comes from the formal requirements of the limit properties of the estimator.
As a matter of fact, to obtain an estimator with desirable properties, the data must visit
a subset of the points repeatedly. More precisely, all the states in some recurrent class
ℜ ⊆ S must be visited infinitely often, and the equilibrium strategies must be the same
every time each point of ℜ is visited. Simply put, the two-step approach requires the
assumption of stationarity. To give an example, when forecasting the CCPs of a firm
observed in year t when being active on the market in year t+ τ , it is assumed that the
firm at time t would face the same decision-making environment observed in year t+ τ .
Moreover, it must also be assumed that there is no permanent unobserved heterogeneity,
otherwise, it would be impossible to match the actions of the firm at time t with the
action at time t+ τ .

To correct for the finite sample bias, Aguirregabiria and Mira (2002) propose a nested
pseudo-likelihood algorithm (NPL) for the estimation of the class of discrete Markov
decision models with the conditional independence assumption. In particular, their
method considers a K-step extension of the Hotz and Miller (1993) estimator. In fact,
Aguirregabiria and Mira (2002) obtain a new estimate of the CCPs given the two-step es-
timator and an initial nonparametric estimator of the CCPs. Successive iterations return
a sequence of estimators of the structural parameters and CCPs that are asymptotically
equivalent to the partial MLE and to the two-step PML (Aguirregabiria and Mira, 2002,
Proposition 4). Moreover, Aguirregabiria and Mira (2002) report results from Monte
Carlo experiments that illustrate how iterating in this procedure does in fact produce
significant reductions in finite sample bias. However, their estimation algorithm have dif-
ficulties dealing with unobserved heterogeneity. Extensions to accommodate unobserved
heterogeneity via finite mixture distributions into CCP estimation are attributable to
Arcidiacono and Miller (2011).

Given these recent extensions, there is still one main limiting factor in estimating
DP models, which is the computational burden associated with the iterative process.

5For an exhaustive, but self-contained review and description of Hotz and Miller (1993) two-step esti-
mator and extensions, see Aguirregabiria and Mira (2010).
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Therefore, it is not surprising that there have been continuing efforts to reduce the com-
putational burden of estimating DP models. Recently, computationally practical Bayesian
approaches that rely on Markov Chain Monte Carlo (MCMC) methods have been devel-
oped by Imai et al. (2009) and Norets (2009).

In this paper, we adopt the estimation method proposed by Imai et al. (2009). Their
algorithm is related to the one proposed by Aguirregabiria and Mira (2002), but it is
based on the full solution of the DP problem, yielding the advantage of dealing with
unobserved heterogeneity. The main idea of their estimation approach is to avoid the
computation of the full solution of the DP problem, by approximating the expected value
function at a state space point using the average of value functions at past iterations in
which the parameter vector is close to the current parameter vector and the state variables
are close to the current state variables.6 In the conventional NFXP algorithm, most of
the information obtained in the past iterations remains unused in the current iteration.

The Imai et al. (2009) algorithm consists of two loops:

1. The outer loop (Metropolis-Hasting Algorithm)
The outer loop performs a M-H (Metropolis-Hasting) algorithm. First, we draw
a candidate parameter vector from a proposal density, then we evaluate the likeli-
hood, conditional on the candidate parameter vector and on the previous iteration
parameter vector, to compute the acceptance probability, with which we can decide
whether or not to accept the candidate parameter vector.

In our setting, we allow for the parameters of the profit function, θΠ, to take dif-
ferent values for each firm. In particular, we assume that the vector of firm-specific
parameters θΠi follows the density function:

θΠi ∼ g(θΠi(a);µ),

where µ = (θ̄Π, σΠ)
′ is the hyperparameter vector for this density. In particular,

we assume g is a normal distribution and µ includes parameters for means, θ̄Π,
and standard deviations, σΠ. Assuming that the prior of the mean parameters
is normal and that of the standard deviation parameters is inverted Gamma, the
posterior distribution for the mean parameters is normal and that for the standard
deviation parameter is inverted Gamma. To simplify the framework, without losing
the generality of the structural model, we assume that the priors are independent
across investment alternatives.

The entire parameter vector consists now of θ = (µ′, vec(θΠ)
′, θ′ω, θ

′
ψ, θ

′
ǫ, β)

′. Follow-
ing Ching et al. (2012), let us rewrite this vector as θ = (µ′, vec(θΠ)

′, (θc)
′)′, where

θc = (θ′ω, θ
′
ψ, θ

′
ǫ, β)

′ is the vector of parameters common across firms. As for the
prior on θc, we use independent flat priors. Suppose we are at iteration r, with pa-
rameter estimates being (µr, vec(θΠ), θc), then the outer loop iteration for drawing
a parameter vector from the posterior distribution can be divided into three steps:

1.1 Hyperparameter updating step

6Ching et al. (2012) claim that the practical Bayesian approach developed by Imai et al. (2009)

“...is potentially superior to prior methods because (1) it could significantly reduce the
computational burden of solving for the DDP model in each iteration, and (2) it produces
the posterior distribution of parameter vectors, and the corresponding solutions for the DDP
model–this avoids the need to search for the global maximum of a complicated likelihood
function.”

12



Draw µr. That is, given θr−1
Π , for all alternative a ∈ A, draw θ̄Π ∼ fθ(·|σ

r−1
θΠ

, {θr−1
Πi }Ni=1)

and σrΠ(a) ∼ fσ(·|θ̄
r
Π, {θ

r−1
Πi }Ni=1), where fθ and fσ are the conditional posterior

distributions.

1.2 Data augmentation step

Now that we have effectively constructed the prior for θΠi, we draw, for each al-
ternative a, a candidate parameter from the proposal density, which we assume
to be a normal density,

θ∗rΠi ∼ q(θ̄r−1
Π , σr−1

θΠ
).

Then, accept θ∗rΠi with probability λ, where

λ = min

{

g(θ∗rΠi;µ
r)P ri (ai|ωi, ψ; θ

∗r
Πi, θ

r−1
c )q(·|θ∗rΠi, µ

r)

g(θr−1
Πi ;µr)P ri (ai|ωi, ψ; θ

r−1
Πi , θ

r−1
c )q(·|θr−1

Πi , µ
r)
, 1

}

.

The computation of the firm-specific likelihood component P ri , as defined in
(16), requires the computation of the expected value function for the firm,
which happens in the inner loop.

1.3 Common parameters drawing step

We draw a candidate parameter form the proposal density θ∗rc ∼ q(θ∗rc |θr−1
c ),

then accept θ∗rc with probability λ, where

λ = min

{

π(θ∗rc )Lr(a|ω, ψ; θrΠ, θ
∗r
c )q(·|θ∗rc )

π(θr−1
c )Lr(a|ω, ψ; θrΠ, θ

r−1
c )q(·|θr−1

c )
, 1

}

,

where (a,ω) ≡ {ai, ωi}
N
i=1, and L

r is the joint likelihood defined in (15).

2. The inner loop
The inner loop computes and updates the alternative specific value function by
applying the Bellman operator once. Imai et al. (2009) propose to approximate the
expected value functions by storing and using information from earlier iterations of
the algorithm. In particular, storing up toM past accepted draws of parameters and
value functions, {θ∗l, sl, V l(sl, ǫl; θ∗l)}r−1

l=r−M , Imai et al. (2009) propose to construct
the expected value function in iteration r as,

Erǫ′
[

V (s′, ǫ′; θ∗r|s, a)
]

=
r−1
∑

l=r−M

V l(sl, ǫl; θ∗l)χ(θ∗l, θ∗r; sl, s|a), (19)

where

χ(θ∗l, θ∗r; sl, s|a) =
Khθ(θ

∗l, θ∗r)Khs(s
l, s|a)

∑r−1
k=r−M Khθ(θ

∗k, θ∗k)Khs(s
k, s|a)

,

so as to assign higher weights to past parameters that are closer the current iteration
one, and higher weights to states s′ that have higher transition density from states
s. Khθ(θ

∗k, θ∗k) and Khs(s
k, s|a) are kernel function with bandwidth hθ, and hs, for

the parameter vector, θ, and the state variable s, respectively. The value function
obtained from (19) is used to construct the choice specific value function,

V r(a, s, ǫ; θ∗r) = Π(a, s; θ∗rΠ ) + ǫ+ βErǫ′
[

V (s′, ǫ′; θ∗r)|s, a
]

. (20)
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The value function in (20) is used to construct the likelihood as in (16). Note
that the integration over the continuous state variables is already incorporated into
the computation of the weighted average of past value functions. This approach
has the advantage, compared to Rust’s random grid approximation, of avoiding to
compute the value function at Ngrid random points of the state variables state in
each iteration.

Finally, given the assumption of iid extreme value distributed ǫ’s, we have that

V r(s, ǫ; θ∗r) = max
a∈A

V (a, s, ǫ; θ∗r) = ln

[

∑

a

exp(V (a, s; θ∗r))

]

4 Data

In this section, we report the summary statistics of all the variables used to estimate
the static and the dynamic structural models. In particular, the upper part of Table 4.1
displays mean, standard deviation, and number of observation of the variables extracted
from the PS (Production Survey, Statistics Netherlands) for the years 2002-2008. To
estimate the deflated revenue function as in (18), we use the deflated value of gross output
Yit (≡

PitQit

P̃ j
t

) of each firm i in sector j in period t, where PitQit are the firm’s revenues,

and P̃ jt is the sector j price deflator. Labor (Lit) refers to the number of employees in
each firm for each year,7 collected in September of that year. The corresponding wages
Wit include gross wages plus salaries and social contributions before taxes. The costs of
intermediate inputs (ZitMit) include costs of energy, intermediate materials, and services.
The unit user costs Rit (of capital stock Kit) are calculated as the sum of the depreciation
of fixed assets and the interest charges. Qjt indicates the sector-specific production index.

The nominal gross output and intermediate inputs are deflated with the appropriate
price indices from the input-output tables available at the NACE rev. 1 two-digits sector
classification.8 For capital, we use a two-digit NACE deflator of fixed tangible assets
calculated by Statistics Netherlands. The share of the cost of labor, material, and capital
are denoted as siLt, siMt, and siKt, respectively. The share of the cost of labor constitutes
24.2 percent of the gross production value, while materials account for 65.7 percent of
gross output, and capital for 4 percent.

The total number of observation, after retaining only the respondents to the different
waves of the Community Innovation Survey, is 8306. The CIS datasets are the main
data source for measuring innovation in Europe. The surveys are designed to provide
an extensive description of the general structure of innovative activities at the sectoral,
regional, and country levels, including basic information of the enterprise, product and
process innovation, innovation activity and expenditure, effects of innovation, innovation
cooperation, public finding of innovation, source of information for innovation patents,
and so forth.9

The middle part of Table 4.1 reports descriptive statistics for the different types of
R&D expenditure extracted from three waves of the Community Innovation Survey (CIS),
carried out by Statistics Netherlands. In particular, we constructed an unbalanced panel

7For each enterprise, jobs are added and adjusted for part-time and duration factors, resulting in
number of men/years expressed as Full Time Equivalents (FTEs)(Source: Statistics Netherlands)

8NACE Rev. 1 is a 2-digit activity classification which was drawn up in 1989. It is a revision of the
General Industrial Classification of Economic Activities within the European Communities, known by the
acronym NACE and originally published by Eurostat in 1970.

9Community Innovation Survey, EUROSTAT.
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of survey respondents, merging the CIS 4 (reference period 2002-2004), the CIS 2006 (ref-
erence period 2004-2006), and the CIS 2008 surveys (2006-2008). The R&D expenditures
are expressed in thousands of Euros. The intramural expenditure are more than three
times larger than the extramural. The average total amount of research expenditure is
roughly 3 million Euros. The number of firms that reported R&D spending is 2171 out
the total sample of 3565 (unevenly distributed over the period 2002-2008). The last part
of Table 4.1 displays the details of the control variable, namely the investment choice k.
The most right column reports the total number of firms for each year. For example,
in 2002, the number of enterprises that participated to the CIS and that were matched
with the PS is 444 , whereas in 2008, the same matching exercise yields a much larger
number of firms, i.e., 2413. Our R&D investment variable is constructed as follows. The
firm-specific choice nait takes value one if the firm does not engage in any activity other
than operating in the market; rdit takes value one if the firm decides to spend in R&D;
the investment decision cit takes value of one if the firm has at least one cooperative
agreement (with either a firm, a supplier, a customer, or a public (private) research insti-
tute); dit match firms’ decision to invest in a technological upgrade; action cdit tags the
decision to both innovate and cooperate. Concerning the type of investment, the simple
production without innovative or cooperative activities is the most frequent, with a total
of 3389 observations (k = na). Introducing an innovation (product or process, k = d),
and both innovating and cooperating with either another firm (k = cd), or with a research
institute are also very frequent answers (2129 and 2530 observation, respectively). On the
other hand, the number of firms engaging in only R&D (k = rd) or only research alliances
(k = c) is quite small, with an average of 23 and 13 firms for the rd and c investment
choices, respectively.

The cross-sectional data from each wave is expanded so as to cover the whole reference
period (there is a one-year overlap between the three waves). For example, if the firm
has reported to have introduced an innovation during the reference period, and the same
firm has not abandoned the innovation project, then we impute the value 1 for the whole
time span.

5 Results

In this section we first present the parameter estimates of the deflated revenue function
under imperfect competition in both output and labor markets, (18), and of the state
variables evolution, (9), and (11). We then use the estimates of the static parameters to
present the results of the dynamic discrete choice model.

5.1 Static parameters

The point estimates of the output price markup and all the parameters used to construct
the productivity evolution as in (11) are reported in Table 5.1. The upper part of the table
reports demand elasticity parameters, the aggregate state average, and the productivity
level and growth.10 The elasticity of the demand is found to be equal to −2.8, with a
corresponding output price markup of 55%. On average, the log productivity is equal to
1.381 and its growth is equal to 1.7%. The aggregate state, ψt, is constructed as weighted
deflated total industry revenues, ψt ≡

∑

j p̃
j
t/N

j(qjt )
1/η , where p̃jt is the price deflator for

industry j at time t, and qjt is the weighted average of deflated revenues per industry.

10For a complete discussion on the factor input elasticities and the implication of the rent-sharing
parameter on productivity growth, we would refer the reader to the paper of Amoroso et al. (2012).
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Table 4.1: Summary Statistics

mean sd median 1st quartile 3rd quartile N. obs

PitQit 63323.97(K Euros) 318679 14881.500 5838.000 39925 8306
Lit 152.657 347.055 75 36 152 8306
ZitMit 48353.050(K Euros) 280848 9868 3539 27120 8306
RitKit 2255.667(K Euros) 26330 359 117 1156 8257
siLt 0.242 0.124 0.228 0.154 0.310
siMt 0.657 0.149 0.663 0.567 0.758
siKt 0.040 0.223 0.027 0.013 0.048

Qj
t 73.080 10.465 73.498 63.648 80.889 8306

Intramural R&D 1806.574(K Euros) 18396.654 100 10 400 4937
Extramural R&D 612.855(K Euros) 7243.232 0 0 50 4937
R&D Expenditure 3038.461(K Euros) 26356.650 255 63 846 4937

k = na k = rd k = c k = d k = cd Nt

N2002 153 22 9 136 124 444
N2003 133 9 7 102 167 418
N2004 175 13 6 131 221 546
N2005 179 8 3 130 184 504
N2006 769 28 15 471 557 1840
N2007 907 38 26 553 617 2141
N2008 1073 46 28 606 660 2413
Tot. 3389 164 94 2129 2530 8306

We find the aggregate state to be equal to 1.088, on average. Analyzing the evolution of
the aggregate state over the years, we find that the market conditions were stable until
2006 and start worsening in 2007 and 2008. The same pattern is followed by the total
factor productivity (TFP) growth. The correlation between ψt and productivity is 0.922
(significant at 0.001 significance level). These results confirm that, at an aggregate level,
the TFP growth estimated under the assumptions of imperfect competition in both labor
and output markets seems to pick up the actual features of the Dutch manufacturing
industry.

The aggregate state transition of (9) is specified by the three estimated parameters,
the mean, µ̂0 = 0.853, the autocorrelation, ρ̂ = 0.241, and the variance, σ̂ǫ = 0.114.

Concerning the parameters of the productivity evolution as in (11), we find evidence
of a third order polynomial, and fair dependence on innovation and cooperation. In
particular, the estimated coefficient associated with the action of cooperating is signifi-
cant at the 5% significance level, and equal to 0.076, and that of innovating is equal to
0.113. The coefficient associated with both cooperating and upgrading technology, and
the decision to do R&D, are equal to 0.062 and -0.011, respectively. The four means
and standard errors of the posterior distributions of the fixed costs are reported in Ta-
ble 5.2. Assuming that all firms face the same log-normal distribution for all four fixed
costs, we find that the fixed costs of R&D and cooperating in R&D (3.0 and 3.5 million
Euro, respectively) are substantially higher than the per-period costs of maintaining an
innovation (460 thousand Euro). Moreover, the fixed costs of maintaining an innovative
activity, while sharing the costs of R&D, decreases the per-period costs (290 thousand
Euro). This confirms the rationale behind the cooperating strategies, i.e., the cost sharing
motive (Cassiman and Veugelers, 2002; Lopez, 2008; Amoroso, 2011). R&D cooperations,
in fact, allow firms to share costs or to reduce risks of innovation. The results for the
fixed costs are comparable with those found by Aw et al. (2011) for the Taiwanese elec-
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Table 5.1: Demand and productivity evolution parameters

parameter estimate (st.err.)/st.dvt.

Eq. (18)

θL 0.266 (0.036)
θM 1.206 (0.114)
θK 0.044 (0.010)
η -2.800 (0.428)
η/η + 1 1.555 (0.132)
µW 0.311 (0.050)
ϕ 0.332 (0.000)
ψt 1.088 0.178
ωit 1.381 0.327
∆ωit 0.017 0.225

Eq. (9)
µ0 0.853 (0.022)
ρ 0.241 (0.020)
σǫ 0.114 (0.001)

Eq. (11)

β0 1.650 (0.020)
β1 0.581 (0.043)
β2 -0.002 (0.002)
β3 0.001 (0.000)
β4 0.076 (0.043)
β5 0.113 (0.205)
β6 0.062 (0.056)
β7 -0.011 (0.077)

tronics industry, as they estimate these costs to be on average 67.606 million TW dollars
(roughly 1.8 million Euro) Below the posterior means and standard deviation of the fixed
costs relative to each innovative activity, we report the probabilities of undertaking the
different investments, given the level of productivity and the market conditions. On av-
erage, the probability to not engage in any activity is the highest (0.41), followed by the
probability to simultaneously cooperate and innovate (0.30), and by the probability to
introduce an innovation (0.26). Next to the averages of the probability of choosing action
k, we report the same probabilities for the levels of the log productivity at each quar-
tile. As we are interested in understanding the relation between the level of productivity
and the probability of undertaking an activity, Figure 1 displays the locally weighted
scatterplot smoothing (lowess)11 curves fitting the relationships between the probabilities
to undertake action a and the level of productivity, exp(ωit). The darker areas of the
smoothed scatterplots represent higher density of the data points. The plot at the top
reports the curve fitting the relation between the probability of taking no action and the
level of productivity. The probability of remaining inactive in research and innovation
is inversely related to the productivity. We find the same pattern for the probability of
doing R&D and the probability of introducing an innovation. Simply put, the higher the
firm level productivity, the smaller the probability of investing in R&D, or innovating.
However, the situation is reversed when the investment in R&D or in a new product or
process is shared with a partner. Indeed, when cooperating, the probabilities of doing
research, Pr(a = c|s, θ), and innovating, Pr(a = cd|s, θ), are (non monotonic) increasing
functions of productivity. This pattern could point to the presence of knowledge external-

11Locally weighted regression fitting techniques provide a generally smooth curve, the value of which at
a particular location along the x-axis is determined only by the points in that vicinity. The method con-
sequently makes no assumptions about the form of the relationship, and allows the form to be discovered
using the data itself.
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Table 5.2: Fixed costs

posterior mean(×1mln) std error

θFCi (rd) 3.025 0.082
θFCi (c) 3.528 0.100
θFCi (d) 0.459 0.025
θFCi (cd) 0.286 0.025

mean ωit ≤ 1.172 ωit ≤ 1.347 ωit ≤ 1.541

Pi(a = na|s, θ) 0.408 0.409 0.415 0.414
Pi(a = rd|s, θ) 0.020 0.024 0.021 0.021
Pi(a = c|s, θ) 0.011 0.008 0.009 0.011
Pi(a = d|s, θ) 0.256 0.269 0.263 0.260
Pi(a = cd|s, θ) 0.304 0.288 0.289 0.293

ities. These results, together with the evidence of the endogenous firm-level productivity,
positively associated with the action of cooperating, suggest that an innovation policy
aiming at encouraging research cooperation might result in a virtuous cycle. Indeed, past
investments in cooperative research have a positive impact on current productivity, which,
in turn, positively influence the probability to engage in both R&D and innovation when
these activities are shared with a research partner. Figure 2 plots the MCMC draws of the
fixed cost parameters. It appears that the the MCMC draws converge after 50 iterations.

5.2 Dynamic parameters

In this section we present the results for the DDP model presented in (13). Once the
fixed costs are estimated, we can subtract them from the profit function as in (7). For
simplicity, we estimate the model without unobserved heterogeneity. Therefore, the stan-
dard deviations σΠ are set equal to zero. The discount factor is fixed at 0.93. During this
stage we are able to recover both fixed and sunk costs of doing R&D or innovating with
or without a research partner. Figure 2 shows that the sunk cost parameters converge at
different rates, and, in general, much slower than the fixed costs.

The estimated coefficients are reported in Table 5.3. Next to the mean values of
the sunk costs, we report the standard deviations of the MCMC draws. The values are
estimated with the expected signs. Sunk costs are found to be 4 millions for the average
firm that undertakes R&D with or without a partner, 14 to 33% higher than the fixed
costs. The sunk costs of innovation are still much smaller than the ones of research, but
3 to 3.5 times higher than the fixed costs of innovating. Moreover, we find additional
evidence of the risk-sharing motive behind the decision to introduce an innovation. In
fact, the average sunk costs of producing an innovation with a research partner is almost
one third smaller than the average sunk costs of undertaking the same project without
an alliance (997,000 Euro and 1.4 million Euro, respectively). The sunk costs parameters
cannot be compared with the reported R&D expenditures. This is because the sunk costs
can be related to productive factors, such as labor and/or capital that are allocated to
research rather than to production. For this reason, these costs will not appear in the
balance sheets of the company (Santos, 2009).

Next to the estimation of the sunk cost parameters, we show the importance of the
role played by these costs in shaping the probabilities if undertaking the different research
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Table 5.3: Dynamic Parameter Estimates

posterior mean std error

θSCi (rd) 3.984 0.570
θSCi (c) 4.046 0.216
θSCi (d) 1.433 0.560
θSCi (cd) 0.997 0.216

θSCi (rd) -50% -25% 0%

Pi(a = na|s, θ) 0.141 0.264 0.367
Pi(a = rd|s, θ) 0.049 0.630 0.008
Pi(a = c|s, θ) 0.037 0.006 0.009
Pi(a = d|s, θ) 0.002 0.048 0.390
Pi(a = cd|s, θ) 0.770 0.051 0.226

θSCi (c) -50% -25% 0%

Pi(a = na|s, θ) 0.484 0.693 ”
Pi(a = rd|s, θ) 0.006 0.002 ”
Pi(a = c|s, θ) 0.065 0.008 ”
Pi(a = d|s, θ) 0.263 0.109 ”
Pi(a = cd|s, θ) 0.182 0.188 ”

θSCi (d) -50% -25% 0%

Pi(a = na|s, θ) 0.668 0.433 ”
Pi(a = rd|s, θ) 0.002 0.005 ”
Pi(a = c|s, θ) 0.002 0.007 ”
Pi(a = d|s, θ) 0.225 0.407 ”
Pi(a = cd|s, θ) 0.103 0.147 ”

θSCi (cd) -50% -25% 0%

Pi(a = na|s, θ) 0.616 0.541 ”
Pi(a = rd|s, θ) 0.007 0.003 ”
Pi(a = c|s, θ) 0.004 0.004 ”
Pi(a = d|s, θ) 0.129 0.162 ”
Pi(a = cd|s, θ) 0.244 0.290 ”
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investments. Table 5.3 also reports the changes in probabilities associated with 50% and
25% reductions in the costs of engaging in research and/or innovating. A reduction in the
sunk costs of R&D, cooperating, and innovating can be thought of as an example of an
innovation policy, such as a subsidy to R&D start up, or public procurement. Results show
that a 25% reduction in these costs is expected to increase the probability of undertaking
the corresponding activity. For example, reducing the costs of R&D, θSCi (rd) of 25% leads
to an increase of probability of doing R&D of 62.2%.

6 Conclusion

In this paper, we present empirical evidence of the fixed and sunk costs of investments
in research activities, and quantify the linkages between the cost structure, firm-level
productivity, and the probabilities to technologically upgrade. In particular, we propose
and estimate a structural model with endogenous choices of technological upgrade for the
Dutch manufacturing industry. The model describes a firm’s dynamic decision process for
undertaking different research activities, namely, innovating and conducting R&D, with
or without a research partner. The R&D investment choices are endogenous, as they
depend on the firm’s level of productivity, an aggregate measure of industry competition,
fixed and sunk costs of R&D, and past research choices. To our knowledge, none of the
existing studies proposes and estimates a dynamic structural model to derive the total
cost function of firms engaging in technological activities.

We find that the firm’s probability to do R&D or to introduce an innovation increases
with the level of productivity, only when this activity is shared with a research partner.
Moreover, according to the literature on R&D cooperation, the costs of innovating are
smaller when cooperating. In fact, given the higher risks associated with the uncertainty
of the market demand for new products or processes, the firm might allocate more impor-
tance to the cost/risk sharing rationale for this type of innovative activities, rather than
for the sheer research investments.

Sunk costs are found to be roughly 1.5 times larger than the fixed costs of research
(both cooperative and private), and 3 to 3.5 times larger than the fixed costs of inno-
vating. Moreover, we show the importance of the role played by these costs in shaping
the probabilities if undertaking the different research investments. In general, a reduc-
tion in the sunk costs of R&D, cooperating, and innovating increases the probability of
undertaking the corresponding activity.

Additionally, we present some preliminary conclusions on innovation policies aiming at
encouraging research cooperation. We show how these type of policy interventions might
result in a virtuous cycle. Indeed, past investments in cooperative research have a positive
impact on current productivity, which, in turn, positively influences the probability to
engage in both R&D and innovation when these activities are shared with a research
partner. Therefore, in elaborating their policies for innovation, governments must ensure
to create frameworks that encourage the collaboration throughout the innovation process.
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A Profit function

Given the following maximization problem

max
Lit,Wit

[φit log(Uit(Wit, Lit)) + (1− φit) log Πit] ,

the first order conditions can be written as:

w.r.t. Lit → (1− φit)
Wit −

(

1 + 1
η

)

Pit(Qit)
∂Qit
∂Lit

Πit
=
φit
Lit

, (21)

w.r.t. Wit → (1− φit)
Wit − W̄it

Πit
=
φit
Lit

. (22)

Combining equations (21) and (22), the marginal revenue product of labor is

(

η + 1

η

)

Pit(Qit)
∂Qit
∂Lit

= W̄it. (23)

Therefore, by multiplying both sides of (23) by Lit
Qit

, we have

η + 1

η
θiLt =

W̄itLit
Pit(Qit)Qit

=
W̄it

Wit

WitLit
Pit(Qit)Qit

.

Using Amoroso et al. (2012) definition of the wage markup µWit ≡ Wit−W̄it
Wit

, and taking
into account the demand as in (1), we can rewrite the cost of labor as

WitLit =
1 + η

η
θiLt

1

1− µWit
(Qit)

1+η
η

P jt

(Qjt)
1/η

exp(−udit/η).

Replacing Qit with the Cobb-Douglas function as in (2), and solving for Lit, we get

Lit =

[

(exp(θ0 + ωit)K
θK
it M

θM
it )

η+1

η
1

1− µW
η + 1

η

θiLt
Wit

P jt

(Qjt )
1/η

(exp(−udit/η))

]η/(η−θiLt(η−1))

.

(24)

The short-run profits, PitQit −WitLit, can be rewritten as

ΠSR(ωit,Wit,Kit,Mit, ψt) = (exp(θ0+ωit)K
θK
it L

θL
it M

θM
it )

1+η
η

P jt

(Qjt )
1/η

exp(−udit/η)

[

1−
1 + η

η
θiLt

1

1− µWit

]

.

Replacing the labor demand with (24), we get the final profit function:

ΠSR(ωit,Wit,Kit,Mit, ψt) =

(

1− γ

γ1−δ

)

W 1−δ
it

[

(

exp(θ0 + ωit)K
θK
it M

θM
it

)
η+1

η
(

ψt(exp(u
d
it))

−1/η
)

]δ

where ψt ≡
P j
t

(Qj
t )

1/η
, γ ≡ θL

η+1
η

1
1−µW

, and δ ≡ η/(η − θiLt(η − 1)).

The short-run profit function as in (8), assuming no imperfect competition on the
labor market, is derived from the following optimization problem for firm i:

max
Xit

{

PitQit − V ′
itXit | AitF (Xit) ≥ Qit

}

, (25)
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where Xit ≡ (Xi1t,Xi2t, . . . ,Xirt)
′ denotes the vector of r factor inputs, F (.) is production

function, and Vit ≡ (Vi1t, Vi2t, . . . , Virt)
′ is the vector of r input prices. Taking into account

the demand as in (1), the FOC is:

η + 1

η
Pit

∂Qit
∂Xit

= Vit,

since MCXit = Vit
∂Xit
∂Qit

is defined as the marginal cost of Xit, we have that

Pit −MCXit
Pit

= −
1

η
. (26)

Assuming that the marginal cost of Xit are an inverse function of the firm-level produc-
tivity such as

MCXit ≡
1

exp(ωit)
,

the price can be expressed as a function of the demand elasticity and the productivity,

Pit =
η

η + 1

1

exp(ωit)
. (27)

Multiplying (26) by PitQit, we obtain the profits, therefore the profit function can be
written as

Πit = −
1

η
PitQit.

Substituting Qit with (1) and Pit with (27), we obtain the following short-run profit
function:

Π(ωit, ψt) = ϕψt exp(ωit)
−(1+η),

where ϕ ≡ − 1
1+η

(

η
1+η

)η
.
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Figure 2: MCMC iterations of fixed and sunk cost parameters
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Figure 3: R&D, Cooperation and Innovation Choices
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