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Abstract  
 

Local income data are an important economic indicator, widely used in a broad range of studies 

related to regional convergence, urban economics, fiscal federalism, housing and spatial 

analysis. Despite its importance, there is a lack of official data on local incomes and, most 

importantly, on local income distributions. In this paper we use official data on personal income 

tax returns and a reweighting procedure to derive a representative income sample at the local 

level. Unlike previous attempts in the literature to acquire local income estimates, the results 

obtained allow us to derive not only an average value for income but also its local distribution, a 

valuable and informative tool for analysing distributional and income inequality. We apply this 

methodology to Spanish Personal Income Tax micro-data and illustrate its potential use in 

analysing income inequality by means of computed Gini, Atkinson indexes and top 0.01%, 

0.5% and 0.01% income share measures for the most populated Spanish municipalities (those 

with over 160,000 inhabitants). 
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1. Introduction  

Which municipalities are richer than others? What are the causes of such differences? Is 

there a pattern to the spatial distribution of local income? How do redistributive policies (such 

as progressive taxation or transfer programmes) affect the income distribution across 

municipalities? What is the impact of top income earners on economic growth and inequality? 

Information on the local income distribution is essential in answering all these questions. 

Local income data are therefore an important economic indicator, widely used in a 

broad range of studies related to urban economics, fiscal federalism, housing and spatial 

analysis, among others. In addition, aspects of income inequality and poverty at the local level 

are receiving increasing attention from researchers in these areas. However, despite its 

importance, local income data remain a key missing element within the official statistics of 

many developed countries. The explanation lies, on the one hand, in the complexity of 

designing surveys that are statistically reliable, and on the other hand, in the high cost of field 

work, since it is necessary to carry out a large number of interviews in all the municipalities. As 

a result, most of the household income and expenditure surveys have a limited territorial 

representation, mainly at a regional or provincial level. 

To redress this lack of information, a wide range of statistical techniques have been 

developed over the last two decades aimed at providing reliable estimates of local income. The 

majority often use micro-data information from surveys, combined with aggregate information 

about relevant variables for the considered population subgroups. Haslett et al. (2010) 

distinguish three main statistical methods with underlying similarities: small area estimation
1
, 

imputation techniques
2
, and spatial micro-simulation modelling

3
.  

Household survey data have been used widely as the primary source for empirical 

analysis on inequality, whereas little attention has been paid to income tax data. There is 

however a growing body of empirical literature focusing on tax-based research (see for instance 

Pikkety and Saez, 2003; Atkinson and Piketty, 2007; and Atkinson, Piketty and Saez, 2011).  

The availability of personal income tax micro-data samples has also provided an attractive 

method for modelling local income distributions. Although these samples have high population 

                                                           
1
 Small area estimation refers to a set of techniques designed for improving sample survey estimates using 

auxiliary information relating to analysed population subgroups. Some basic references on the 

methodologies used for small area estimation are Rao (1999, 2003), and Elbers, Lanjouw and Leite 

(2008).  
2
 Imputation techniques are used to incorporate observations and variables in the construction of 

databases whose original information is either incomplete or has problems of sampling or no-response. 

For further details on these techniques, see Kovar and Whitridge (1995). 
3 

Spatial micro-simulation modeling derives small area micro-data sets using reweighting techniques 

usually based on optimisation procedures. For a further explanation on the extent and implementation of 

these models, see for instance Rahman et al. (2010) and Tanton and Edwards (2013). 
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reliability, they are often statistically representative only at the regional level, as is the case in 

Spain. In view of this limitation, it is necessary to develop a statistical treatment that allows us 

to perform reliable income estimates for geographic areas below the regional level, i.e. the 

municipalities. Hence in this paper we develop a model of sample reweighting designed to 

overcome these problems, particularly in the context of distributional and income inequality 

analysis
4
.  

Thus the objectives of the paper are twofold. On the one hand, we seek to provide a 

representative income sample at the local level based on official tax statistics. To that end, we 

adapt a methodology for sample reweighting proposed in Deville and Särndal (1992), Creedy 

(2003) and Creedy and Tuckwell (2004) to the case of Spanish micro-data of personal income 

tax returns. In addition, we use this representative local income sample to derive local income 

distributions. Unlike previous attempts to obtain local income estimates, in this paper we obtain 

not only an average value of income for each Spanish municipality but also its local 

distribution, allowing us to carry out income inequality analysis via certain inequality measures 

such as Gini and Atkinson indexes. In addition, the data obtained allow us to study the top 

incomes within each municipality, a topic of increasing interest within researchers using income 

tax data at the country level (see for instance Atkinson, Piketty and Saez, 2011). 

The article is organised as follows. In the next section we present the problem of 

estimating personal income at the local level and we review the related literature and data 

sources. The tax microdata-based model and the calibration approach implemented in the paper 

to obtain the new sample weights used to derive local income distributions is presented in the 

third section. The data used, the main findings and the validation of estimates are presented in 

the fourth section. In the fifth section we report an illustration of income inequality analysis for 

the case of Spain. Finally, in the last section, we conclude. 

 

2. The problem of measuring local income: limitations and alternatives  

2.1. State of the art 

Most developed countries do not publish official statistics on personal or family income 

at the local level nor the degree of inequality of their income distributions. This lack of 

information represents an important limitation for economic analysis as these are variables 

frequently used in applied economic research. There exists, however, a few exceptions in the 

United States, United Kingdom or Australia.  

                                                           
4
 Bramley and Smart (1996) conducted a pioneering study in this line, in which they obtained income 

distributions for local districts of England using micro-data from the national Family Expenditure Survey. 
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The U.S. case is probably the most remarkable one. The U.S. Bureau of Economic 

Analysis provides data on personal income for the 366 metropolitan areas and their 3,113 

counties, covering the period 1969-2011
5
. Personal income is measured before the deduction of 

personal income taxes and other personal taxes and is reported in current dollars, and it is 

defined as the income received by all persons from all sources (the sum of net earnings by place 

of residence, rental income, dividend and interest income, and current transfer receipts).  

In the United Kingdom, estimations of the gross disposable household income 

(henceforth GDHI) for the 139 local areas defined as NUTS3 (metropolitan and non-

metropolitan counties) are published by the Office for National Statistics (ONS) annually 

(period 1997-2011). The most appropriate local indicators available are used and drawn from a 

wide variety of survey and administrative sources. According to the National Accounts, GDHI 

is defined as the amount of money that all of the individuals in the household sector have 

available for spending or saving after current taxes on income and wealth, social contributions 

paid and social benefits obtained. 

In Australia, since 2005 the Bureau of Statistics has provided small area estimates of the 

sources of personal income for each state and territory according to the various levels of the 

Australian Standard Geographical Classification, including Local Government Areas. These 

estimates, available for the years 1995-96 to 2010-11, are compiled using a combination of 

individual income tax data from the Australian Taxation Office (wage and salary income, own 

unincorporated business income, investment income, superannuation and annuity income and 

other taxable income) and Government cash benefit income from the Commonwealth 

Department of Family and Community Services.  

Unlike the previous examples, in Spain, the National Statistical Office (henceforth INE) 

does not provide data on family or personal income at the local level. Over the last decade, 

several Regional Statistical Institutes (IDESCAT in Catalonia, EUSTAT in the Basque Country 

or IAEST in Aragon, among others) have provided, though not always on a regular basis, 

statistics including the per capita GDHI of those municipalities included in their jurisdictions. In 

general, these are local estimates based on the Spanish Regional Accounts data provided by the 

INE. The territorial imputation is carried out using indirect estimation methods. These methods 

are based on econometric techniques that use the regional or provincial GDHI along with other 

socioeconomic indicators available at the local level (i.e. total population, number of 

unemployed residents, members of the population with a bachelor’s degree or higher, number of 

vehicles registered, number of commercial and industrial establishments, average housing price, 

                                                           
5
 For further details, visit http://www.bea.gov/regional/index.htm. 

file:///C:/Users/miriam/My%20Old%20Documents/customXml/item1.xml
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etc)
6
. Due to the lack of official statistics, the Lawrence R. Klein Research Institute 

(Autonomous University of Madrid) has become the main source of local income data in Spain. 

Certainly, there are many other estimates from the academic field that have also estimated the 

municipal income, usually with a regional scope, using indirect methods to territorialise the 

GDHI
7
. 

The use of territorialised macroeconomic variables such as the gross value added 

(henceforth GVA) or the GDHI to derive local income measures has two main limitations for 

the analysis of personal income distributions.  Firstly, these magnitudes do not adequately 

represent the personal or household ability to pay taxes, nor the portion of income they can use 

for consumption or savings, since they include capital income under the criteria of where 

production activity is located instead of where their owners reside. For instance, we can think of 

a residential municipality with a high standard of living where owners of businesses locate their 

activities in other municipalities, even in other regions or countries. Of course, there will also be 

municipalities whose residents do not have a high standard of living but where very profitable 

companies are located, due to, for example, their lower wages. Another important limitation of 

using macroeconomic aggregates to estimate local income is related to the impossibility of 

obtaining distributions of income for municipalities, and consequently measures of inequality. 

Whatever the statistical or econometric method used to estimate the per capita income of each 

municipality, the result is a unique value, which makes it impossible to obtain information about 

the dispersion of the magnitude.  

The availability of micro data samples at the local level are essential in order to 

compute inequality measures related to the personal income distribution of a municipality. As 

far as we know, the U.S. Census Bureau is the only institution with experience in this regard. Its 

American Community Survey (ACS) Public Use Microdata Sample (PUMS) provides annual 

data on personal and family income
8,9

.  

                                                           
6
 Alternatively there are direct estimation methods based on the spatial localisation of the different 

components of the gross disposable income from a production point of view. Their use is very rare given 

the complexity of such imputation. 
7 

Among others, we can mention Arcarons et al. (1994) and Oliver et al. (1995) in Catalonia, Esteban and 

Pedreño (1992) in Valencia Community, Fernández and Sierra (1992) in La Rioja, De las Heras (1992) 

and De las Heras and Murillo (1998) in Cantabria, Herrero (1998) in Castile and Leon, Remírez-Prados 

(1991) in Navarra, and Chasco y López (2004) in Murcia. Some of these introduce complex estimation 

methods, such as multivariate factor and cluster analysis or econometric multiequational models. 

Likewise, using spatial econometric techniques Alañón (2002) offers estimates of gross value added for 

the Spanish municipalities, and Chasco (2003) and Buendía et al. (2012) obtain GDHI per capita 

estimates for the Autonomy Community of Madrid and the Region of Murcia, respectively. 
8
 For this survey, total personal income is defined in terms of pre-tax income and includes the sum of the 

amounts reported separately for wage or salary income, net self-employment income, interest, dividends, 

net rental and royalty income, income from estates and trusts, social security or railway retirement 
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Household surveys that include information on the income of their members are the 

natural statistical source for providing micro-data on personal income. For the EU Member 

States these surveys are The European Community Household Panel (ECHP), from 1994 to 

2001 (eight waves), and The European Union Statistics on Income and Living Conditions (EU-

SILC) since 2003. Unlike their high quality level, guaranteed by the coordination and 

supervision of Eurostat, their sampling design makes them invalid for estimates in smaller 

territorial areas. A large number of survey interviews are required to meet an acceptable degree 

of statistical representativeness at the municipal level. Thus the number of survey interviews 

required would be greater than that needed at the regional or national level. This is why the lack 

of available micro data for small areas is mainly a cost problem. In addition, misreporting and 

income underreporting in expenditure and revenue surveys are substantive concerns that are 

hard to mitigate
10

. Moreover, as noted in Deaton (2003), personal income survey data show an 

important underestimation when compared with equivalent magnitudes included in the National 

Accounts, making them inappropriate for small area estimation
11

.  

 

2.2. Personal Income Tax returns as an alternative income data source 

Tax returns on the Personal Income Tax (henceforth PIT) collected by national tax 

administrations are an interesting alternative for overcoming the aforementioned territorial 

representativeness limitations shown by household surveys for analysing personal income 

distribution. As pointed out by Atkinson and Piketty (2007), the use of tax data for studying the 

distribution of personal income goes far back in time
12

. Nonetheless, in most OECD countries, 

micro-level tax returns data sets are available only for the post-1970 or post-1980 period, except 

for the United States, where the Internal Revenue Service (IRS) began releasing annual micro-

level data sets for income tax returns in 1960 (Atkinson and Piketty, 2007). 

                                                                                                                                                                          
income, supplemental Security Income, public assistance or welfare payments, retirement, survivor, or 

disability pensions, and all other income. 
9
 Currently, the ACS publishes single year data for all areas with populations of 65,000 or more. Among 

the roughly 7,000 areas that meet this threshold are all states, all congressional districts, more than 700 

counties, and more than 500 places. Areas with populations less than 65,000 will require the use of multi-

year estimates to reach an appropriate sample size for data publication. In 2008, the Census Bureau began 

releasing 3-year estimates for areas with populations greater than 20,000. They also release the first 5-

year estimates for all census tracts and block groups from 2010. 
10

 Meyer and Sullivan (2011) evaluate the implications of these drawbacks for income inequality analysis. 

Furthermore, Lohmann (2011) addresses the question of data collection in EU-SILC, finding a greater 

reliability advantage in those countries that supplement the information from survey interviews using 

administrative or register data for a wide range of variables, such as occurs in the Nordic countries. 
11

 Using a cross-country data set for developing and transitional economies, Ravallion (2003) analyses 

how the national accounts deviates on average from mean household income or expenditure based on 

national sample surveys. A detailed statistical study of these discrepancies is offered in Canberra Expert 

Group’s Report (2001).  
12

 Early estimates date back to Bowley (1914) and Stamp (1916) for the United Kingdom, even though 

the estimates made by Kuznets (1953, 1955) for United States can be considered as the pioneering income 

distributions obtained using tax data.  
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The representativeness of these tax microdata is appropriate for small territorial 

estimates, as in the case of municipalities. Generally, these annual PIT returns display 

information about the different categories of taxable income: wage or salary income, retirement, 

survivor, or disability pensions, some public assistance payments (including in some cases 

unemployment benefits), net self-employment income and individual business income, interest, 

dividends, royalty income, net rental, income from other estates and capital gains. In some 

countries, imputed rent for homeowners and some exempt income are also included. The sum of 

these variables can provide an adequate measurement of pre-tax income, in line with the one 

presented in the ACS-PUMS (US Census Bureau).  

Over the past decade, an increasing number of papers have focused their attention on 

the concentration of income and wealth in top income earners (see Atkinson et al., 2011), 

fostering the use of tax income data as a tool for personal income distribution analysis. In this 

regard, it is important to notice that this tax definition of income is consistent with the notion of 

ability to pay commonly used in microeconomic models (Piketty and Saez, 2003), besides 

constituting a reasonable measurement of individual wellbeing (Leigh, 2007). In relation to the 

reliability of tax data to measure personal income, as noted in Feldman and Slemrod (2007) and 

Slemrod and Weber (2012), survey data are often not very credible due to the problem of 

untruthful responses to delicate questions. Therefore income tax data are generally more 

reliable, especially when personal income is measured from wages and salaries, pensions, 

subsidies, interests and dividends, all of them withheld at the source of payment.  

 
However, the estimation of personal income distributions using tax data also has some 

conditioning factors. The unit of analysis is probably the most controversial issue (the 

individual versus the family). However, as noted in Atkinson (2007), the individual approach is 

useful when analysing personal income distributions and, as such, it has been commonly used in 

the related literature on income inequality and redistribution. Of course, there are differences 

when choosing the individual as the unit of analysis instead of the household, but these have to 

be resolved by interpreting the results, without thereby having to give up the statistical 

potentialities of the individual approach. Secondly, these data might be biased because of tax 

evasion and avoidance. Nevertheless, Atkinson et al. (2011) point out that when tax data are 

compared to other sources of information such as surveys, the influence of tax evasion and 

avoidance on the distributive results is not large enough to mean that they should be rejected out 

of hand. In this sense, Hurst et al. (2010) and Paulus (2013) also found a non-negligible income 

underreporting by self-employed on income surveys compared to tax data.  
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Thirdly, as noted above, the taxable income usually includes all incomes obtained by 

residents in a territory regardless of its source. Ideally, one would like to measure the gross 

income before any deductions or exemptions, even though this is not always possible. This is 

due to the fact that available information comes from the tax forms according to the rules of 

taxation. and as such, the income reported includes all essential components of personal income 

in an economic sense, with the exception of certain exemptions of income that are not taxed. 

Accordingly, the main limitation arises from the criteria for measuring certain kinds of incomes 

taxed, as is the case of income from business activities (largely estimated by means of objective 

methods), real estate imputed rents for homeowners, and capital gains. Despite this, when we 

look at the measurement of aggregated household disposable income at the national level we 

observe that it often offers lower income levels than the tax data
13

. To sum up, we can say that 

the aggregation of the different income components corresponds reasonably to gross income 

before personal allowances and deductions are applied. 

 
3. Tax microdata-based model  

3.1. The model  

Let  ( ) be the personal income distribution (measured by the variable taxable income) 

for a given year   corresponding to the reference population  . In turn,  ( ) is the distribution 

function of the same variable for the sample obtained from population administrative census of 

tax returns. 

For each of   tax units, micro-data sample contains information on this income variable 

and other variables of territorial identification, such as provincial or municipal codes. Insofar 

the sample has been obtained using a particular sampling technique, a sample weight   
  was 

assigned to each observation   extracted.   

Let    be the taxable income corresponding to sample tax unit  . The estimated total 

population in terms of taxable income ( ̂) can be obtained using the original weights provided 

in the sample, such that: 

 ̂  ∑     
 
        [1] 

In so far as the spatial stratification variable was fixed at the provincial level, both the 

population estimates for the provinces and for the whole national population keep the stated 

confidence level in the sample design. However, to obtain estimates at the municipal level it is 

                                                           
13

 For instance, see Picos (2006) for the analysis of the Spanish case or Hurst et al. (2010) for the United 

States. 
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necessary to calculate new population weights, to the extent that our estimates would now face 

smaller spatial areas used as a strata sample extraction. 

We define this “new weight” as     , such that the total population income estimated for 

the municipality   can be obtained as follows: 

 ̂ |  ∑         
  

   
     [2] 

Following Creedy and Tuckwell (2004), we use the distance criterion to assess the 

closeness between      and      in each of   spatial areas. In general terms, let denote this 

distance through the function,  (         ), what must verified in aggregate terms that: 

   (         )           [3] 

Therefore the method for obtaining the new weights that allow estimates of income at 

the municipal level using a micro-data sample consists of solving the following optimisation 

program: to minimise distance function [3] subject to municipality restriction [2]. To carry out 

this reweighting we need information on true population totals for the taxable income variable 

for each   municipality, so that the estimated value  ̂ |  can be replaced in [2]. This information 

is taken from the administrative census of personal income tax
14

. 

 

3.2. Computational settlement: the calibration approach 

In this section we provide an overview of the method that we use to adjust the original 

micro-data sample weights provided by the Spanish Tax Administration (henceforth AEAT) in 

order to make them representative with respect to both the average income and the aggregate 

number of taxpayers in each Spanish municipality. The methodology closely follows Creedy 

(2003), Creedy and Tuckwell (2004) and Deville and Särndal (1992) and it was coded in Stata 

12.  

Following Creedy (2003), let us consider a sample of n taxpayers and K individual-level 

variables, both monetary (as taxable income or tax liability) and non-monetary (as age, sex, 

province and municipality of residence). We collect these variables for the generic taxpayer i in 

the following vector:    [             ] . If we define the original sample weight with the 

vector   [               ], the estimated population values of each K individual-level 

variable is given by:   

 ̂ |  ∑      
 
    [4] 

                                                           
14

 These population data have been provided by Spanish Tax Administration Agency. 
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The AEAT provided us with the true population totals for some of these K 

variables (  ). Specifically, we managed to obtain the aggregate income and the total number 

of taxpayers in each j Spanish municipality from the AEAT. With this information in hand it is 

possible to compute a new vector of sample weights for each municipality,     [          
] 

, where ∑   
 
     , that is as close as possible to the original sample weights, while 

satisfying the set of K calibration equations:  

  
 
 ∑      

  

   
 [5] 

where   
 
 is the true population value of each K individual-level variable in each j municipality. 

Indeed, if we denote the distance between the original and the new sample weights with the 

function  (         ), the new sample weights can be obtained by minimising the following 

Lagrangian function with respect to z:  

  ∑  (         )  ∑   [  
 
 ∑      

  

   ] 
   

 
    [6] 

where are the Lagrange multipliers.  

Clearly, the solution of the minimisation problem strongly depends on the property of 

the distance function  (         ), and in what follows we require the function  (         ) to 

respect two fundamental properties:  

- The first derivative of  (         ) with respect to      must be expressed as a function of 

the ratio between the new and the original weights: 

  (         ) 

      
   (

    

    
)   [7] 

- The inverse of the first derivative of  (         ) must be explicitly invertible.  

If these properties hold, then the n first order conditions for the problem in [6] are:    

  (
    

    
)    

                  [8] 

Then, we can obtain the new weights so that:  

             (  
  )                 [9] 

and given a solution for the Lagrange multipliers, which can be obtained through an iterative 

procedure (Newton’s method) after some algebraic manipulations of equations [9], [5]and [4]. 

 1 2 Kλ = λ ,λ ,...,λ ´
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Specifically, if we substitute equation [9] into equation [5] and then subtract from both sides 

equation [1], after certain rearrangements we obtain:  

(    ̂ | )  ∑   [ 
   (  

  )   ]  
 
      [10] 

The root of this function can be computed by means of the following iterative recursion:  

 (   )   ( )  [
  ( )

  
]
  

 ( ) [11] 

where  ( ) is given by the left hand side of equation [10] and, at each iteration I+1th, is 

evaluated using the value of the Lagrange multipliers in the previous Ith iteration, λ
[I]

. Hence, 

given a set of initial values for λ, equation [11] can be repeatedly evaluated until convergence is 

reached, where possible.  

The four distance functions used in this paper are presented in Table 1. The first 

function, the Chi-squared distance function, is probably one of the most popular choices in the 

applied literature because the constrained minimisation problem in equation [6] has an explicit 

solution and the new weights can be obtained immediately. However, this function places no 

constraints on the size of the adjustment to each weight, and therefore some of the new weights 

could take negative values.  

Table 1. Different distance functions 

 D(w,z) 

  

1. Chi-squared (   ) 

  
 

2. Minimum Entropy      (
 

 
)      

3. Modified Minimum Entropy     (
 

 
)      

4. Deville and Särndal (1992) 

(  
 

 
)    (

  
 
 

   
)  (

 

 
  )    (

 
 

  

   
)  

  Ì
 

  

  

Note: u and l are known constants in the interval             
   

(   )(   )
   

 

To avoid this problem, the other three distance functions in Table 1 incorporate a non-

negative constraint on the size of the adjustment. Nevertheless, for these functions a closed-

form solution to the constrained minimisation problem is no longer available and the iterative 

procedure explained above has to be used. This implies that problems of non-convergence may 

arise, which could depend on the combination of a specific distance function with the original 

weights or on the starting values that enter the first iteration of the recursion. 
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Functions 2 and 3 force the new weight to be positive but they do not place an upper 

bound to the adjustment. Hence implausible large weights with respect to the original ones 

could result after the calibration process. This issue is considered by the fourth distance function 

proposed by Deville and Särndal (1992), because it constrains the new weights within a user-

defined range. In particular, the ratio of the new to the original weight is bounded as follows:  

  
 

 
   [12] 

where both l and u are known parameters that enter the distance function before the calibration 

process
15

. 

 

4. Empirical results 

4.1. Description of the Spanish municipal map  

Spain is a decentralised country composed of three different levels of government: the 

Central Government, 17 regional governments known as Autonomous Communities (created by 

mandate of the Spanish Constitution in 1978) and some 8,110 Local Governments. As is shown 

in Table 2, the latter are characterised by their high degree of fragmentation. About 60% of 

existing municipalities have fewer than 1,000 inhabitants and represent just 3.37% of the total 

population, which implies a structure of many independent units of government with very small 

populations. 

Table 2. Spanish municipalities according to population size, 2007. 

Population threshold Number of municipalities % of Total Population 

< 1,000 inhab. 4,877 3.37% 

1,000 – 5,000 inhab. 1,968 10.06% 

5,000 – 20,000 inhab. 895 19.37% 

20,000 – 50,000 inhab. 235 15.50% 

50,000 – 100,000 inhab. 77 12.05% 

> 100,000 inhab. 59 39.66% 

Source: Own production using population counts from the Spanish National Statistics 

Institute. 

  

The aforementioned levels of governments coexist with a historically administrative 

division of the Spanish territory, the Province. The present division of the country into 50 

provinces has remained essentially unchanged since its design in 1833. Each province consists 

                                                           
15

 The initial values for these parameters are 0.2 and 3, respectively. If convergence is not achieved after 

100 iterations with different starting values, the new bounds for these two parameters are drawn from two 

uniform distributions with supports: 0.1-1 and 1-6.   
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of a group of municipalities, and one or more provinces yield to an Autonomous Community. 

Central and Local Governments are formed according to direct election by universal suffrage 

and subject to a proportional representation criterion, whereas governmental institutions at the 

province level respond to the representation of political parties in each province’s 

municipalities. That is to say, members of the Provincial Government are elected by the 

municipal councillors among themselves.  

4.2. The data 

Micro-data (PIT, 2007). To carry out the estimate of local income distributions we use 

micro-data contained in the annual Spanish PIT sample. In particular in this paper we use the 

sample for the year 2007, which includes 1,351,802 records extracted from a population 

providing 18,702,875 personal income tax returns (Picos et al., 2011). This database has been 

developed by the Spanish Institute of Fiscal Studies (Instituto de Estudios Fiscales, IEF 

henceforth), in collaboration with the Spanish National Tax Administration (Agencia Estatal de 

Administración Tributaria - henceforth AEAT), the entity in charge of extracting annual 

samples from its administrative registers of Spanish personal income tax
16

.  

For the construction of this annual sample the minimum variance stratification under 

Neyman’s allocation method has been used. Thereby population income may be estimated in a 

highly precise manner with a reasonable sample size. Three stratification variables have been 

used in the sampling process: a) the province, as territorial stratum (48 provinces with common 

fiscal regime, plus the Autonomous Cities of Ceuta and Melilla
17

); b) the income level of the tax 

filers (to that end, income sample places in 12 level)
18

; c) the type of tax return (separate or joint 

filing). Hence, the “original weight” is calculated for each observation as the ratio between the 

size of the population of its belonging stratum   and its corresponding sample size,    

    ⁄ . To select the sample, the tax returns were classified in each one of the 1,152 strata 

(48x12x2). Previously, the size of the total sample n was calculated for a specific relative 

sampling error (e < 0.011) with a confidence level of 3 per 1,000. Next, the population for each 

stratum (Nh) was determined using the population quasi-variance of the sample income for each 

one of them (S
2
h). Finally, using the values Nh and S

2
h, the number of observations that had to be 

extracted randomly for each stratum (nh) was determined, so that ∑      . Table 3 shows the 

final sample sizes and their distribution by province.  

                                                           
16

 To date, micro-data samples are available to researchers and analysts, free of charge, on application to 

the IEF (http://www.ief.es) for the years 2002-2009. 
17

 This territorial stratum also includes an additional group of Spanish non-resident taxpayers that paid 

taxes under Article 10 of Law 35/2006. 
18

 The sample income was calculated as the sum of net incomes, imputed income and capital gains and 

losses. 

http://www.ief.es/
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Table 3. Final micro-data sample sizes and their distribution by province 

Province Province Code Number of sample observations  
(used in estimates) 

Álava 1 - 

Albacete 2 19,784 

Alicante 3 44,072 

Almería 4 24,353 

Ávila 5 12,534 

Badajoz 6 28,710 

Balears (Illes) 7 32,885 

Barcelona 8 86,880 

Burgos 9 18,131 

Cáceres 10 22,842 

Cádiz 11 34,890 

Castellón 12 25,682 

Ciudad Real 13 21,542 

Córdoba 14 33,076 

Coruña (A) 15 37,749 

Cuenca 16 14,172 

Girona 17 24,974 

Granada 18 33,254 

Guadalajara 19 12,594 

Guipúzcoa 20 - 

Huelva 21 21,255 

Huesca 22 14,167 

Jaén 23 30,891 

León 24 23,201 

Lleida 25 20,342 

Rioja (La) 26 16,820 

Lugo 27 21,261 

Madrid 28 110,208 

Málaga 29 40,883 

Murcia 30 38,140 

Navarra 31 - 

Ourense 32 19,439 

Asturias 33 36,084 

Palencia 34 12,065 

Palmas (Las) 35 31,743 

Pontevedra 36 33,238 

Salamanca 37 18,651 

Santa Cruz de Tenerife 38 30,891 

Cantabria 39 23,579 

Segovia 40 11,297 

Sevilla 41 44,700 

Soria 42 8,624 

Tarragona 43 27,661 

Teruel 44 11,822 

Toledo 45 24,773 

Valencia 46 53,361 

Valladolid 47 22,904 

Vizcaya 48 - 

Zamora 49 14,452 

Zaragoza 50 36,454 

Ceuta 51 5,244 

Melilla 52 5,068 

Non residents 99 615 

Total of observations  1,337,957 
Source: own production using data drawn from the Spanish Personal Income Tax 

2007 annual sample. 

 

The original records provided by the AEAT are incorporated in a bi-dimensional file 

that contains the PIT returns extracted using a sampling process (one per row). For each 
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observation the file offers a series of variables for which the source of information is, directly or 

indirectly, the return form for the corresponding year
19

.  

Regarding territorial representation, the annual sample of micro-data includes tax 

returns for 5,346 of the 7,024 Spanish municipalities, all of them belonging to the 15 

Autonomous Communities with a common tax system (the database does not include 

observations for the Basque Country and Navarra, which have their own tax systems (so-called 

“foral tax systems”). 

Using variables contained in the annual Spanish PIT sample for 2007, we establish the 

definition of total personal income as the sum of the following items forming part of the gross 

taxable income
20

: salary and wage income, retirement pensions, general unemployment 

subsidies, some non-exempt welfare payments and some disability pensions, net self-

employment income, interest, dividends, royalty income, survivor annuities, net rental and 

income from other estates including imputed rent for second dwellings homeowners, and 

realised capital gains (except those from reinvesting in the customary dwelling). Therefore, our 

total personal income is defined in terms of pre-tax gross income, namely before applying 

personal and family allowances, employment income deductions, exemptions from 

contributions to private pension plans, and other specific deductions
21

.  

The unit of analysis in the annual Spanish PIT sample is the tax return. Since the 

financial year 1988, the Spanish PIT has been individually based by constitutional mandate. 

Although married couples can voluntarily file a joint return, this option is never advantageous 

when both spouses receive an income. As a consequence, in the same way that Alvaredo and 

Saez (2009) do, we identify the unit of analysis as being the individual taxpayer.  

 Population data (PIT 2007). Statistics with population data for the Spanish PIT are 

collected by the AEAT. To carry out this study, the Department of Information Technology of 

the AEAT has provided us with a database containing information on the municipal income tax 

for the year 2007. This PIT database includes the following aggregate information for each of 

the 7,024 municipalities included in the common tax regime: the number of income tax returns 

filed in the municipality, the average taxable income and the average tax liability. For 

                                                           
19

 According to the nature of the variables included in the file, these can be split into two groups: non-

monetary variables, which contain the main qualitative and personal characteristics of each return; and 

monetary variables, which contain information from the boxes of the annual PIT return form. 
20

 For a complete description of the components of income taxed by the PIT in 2007 see Picos et al. 

(2011). 
21

 This definition is the same as the one used in Alvaredo and Saez (2009). 
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identification purposes, the database includes a specific municipal code established by the 

AEAT, and the name of the municipality
22

.  

4.3. Main findings and validation of estimates  

As aforementioned, the AEAT provided us with a micro-data sample of 5,346 out of 

7,024 Spanish municipalities, i.e. those with common fiscal regime. We discarded 18 

municipalities that only had one observation in the sample, since for them it was not possible to 

apply any of the reweighting methods presented in Section 3
23

.
 

Additionally, the AEAT 

provided us with two total population magnitudes, i.e. the number of taxpayers and the 

aggregate gross taxable income of each municipality. Hence the set of calibration equations in 

our exercise is defined from these data. 

Table 4 shows the percentage of the 5,328 municipalities for which convergence has 

been achieved when the recursive algorithm was used. The table also reports the percentage of 

municipalities for which non-negative weights were observed after the calibration with the Chi-

squared distance function.  

Table 4. Percentage of municipalities for which a new non-negative vector 
of weights was obtained 
Distance function Percentage 

Chi-squared 82.2% 

Minimum Entropy 91.6% 

Modified Minimum Entropy 94.8% 

Deville and Särndal (1992) 73.3% 

Source: Own production 

 

For 250 municipalities (1,953 personal income tax returns) none of the functions listed 

above produced a new vector of weights, either because of non-convergence issues or because 

the Chi-squared distance function produced negative weights
24

. However, from the Kernel 

density of the population size of these municipalities, it can be seen that they are quite small, 

with less than 1,000 inhabitants (see Figure 1). Accordingly, the total number of PIT taxpayers 

in these municipalities is also small (below 500 tax returns). As a result, from the Kernel density 

                                                           
22

 There is an important previous task of linking tax codes (population data) to postal codes (sample data) 

and then to the 5-digit codes given by the Spanish National Statistics Institute to identify each 

municipality. 
23

 Estimating the new weights requires at least two observations for each municipality.  
 
24

 Note that whenever a new weight is not produced for a given observation of a given municipality, all 

observations of that municipality are dropped from the analysis. 
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of the number of observations included in the AEAT sample it can be seen that the number is 

considerably smaller (below 30 tax returns included in the sample).  

Figure 1. Kernel density of municipalities without a new vector of weights. 

 

 

 

 

Source: Own production 

  

Table 5 shows the number of municipalities for which each distance function was 

chosen for estimating the new optimal vector of weights. For selecting among different vectors 

of weights we follow Särndal (2007) and require the chosen vector for municipality j: 

(i) not to take negative values:  

               [13] 

(ii) not to have values that are too large compared to the original vector. In this regard, 

the goodness-of-fit criterion (minimising the sum of the squared residuals) is used 

   ∑ ( 
            )

  [14] 

(iii) and to originate from a calibration exercise that converged as smoothly as possible.   
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Table 5. Chosen distance function for each municipality 
Distance function Number of municipalities % 

Chi-squared 1,607 31.65% 

Minimum Entropy 2,496 49.15% 

Modified Minimum Entropy 473 9.31% 

Deville and Särndal (1972) 502 9.89% 

Total: 5,078 100 

Source: Own production 

 

As can be seen, the Minimum Entropy distance is the function adopted in most cases, 

according to the selection criteria explained above. The Chi-squared and the DS distance 

function then follow. However, as Deville and Särndal (1992) prove, all the above-listed 

functions generate asymptotically-equivalent calibration estimators. Hence changes of the 

distance function will often have only minor effects on the variance of the calibration estimator, 

even if the sample size is rather small. 

Figure 2 shows the distribution of the ratio of calibrated new sample weights with 

respect to the original sample weights. As can be seen, the majority of these values are around 

one, meaning that the new weights are fairly close to the original sample weights. For the sake 

of clarity, the distribution of this ratio by percentiles is reported in Table 6. The results indicate 

that the values of the ratio between the new and the original sample weight range from 0.06 to 

1.80. In addition, both the mean and the median are close to one, with a standard deviation of 

0.98. 

Figure 2. Ratio of new sample weights to original sample weights 

 

Source: Own production 
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Table 6. Distribution of the ratio of new to original sample weights. 
Percentiles Ratio z/w 

1% 0.06013 

5% 0.31796 

10% 0.62805 

25% 0.91277 

  

50% 0.99691 

  

75% 1.04968 

90% 1.14317 

95% 1.24089 

99% 1.80791 

  

Mean 0.97445 

St. Dev. 0.98183 

  

Source: Own production 

 

Figure 3. Overall income distribution 

 

Own production. For present purposes, the distribution is truncated at 100,000 euros. 

 

Once the new sample weights are obtained, we can derive representative personal 

income distributions for all the Spanish municipalities included in the sample of micro-data 

provided by the AEAT. Figure 3 shows the income distribution for the entire sample (all 

municipalities included), before and after reweighting. As expected, the overall income 

distribution derived from the new sample weights replicates the overall income distribution 

when using the original sample weights. In general terms, differences are expected in local 

income distributions, as original weights were only representative at the provincial level while 

the new sample weights are now representative at the municipal level. In any case, the sample is 

always representative of the entire population, i.e. the weights are used for grossing up from the 
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sample in order to obtain estimates of population values. As can be seen in Figure 3, estimates 

of the income density function for the national total with new and old weights are virtually 

identical. 

In Figure 4 we present some of the results obtained for the Spanish municipalities 

included in the sample. In particular, we display the local income distributions of the six biggest 

municipalities in terms of population counts. In every graph, the local income distribution for 

the entire sample is illustrated by the black solid line. Plotted income density functions show the 

existence of heterogeneous distribution patterns, especially among the three most populated 

cities (i.e. Madrid, Barcelona and Valencia). Their local income is more uniformly distributed 

than the income distribution as a whole. These cities present a more skewed right income 

distribution and a lower mode, as a consequence of a lower concentration of income in the 

lower tail distribution and greater densities in the upper tail. 

 Source: own elaboration

Figure 4. Local income distributions of selected Spanish municipalities*

0

.0
0

0
0

1
.0

0
0
0

2
.0

0
0
0

3
.0

0
0
0

4

0 20000 40000 60000 80000 100000

taxable_income (adjusted by new weights)

National Madrid

Barcelona Valencia

0

.0
0

0
0

1
.0

0
0
0

2
.0

0
0
0

3
.0

0
0
0

4

0 20000 40000 60000 80000 100000

taxable_income (adjusted by new weights)

National Sevilla

Zaragoza Málaga



 Estimating the Personal Income Distribution in Spanish Municipalities Using Tax Micro-Data 21 

 

21 
 

5. Personal income inequality in Spanish municipalities  

The estimated local income distributions obtained in the previous section are a valuable 

and informative tool for distributional and income inequality analysis. As an illustration, in this 

section we perform an analysis of local inequality for a sample of Spanish municipalities based 

on the computation of two of the most common measurements of inequality, the Gini and the 

Atkinson indexes. In line with the abovementioned literature on top incomes, we also include 

measurements of the top 1%, 0.5% and 0.1% income shares. 

The Gini coefficient (Gini, 1912) is probably the standard in the income inequality 

literature. This index is defined as the area between the 45° (which indicates perfect equality) 

and the Lorenz curve, 

 ( )     ∫  (   )  
 

 
 [15] 

where the Lorenz curve of income  (   ) at such p-values of ranked relative cumulated-

population (so that,   (   )) can be defined mathematically by the expression, 

   ( )   (   )  ∫   ( )    ⁄
 

 
 [16] 

Accordingly, the Gini coefficient takes values between zero (perfect equality) and one 

(complete inequality). 

The second income inequality measurement used in our analysis is the Atkinson index 

(Atkinson, 1970). This index differs from the Gini index in its explicitly ethical foundation. In 

fact, the Atkinson index is based upon a social welfare function, including a weighting 

parameter ε which measures aversion to inequality, so that the index becomes more sensitive to 

changes at the lower end of the income distribution as approaches to 1, while if the level of 

inequality aversion falls (i.e. as it approaches 0) the index becomes more sensitive to changes at 

the upper end of the income distribution. For     the equally distributed equivalent income is 

simply the average level of income, while for     the Rawlsian criterion is used (i.e. social 

welfare function is close to the maximum concavity). 

From a continuous approach to the income distribution, the Atkinson index is defined 

as, 

  ( )    (∫ (
 

  
)
   

 ( )  
 

 
)

 

   

 [17] 

And it values on the interval ranging from 0 (if the income is distributed equally) to 1 (if 

the inequality is the highest).  In our analysis, we have chosen the   parameter values 0.5 and 1. 
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As is known, the value 1 provides similar findings to Gini index, while the value 0.5 provides 

information for a reduced aversion to inequality. 

Using the AEAT micro-data and the new sample weights, we calculate these two 

different income inequality measures at the municipality level
25

,
26

. The results for both income 

inequality indexes are reported in Figures 5 and 6, respectively. Detailed results on these 

indexes are presented in the Appendix.  

For the purpose of this empirical exercise we have selected a small sample of Spanish 

municipalities. In particular, only the results for the 35 most populated municipalities are 

reported. Three main finding arise from the results. On the one hand, the Gini coefficient has a 

wide range of variation, as it takes values from 0.37 to 0.53. On the other hand, there exists a 

clearly positive correlation between the Gini coefficient and the average gross taxable income of 

the municipality, with a correlation coefficient of 0.65. This result suggests that richer cities 

have more income inequality (more unequal income distributions) than the poorer ones. This 

result also holds for the Atkinson coefficients, whose results exhibit a similar pattern of 

variation than those presented for the Gini coefficient, even though we find some differences 

between cities due to the specific degree of inequality aversion that is behind every measure 

calculated. As can be seen in the comparison of Figures 5 and 6, the different degrees of 

inequality aversion for the three inequality indices considered provide some changes in the 

relative order of cities with an average income below 25,000 euros. 

 

                                                           
25

 There are several plausible alternatives for calculating these expressions when using micro-data. In 

particular, we use the Stata’s ineqdeco ado file provided by Jenkins and adapted for our stratified sample 

of micro-data. The inequality aversion parameter of the Atkinson index ( ) takes the values 0.5, 1 and 2. 

 
26

 Confidence intervals via bootstrap re-sampling methods (Mills and Zandvakili, 1997) have been 

calculated for both inequality measures. In particular, two types of bootstrap confidence intervals are 

obtained, using respectively the alpha-percentile method and the normal-distribution method. Given the 

large size of the micro-data sample used in our analysis, the number of bootstrap replicates has been set at 

100. Likewise, we have calculated the standard errors for both inequality indexes. The results show very 

low bootstrapped standard errors, an expected result given the very large size of our sample. Nonetheless, 

they are available on request from the authors or in Hortas-Rico et al. (2013). 
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Finally, the results of the concentration of income among the top income earners show, 

on the one hand, that the wealthiest Spanish group – the top one percent - accumulates 12.52 

percent of the total gross taxable income. When this top percentile is broken down into the top 

0.5 percent and the top 0.1 percent, we observe that their income shares are 0.0932 and 0.0474, 

respectively. Overall, these results for the top shares in Spain are similar to those found in other 

countries like the United States (Atkinson, Piketty and Saez, 2011). On the other hand, the 

calculated measurements show that in the four most populated cities (i.e. Madrid, Barcelona, 

Valencia and Seville) the concentration of income in the top quantile selected is higher than the 

result for the whole population, as it is also the case in some other small cities such as Las 

Palmas de Gran Canaria, A Coruña, Terrassa and Albacete.  

 

Source: Own elaboration.

Figure 5. Gini index of selected Spanish municipalities according to the new weights, 
2007.
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Source: Own elaboration.

Figure 6. Atkinson index of selected Spanish municipalities according to the new weights, 

2007.
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6. Concluding remarks  

Local income data are a key economic indicator, widely used in applied economic 

research. Despite its importance, there is a lack of official data on personal incomes for 

territorial areas smaller than the provinces or regions. This paper makes use of official data on 

personal income tax returns and a reweighting procedure to derive a representative income 

sample at the local level. The methodology implemented here relies on the calibration approach 

proposed in Deville and Särndal (1992), Creedy (2003) and Creedy and Tuckwell (2004) for 

survey reweighting. In doing so, we adjust the original micro-data sample weights in order to 

make them representative at the local level, given that our estimates would now face smaller 

spatial areas used as a strata sample extraction. 

 Unlike previous attempts in the literature to acquire local income estimates, the results 

obtained allow us to derive not only an average value of income but its local distribution, a 

valuable and informative tool for income inequality analysis. We apply this methodology to 

Spanish micro-data and illustrate its potential use in income inequality analysis. The results 

suggest remarkable relationships between some variables of interest, such as the level of income 

in the municipalities, their inequality, the concentration of top incomes and their population 

size, among others. Nonetheless, a further analysis of those relationships lies beyond the scope 

of this paper and, as such, should be addressed in future research. 

Overall, the methodology presented here represents a starting point for income 

inequality analysis at the local level. A wide range of potential implementations arise from these 

results. The illustration presented here could be extended to the whole set of municipalities, in 

order to get a picture of income inequality within municipalities in Spain. In addition, the recent 

availability of PIT annual samples for several years would allow us to perform both cross-

section and longitudinal income inequality analyses for Spanish municipalities. Also note that 

the present paper has focused on pre-tax income, but its extension to after-tax income would 

allow us to undertake redistributive analysis in order to evaluate the impact of personal income 

tax in municipalities. Likewise, the data provided here would allow us to deeply investigate the 

behaviour of top incomes by municipality, complementing existing research literature on this 

topic. Lastly, we would like to clarify that the only purpose of these findings is to provide an 

illustration of the possibilities for applied economic analysis offered by the implemented 

methodology. We think the availability of representative information on the income level of 

Spanish municipalities and its distribution opens up a fruitful area of research in many topics of 

urban economics and local public finance. 

 

 



26 International Center for Public Policy Working Paper Series 

 

References 
 

Alvaredo, F. and Saez, E. (2009). “Income and wealth concentration in Spain from a historical 

and fiscal perspective”, Journal of the European Economic Association, 7 (5): 1140-

1167. 

Atkinson, A. B. (1970). “On the measurement of inequality”, Journal of Economic Theory, 2: 

244-263. 

Atkinson, A. B. (2007). “Measuring Top Incomes: Methodological Issues”, en A. B. Atkinson 

and T. Piketty (eds.), Top Incomes over the Twentieth Century. Oxford, UK: Oxford 

University Press, Ch. 2, pp. 18-42. 

Atkinson, A. B. and T. Piketty (2007). Top Incomes over the Twentieth Century. Oxford, UK: 

Oxford University Press. 

Atkinson, A. B., T. Piketty and E. Saez (2011). “Top Incomes in the Long Run of History”, 

Journal of Economic Literature, 49 (1): 3-71. 

Bowley, A. L. (1914). “The British Super-Tax and the Distribution of Income”, Quarterly 

Journal of Economics, 28: 255–68. 

Bramley, G. and Smart, G. (1996). “Modelling local income distributions in Britain”, Regional 

Studies, 30 (3): 239-255.Creedy, J. (2003). “Survey reweighting for tax microsimulation 

modelling”. New Zealand Treasury Working Paper Series, 17/03. 

Buendía, J. D., Esteban, M. and J. C. Sánchez de la Vega (2012). "Estimación de la renta bruta 

disponible municipal mediante técnicas de econometría espacial: Un ejercicio de 

aplicación", Revista de Estudios Regionales, (93): 119-142. 

Canberra Expert Group on Household Income Statistics (2001). Final Report and 

Recommendations. Ottawa: Canberra Expert Group on Household Income Statistics. 

Chasco, C. (2003). Econometría espacial aplicada a la predicción-extrapolación de datos 

microterritoriales. Consejería de Economía e Innovación tecnológica de la Comunidad de 

Madrid. 

Chasco, C. and F. López (2004). “Modelos de regresión espacio-temporales en la estimación de 

la renta municipal: el caso de la región de Murcia, Estudios de Economía Aplicada, 22-

3:1-24 

Creedy, J. and Tuckwell, I. (2004). "Reweighting household surveys for tax microsimulation 

modelling: An application to the New Zealand household economic survey", Australian 

Journal of Labour Economics 7 (1), 71–88. 

Deaton, A. (2003). “Household Surveys, Consumption, and the Measurement of Poverty”, 

Economic Systems Research, 15 (2): 135-159. 

Deville, J. and Särndal, C. (1992) Calibration estimators in survey sampling. Journal of the 

American Statistical Association, 87: 376–382.  

Elbers, C., Lanjouw, J. and Lanjouw, P. (2003). “Micro-level estimation of poverty and 

inequality”, Econometrica, 71 (1): 355–364. 

Gini, C. (1912) “Variabilità e mutabilità, contributo allo studio delle distribuzioni e relazioni 

statistiche”, Studi Economico-Giuridici dell’ Universiti di Cagliari, 3, (2): 1-158. 



 Estimating the Personal Income Distribution in Spanish Municipalities Using Tax Micro-Data 27 

 

27 
 

Haslett, S., Jones, G., Noble, A. and Ballas, D. (2010). “More of Less? Comparing small area 

estimation, spatial microsimulation, and mass imputation”, JSM 2010 Proceedings of the 

Section on Survey Research Methods, Alexandria, VA: American Statistical Association: 

1584-1598. 

Haughton, J. H. and Khandker, S. R. (2009). Handbook on poverty and inequality. Washington 

DC: The World Bank. 

Hortas-Rico, M; Onrubia, J.; Pacifico, D. (2013) Personal income distribution at the local level. 

An estimation for Spanish municipalities using tax micro-data. International Center for 

Public Policy Working Paper Series, paper 1314, International Center for Public Policy, 

Andrew Young School of Policy Studies, Georgia State University.  

 

Hurst, E., Li, G., and Pugsley, B. 2010. “Are Household Surveys like Tax Forms: Evidence  

from Income Underreporting of the Self Employed,” NBER Working Paper, no.16527. 

Kovar, J.G. and Whitridge, P.J. (1995). “Imputation of Business Survey Data,” in Cox, B.G., 

Binder, D.A., Chinnappa, B.N., Christianson, A., Colledge, M.J., Kott, P.S. (eds.), 

Business Survey Methods. New York: John Wiley and Sons. pp. 403-423. 

Kuznets, S. (1953). Shares of Upper Income Groups in Income and Savings. National Bureau of 

Economic Research, New York.  

Kuznets, S. (1955). “Economic growth and income inequality”, American Economic Review, 

65: 1-28. 

Lambert, P. J. (2001). The distribution and redistribution of Income, 3
rd

 edition. Manchester: 

Manchester University Press. 

Leigh, A. (2007). “How Closely Do Top Income Shares Track Other Measures of Inequality?, 

The Economic Journal, 117 (524): F619-F633. 

Lohmann, H. (2011). “Comparability of EU-SILC survey and register data: The relationship 

among employment, earnings and poverty”, Journal of European Social Policy, 21 (1): 1-

18. 

Meyer, B. and Sullivan, J. X. (2011). “Viewpoint: Further Results on Measuring the Well-Being 

of the Poor using Income and Consumption”, Canadian Journal of Economics, 44 (1): 

52-87 

Mills J. A and Zandvakili, A. (1997). “Statistical inference via bootstrapping for measures of 

inequality”, Journal of Applied Econometrics, 12: 133-150. 

Paulus, A. (2011). “Tax Evasion and Measurement Error: A Comparison of Survey Income with 

Tax Records”, paper presented at 69th Congress of the International Institute of Public 

Finance, Taormina, Italy, 22-25 August 2013. 

Picos, F. (2006). “Microsimulación mediante fusión de Phogue y Panel de Declarantes para 

evaluar reformas fiscales”. Revista de Economía Aplicada, 41: 33-60. 

Picos, F., Pérez, C. and González, M. C. (2011). “La muestra de declarantes de IRPF de 2007: 

descripción general y principales magnitudes”, Documentos de Trabajo del Instituto de 

Estudios Fiscales, 01/11.  

Piketty, T. and Saez, E. (2003). “Income inequality in the United States, 1913–1998”, The 

Quarterly Journal of Economics, 118 (1): 1-41. 



28 International Center for Public Policy Working Paper Series 

 

Rahman, A., Harding, A., Tanton, R. and Liu, S. (2010). “Methodological Issues in Spatial 

Microsimulation Modelling for Small Area Estimation”, International Journal of 

Microsimulation, 3 (2): 3-22.  

Rao, J.N.K. (1999). “Some recent advances in model-based small area estimation”, Survey 

Methodology, 25: 175–186.  

Rao, J.N.K. (2003). Small Area Estimation. New York: Wiley. 

Ravallion, M. (2003). “Measuring aggregate welfare in developing countries: how well do 

national accounts and surveys agree?”, Review of Economics and Statistics, 85 (3): 645-

652. 

Remírez-Prados, J. A. (1991). Una estimación de la renta familiar disponible a nivel municipal. 

El caso de Navarra. Madrid:  Confederación Española de Cajas de Ahorro. 

Särndal, C. (2007). The calibration approach in survey theory and practice. Survey 

Methodology, 33 (2): 99–119. 

Slemrod, J. and Weber, C. (2012). “Evidence of the invisible: toward a credibility revolution in 

the empirical analysis of tax evasion and the informal economy”, International Tax and 

Public Finance, 19 (1): 25-53. 

Stamp, J. C., Lord (1914). “A New Illustration of Pareto’s Law”, Journal of the Royal 

Statistical Society, 77: 200–4. 

Stamp, J. C., Lord (1916). British Incomes and Property. London: P. S. King. 

Tanton, R. and Edwards, K. (eds.)(2013). Spatial Microsimulation: A Reference Guide for 

Users. Dordrecht: Springer 

 



 Estimating the Personal Income Distribution in Spanish Municipalities Using Tax Micro-Data 29 

 

29 
 

 

 

Appendix. Inequality and concentration indexes for selected Spanish municipalities* 

Municipality Gini Index Atkinson index** Top income shares 

    
0.5 1 top 1% top 0.5% top 0.1% 

Madrid 0.52257 0.25433 0.50861 0.16920 0.13093 0.06898 

Barcelona 0.53002 0.26068 0.51648 0.16628 0.12997 0.07409 

Valencia 0.50176 0.23535 0.51314 0.14381 0.11073 0.06064 

Sevilla 0.48521 0.22003 0.51346 0.12687 0.09629 0.05144 

Zaragoza 0.46188 0.19791 0.45234 0.11083 0.07994 0.03697 

Málaga 0.46565 0.20113 0.52640 0.10190 0.07325 0.03452 

Murcia 0.48116 0.21130 0.49000 0.11951 0.08916 0.04254 

Palma de Mallorca 0.47876 0.20897 0.48497 0.12156 0.08707 0.03800 

Palmas G.C. 0.49246 0.22351 0.51806 0.13209 0.09922 0.04850 

Córdoba 0.47483 0.20989 0.50218 0.11351 0.08570 0.04327 

Alicante 0.47337 0.20666 0.50588 0.10937 0.07957 0.03789 

Valladolid 0.45337 0.19275 0.48763 0.10069 0.07409 0.03640 

Vigo 0.46074 0.19503 0.50910 0.09679 0.06739 0.02760 

Gijón 0.46088 0.19978 0.50967 0.10498 0.07562 0.03375 

Hospitalet Llobregat 0.37441 0.13554 0.35222 0.06934 0.04841 0.02451 

Coruña (A) 0.50698 0.23379 0.53598 0.12584 0.09370 0.04715 

Granada 0.46257 0.19664 0.51347 0.08613 0.05936 0.02450 

Elche 0.47830 0.21167 0.51644 0.11048 0.07924 0.03523 

Santa Cruz de Tenerife 0.46752 0.19853 0.50907 0.09098 0.06282 0.02562 

Oviedo 0.45946 0.19538 0.49440 0.09881 0.06911 0.02837 

Badalona 0.39552 0.14828 0.35900 0.07997 0.05599 0.02853 

Cartagena 0.45181 0.19198 0.46609 0.11060 0.08077 0.03942 

Móstoles 0.39790 0.16316 0.39620 0.10647 0.08537 0.05953 

Jerez de la Frontera 0.45574 0.19317 0.50464 0.09670 0.06835 0.03141 

Terrassa 0.44346 0.18991 0.39856 0.13269 0.09943 0.02964 

Sabadell 0.46838 0.19984 0.43086 0.11535 0.08218 0.03813 

Alcalá de Henares 0.40751 0.15428 0.38978 0.08036 0.05624 0.02583 

Fuenlabrada 0.37292 0.13051 0.40139 0.05050 0.03085 0.01003 

Almería 0.45299 0.19054 0.49024 0.09791 0.07201 0.03408 

Leganés 0.40992 0.15910 0.41152 0.07911 0.05712 0.03279 

Santander 0.47659 0.20738 0.50444 0.10884 0.07598 0.02925 

Burgos 0.42545 0.16743 0.40575 0.08623 0.05943 0.02573 

Castellón de la Plana 0.47092 0.20238 0.45382 0.11633 0.08221 0.03346 

Alcorcón 0.41525 0.16207 0.40295 0.08700 0.06209 0.03048 

Albacete 0.46965 0.21249 0.49021 0.13361 0.10659 0.06143 

All municipalities in the sample 
0.48773 0.21952 0.50257 0.12521 0.09321 0.04745 

Own production             

* Spanish municipalities with a population size above 160,000 inhabitants (arranged in order from most to 

least populated) 

** The results for the Atkinson index with an inequality aversion parameter of 2 are not reported, since it 

took a value of 1 for all the municipalities considered.  


