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Abstract

Plant phenology is strongly controlled by climate and has consequently become one of the
most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000
records for six phenological events of 29 perennial plant species monitored from 1943 to 2003
for a comprehensive assessment of plant phenological responses to climate change in the
Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were
studied together during a complete annual cycle before phenological events to determine their
relative importance and potential seasonal carry-over effects. Warm and dry springs under a
positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the
growing season. Spatial variability of dates (range among sites) was also reduced during
warm and dry years, especially for spring events. Climate during previous weeks to
phenophases occurrence had the greatest impact on plants, although all events were also
affected by climate conditions several months before. Immediate along with delayed climate
effects suggest dual triggers in plant phenology. Climatic models accounted for more than
80% of variability in flowering and leaf unfolding dates, and in length of the growing season,
but for lower proportions in fruiting and leaf falling. Most part of year-to-year changes in
dates was accounted for temperature, while precipitation and NAO accounted for <10% of
dates’ variability. In the case of flowering, insect-pollinated species were better modelled by
climate than wind-pollinated species. Differences in temporal responses of plant phenology
to recent climate change are due to differences in the sensitivity to climate among events and
species. Spring events are changing more than autumn events as they are more sensitive to
climate and are also undergoing the greatest alterations of climate relative to other seasons. In
conclusion, climate change has shifted plant phenology in the Mediterranean region.
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Introduction

Phenology has received much attention during the last
decade because many organisms are changing their life
cycles in response to ongoing climate change (Parmesan
& Yohe, 2003; Menzel et al.,, 2006a; Rosenzweig et al.,
2008). The timing of biological events (especially in
regions with a marked seasonality) is strongly controlled
by climate and consequently, this response was expected
(Margary, 1926; Kington, 1974; Leith, 1974). Plants are
especially appropriate organisms to study climate effects
in phenology because they are sessile and thus must
endure all weather conditions occurring where they are
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located. Such sessile life-style has led plants to show an
especially high plasticity in their phenotypes, such as
phenology, to deal with environmental variability
(Schlichting, 1986). For instance, Fitter et al. (1995) found
that flowering timing in 90% of 243 studied plant species
in England was significantly related to temperatures, i.e.
the overwhelming majority of plants were able to tune
their flowering dates according to particular temperature
conditions of each year. This strong dependence on
climate explains why, of all taxonomic groups, plants
have the highest portion of species shifting their phenol-
ogy in the predicted direction under current climate
change (Parmesan & Yohe, 2003).

Temperature has been demonstrated as one of the
most important factors for plant phenology (Margary,
1926; Fitter et al., 1995; Sparks et al., 2000; Pefuelas et al.,
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2002; Matsumoto et al., 2003; Menzel, 2003; Gordo &
Sanz, 2005; Ahas & Aasa, 2006; Estrella & Menzel, 2006;
Lu et al., 2006; Menzel et al., 2006a). However, its true
relevance for plants could be overestimated, since few
studies have assessed the effect of other environmental
factors such as precipitation, photoperiod, availability
of soil nutrients or soil physical properties and con-
sequently, evidence for their impact on phenology
remains scarce (Badeck et al., 2004). Photoperiod is an
important trigger of plant phenology, but regrettably
the relative importance of this environmental cue with
respect to temperature has been established in only a
few wild species (Hunter & Lechowicz, 1992; Kramer,
1994). The balance between rainfall and evaporation
plays a key role in ecosystem functioning in many
regions of the planet (e.g. in Mediterranean biomes).
However, precipitation has received little attention in
studies of historical records of plant phenology (Sparks
et al.,, 1997; Penwuelas et al., 2002, 2004; Williams &
Abberton, 2004; Gordo & Sanz, 2005; Estrella & Menzel,
2006), despite of precipitation patterns will change in
the future (Solomon et al., 2007) and thus, they could
promote alterations in plant phenological patterns as
well. Furthermore, precipitation effect in plant phenol-
ogy is complex and difficult to forecast due to its close
relationship with soil moisture. For instance, rainy
autumns are related to earlier springs in the following
year in some ecosystems (Sparks et al., 1997; Pefiuelas
et al., 2004; but see Cayan et al., 2001). This fact suggests
that precipitation may affect individuals even much
time later than the last rainy day. Similarly, temperature
may reveal its effect with some delay, e.g. through
chilling requirements during the winter to break bud
dormancy. Such temporal gap between plant phenotype
expression (i.e. a certain phenological date) and the
potential effect of some of its climatic triggers requires
a view beyond the present to assess such potential
carry-over effects of climate.

Plant phenology responds to the stimuli imposed by
local weather, but many studies have also demonstrated
a connection to large-scale atmospheric circulation pat-
terns. In Europe, when the North Atlantic Oscillation
(NAO) index is positive, spring advances (Post &
Stenseth, 1999; Chmielewski & Rotzer, 2001; Post ef al.,
2001; Scheifinger et al., 2002; Menzel, 2003; Stockli &
Vidale, 2004; Menzel et al., 2005b; Ahas & Aasa, 2006;
Nordli et al., 2008). This relationship is likely mediated
by NAO effect in local weather, e.g. through tempera-
ture and rainfall. For instance, positive values of NAO
from December to March are related to warm and wet
springs in central and northern Europe, but cold and
dry springs in the Mediterranean Basin (Ottersen et al.,
2001). While NAO influence on plant phenology is well-
established for central and northern Europe, no study

has evaluated the effect of NAO on long-term pheno-
logical responses of plants from the Mediterranean
(Sockli & Vidale, 2004; Menzel et al., 2005b). This fact
becomes especially relevant taking into account that
NAO effects differ between the Mediterranean Basin
and the rest of the European continent (Ottersen et al.,
2001). NAO has a strong influence on precipitation
patterns in this region (Hurrell & van Loon, 1997),
especially in the westernmost areas, such as the Iberian
Peninsula (Rodo et al., 1997, Goodess & Jones, 2002;
Trigo et al., 2004). Water availability is a key factor
for plant functioning in Mediterranean ecosystems
and consequently, NAO may exert an important influ-
ence on plant ecology as a driver of precipitation
patterns (Rodé & Comin, 2000; Vicente-Serrano &
Heredia-Laclaustra, 2004).

The aim of this study is to carry out a comprehensive
assessment of climate impacts on plant phenology in
the Mediterranean region to provide a mechanistic
explication for the observed changes in plant phenology
during the last decades (Gordo & Sanz, 2009). In fact,
understanding the effect of climate in plant phenology
is an essential step to establish a plausible link between
recent climate change and plant phenological res-
ponses, and to make reliable predictions about future
plant responses. We have attained our objective by
dividing our study into four steps or analytical stages.
First, we have searched for potential carry-over effects
of climate by studying climate influence on plant phe-
nology during the complete annual cycle before each
phenological event and identifying the time within the
annual cycle with the greatest influence. There is evi-
dence that the effects of climate are delayed (Fitter et al.,
1995; Sparks et al., 1997, 2000; Heide, 2003; Estrella &
Menzel, 2006; Miller-Rushing & Primack, 2008c) and
hence, the complete annual cycle before any phenolo-
gical event should be explored. Second, we determined
the best predictor of plant phenology among three
climate variables, including temperature, rainfall and
NAO. These variables have been demonstrated as re-
levant to plant phenology, but no study has assessed
their effect together in an effort to disentangle the actual
relevance of each (but see Stockli & Vidale, 2004). In
Mediterranean ecosystems, water availability is a limit-
ing factor for plant function and hence, we expect an
important effect of rainfall on phenology as well (Ogaya
& Pefiuelas, 2004; Llorens & Penuelas, 2005; Prieto et al.,
2008; Matesanz et al., 2009). Furthermore, by comparing
NAO effects with temperature and precipitation we will
ascertain the impact of macroscale atmospheric circula-
tory patterns in relation to local weather conditions (i.e.
are NAO effects simply a matter of collinearity with
local weather?). If NAO effect remains after controlling
for local temperature and precipitation, this implies that
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NAO index has other climate information (e.g. radia-
tion, atmospheric pressure, wind, etc.) relevant for plant
phenology. However, if NAO effect is overridden by
local weather variables, NAO effect on plant phenology
is in fact mediated by weather at local scale. Therefore,
there would be no scientific reason to employ such
climate index instead of climatic variables, such as
temperature or rainfall, which have a well-established
functional link with plant phenology. Third, we inves-
tigated why some phenological events and species
are more sensitive to climate than others. Patterns of
variability among species are poorly understood
(Miller-Rushing et al., 2007, 2008b,c), but a number of
biological characteristics, such as pollination mechanism,
life form or water content, are related to differential
responses among taxa (Fitter et al., 1995; Fitter & Fitter,
2002; Pefiuelas et al., 2002; Miller-Rushing & Primack,
2008b, ¢). Differential responses to climate among plant
species may alter community composition by disrupting
interactions and survival under a climate change scenario
(Fitter & Fitter, 2002; Lloret et al., 2004; Sherry et al., 2007;
Willis et al., 2008). Finally, in the fourth step, we related
climate effects found in previous steps to long-term
temporal plant responses observed in a previous study
(Gordo & Sanz, 2009). This analysis is the keystone to
determine the role of recent climate change in the ob-
served phenological shifts and to understand why plants
are changing their phenology in Mediterranean ecosys-
tems and how responses vary among species and events.

Materials and methods

Phenological data

Since the 1940s, the phenological network of the Spanish
Meteorological Agency (AEMET) has been recording
several plant and animal phenological events according
to standardized methods (Anonymous, 1943; Gordo &
Sanz, 2006a, 2009). About 204 000 records of flowering,
leaf unfolding, fruit ripening, fruit harvesting and leaf
falling, and duration of the growing season for 29 species
of trees and bushes were gathered and digitized from the
AEMET archives for the period 1943-2003. The six
studied phenological events were defined as (number
of species shown in brackets):

o Flowering (27): Appearance of first flowers in some
individuals.

o Leaf unfolding (24): Appearance of first leaves in
some individuals, which confers certain greenness.
This event was available only since 1969.

e Fruit ripening (15): Several ripe fruits are present
in several individuals. For fleshy fruits, ripening
implies that fruits show their final colour and must

be easily detached. For dry fruits, ripening implies
that capsules burst.

e Fruit harvesting (9): Date when fruits are harvested.
o Leaf falling (22): Half of the leaves have fallen.

e Growing season (22): It was calculated as the num-
ber of days elapsed between leaf unfolding and leaf
falling for the same species during the same year at
the same locality.

Therefore, reported dates by observers were estimates
of the beginning of each phenological event in the
populations of each species occurring at each study
site of the phenological network. Such phenological
measurement is really robust and accurate because by
carrying out monitoring at population level, phenological
records are protected against unrepresentative indivi-
duals (e.g. sick, isolated or too young/old trees). Further-
more, misidentifications were very improbable, since selec-
ted species were common, widespread in Spain and quite
popular for any potential observer. The AEMET provided
also a field guide to each volunteer observer to ensure a
perfect identification of all plants species (Anonymous,
1943, 1989). Summarizing, there were available dates
at population level for 118 phenophases in more than
1500 Spanish sites (Gordo & Sanz, 2009). A phenophase
was defined as a certain phenological event of a certain
species. Data quality was checked by searching for
potential biases in the sampling day of the week and
for outliers. There was a negligible bias towards over-
sampling in Mondays. Outliers whenever possible were
amended, otherwise they were removed (see details in
Gordo & Sanz, 2009).

The average date and the standard deviation of all
records belonging to the same phenophase were calcu-
lated for each year. Therefore, we had 118 time-series
for average dates and 118 time-series for their corre-
sponding standard deviation values from 1943 to 2003.
Time-series for averaged dates provided us the inter-
annual changes in the occurrence dates of each pheno-
phase. By averaging values annually, we avoided
pseudoreplication (i.e. records from the same year are
not fully independent) and reduced any influence of
undetected incorrect records. The annual standard deviat-
ion values quantified the range of dates during each
year. This range is due to phenological differences
among sites (i.e. spatial variability). Thus, time-series
for standard deviation values estimated year-to-year
changes in the range of onset dates of each phenophase.
In all cases, our time-series were representative of
a group of populations spread over the broad geogra-
phical area of Spain.

We also calculated two parameters for each pheno-
phase: the average date () and standard deviation (o)

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1082-1106



CLIMATE CHANGE AND PLANT PHENOLOGY 1085

of all records. These parameters defined the position
within the annual calendar and the plasticity, respec-
tively, of each phenophase (see details in Gordo & Sanz,
2009). Plasticity refers to the ability of each phenophase to
show a range of different phenotypes (i.e. phenological
dates) in response to the environmental gradients of the
Iberian Peninsula. Our study species were distributed
across most part of Spain and we had a sample of sites
representative of the entire distribution range. Therefore,
all studied species were subjected to a similar range of
environmental conditions and consequently differences
in ranges of onset dates (¢) among phenophases were
due to differences in plasticity among species.

For flowering time-series, species were classified
according to their pollination system as wind or insect
pollinated. Pollination mechanism may act as an impor-
tant evolutionary pressure imposing differential respon-
siveness to climate. We expect a stronger relationship to
climate in insect-pollinated species to better adapt their
phenological responses to climatic fluctuations and ensure
an exact match with their pollinators (Fitter & Fitter, 2002).

Climatic data

Temperature and precipitation were simultaneously re-
corded by volunteers at most sites of the phenological
network. This resulted in a highly representative climate
dataset for our phenological dataset. Climatic data were
averaged to obtain single time-series of monthly values of
temperature and precipitation during the period 1942-
2003 for all of Spain. Mean, maximum and minimum
average monthly temperatures were available. These
three temperature types are strongly collinear but they
stress different aspects of daily temperature patterns.
They were compared to determine the most important
type of temperature for plant phenology. Finally, NAO
index was obtained as monthly values from http://
www.cru.uea.ac.uk/cru/data/nao.htm.

The standard deviation (o) for the 118 studied pheno-
phases was on average 19.9 days. Therefore, an interval of
+ 20 (79.6 days ~ 3 months) included approximately
95% of data in all phenophases. For this reason, tempera-
tures and NAO index were averaged and precipitation
was summed in quarters. Twelve different quarters were
defined within the annual cycle, i.e. January to March,
February to April, March to May, and so on. Hence, we
worked with response (phenological) and explanatory
(climatic) variables coming from the same temporal
interval within the calendar (i.e. 3 months).

Assessment of climate effects during a complete annual cycle

We explored the influence of climate during a complete
annual cycle in each phenological event to answer the

following questions: (1) What is the most important
period for each phenophase? and (2) Are there lagged
effects of climate? Pearson’s correlation coefficients were
calculated between each phenological time-series (both
for average dates and standard deviations) and the
climatic time-series (temperature, precipitation and
NAO) belonging to the 12 quarters of a complete annual
cycle moving backward month to month from the onset
date of each phenophase. For instance, the first quarter
(Qo) for a species with an average flowering date (u) in
April is February-April, while the last quarter (Q_1») is
March-May of the previous year. Correlation values for
each quarter were averaged within each phenological
event and fluctuations during a complete annual cycle
were explored.

Qo could not be defined for the length of the growing
season. For this event, we assessed changes of correla-
tion coefficients during a period of 20 quarters (12 from
the current year and eight from the previous year).
Since the length of the growing season depends on its
beginning and end dates, we decided to include all
variables that potentially influence leaf unfolding
(beginning) and leaf falling (end). By including eight
quarters of the previous year in models, we aimed to
account for possible delayed effects on leaf unfolding.
We included eight quarters because the average onset of
leaf unfolding in all studied species is April and hence a
complete backward annual cycle finishes in May of the
previous year (i.e. Q_g).

Explanatory capacity of climate variables

Multiple regression models between phenological time-
series as response variables and 12 quarters (from Qy to
Q_12) of mean temperature, precipitation or NAO as
predictor variables were carried out for each phenophase.
For growing season models, all quarters of the same year
along with the last eight quarters of the previous year (i.e.
a total of 20 predictors) were included. Forward stepwise
selection was applied to obtain reduced models including
only significant quarters. We retained from each model
the value of adjusted R? as a measure of the explanatory
capacity of temperature, precipitation or NAO in each
phenophase. We carried out one ANOVA of repeated-
measures with adjusted R? values from temperature,
precipitation and NAO models as dependent variables
and the phenological event as factor to determine the
climatic variable most closely related to phenology.
Models obtained for mean temperature were repeated
including the same quarters with maximum or minimum
temperatures. Another ANOVA of repeated-measures was
carried out with the explanatory capacity (adjusted R?)
of the regression models for mean, maximum and
minimum temperature as dependent variables and the
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phenological event as factor to determine what type
of temperature is the best fitted to plant phenology. In
all repeated-measures ANOVAs, the assumption of circu-
larity in the variance—covariance matrix was assessed by
the Greenhouse-Geisser and Huynh-Feldt epsilons (ecg
and eyp) for compound symmetry (von Ende, 1993).

Phenology modelling by climate

We constructed complete climatic models by including
those significant variables included in the temperature,
precipitation and NAO best models previously found.
Forward stepwise was applied for model selection.
Complete models determined the highest explanatory
capacity of phenology by climate. The adjusted R*
values of these models were used as response variables
in several analyses of variance. Firstly, we built models
with the event as a categorical factor and the effect of
the average date (u) or standard deviation (¢) of each
phenophase nested within the events. We aimed to
investigate whether patterns of variability in R* values
were related to the date of occurrence or to the plasticity
of phenophases. The growing season was not included
in the ANOVA of average date because this parameter
cannot be defined for this event. Secondly, we per-
formed a one-way ANOVA to look for differences be-
tween wind- and insect-pollinated species in the ability
of climate to model their flowering dates.

Complete models were also used to determine the
extent to which the variance explained by temperature,
precipitation and NAO in their respective models is a
true estimate of their influence on plant phenology.
Climatic variables show strong collinearity because
they result from common weather conditions. Conse-
quently, a high correlation between plant phenology
and several climatic variables reflects a strong influence
of weather rather than a strong and independent effect
of each of the climatic variables analysed. For instance,
high temperature is related to scarce precipitation and
positive values of NAO in Spain (see Supporting In-
formation, Appendix S1). A hierarchical variance parti-
tioning was carried out to ascertain the true explanatory
power of each type of variable. For this purpose, we
constructed four new saturated models in each pheno-
phase corresponding to the three possible pairs among
temperature, precipitation and NAO along with a full
model. The pure effect of each type of variable (pure
adjusted R® was calculated as the average of the
variability explained by each type of climate variable
in the models in which it appears. Finally, another
repeated-measures ANOVA was carried out with pure
adjusted R? values for each type of climate variable as
response variables and phenological event as factor to
reexamine differences among variables and events.

Relationship between climate effects and temporal trends
of phenology

The key question is whether or not plant phenological
changes observed in recent decades in Spain are in
response to ongoing climate change. It is expected that
those phenophases more responsive to climate (i.e. with
larger phenological responses per unit of any climate
variable) have the greatest potential to change over time
as a result of a certain shift in climate conditions with all
else being equal. Therefore, in a changing climate, more
sensitive phenophases should show steeper temporal
responses. To check this hypothesis we related the rate
of change (i.e. slope from regression with year) during
the period 1973-2003 of all phenophases to the sensi-
tivity to climate in Q (i.e. slope from regression with
temperature, precipitation or NAO during the quarter
when the phenophase occurs). Since the sensitivity to
climate variables differed among phenological events
(i.e. there was no parallelism, see Fig. 1), we built
models with the relationship between temporal and
climatic slopes nested within each phenological event.
In the case of the growing season, we used the quarter
with the highest value of correlation (Qpes) among the
20 quarters used for this event.

All statistical analyses were performed with STATISTICA
software [StatSoft, 2001, (data analysis software system),
version 6. (http://www.statsoft.com)].

Results

Climatic effects on average dates during a complete annual
cycle

Leaf unfolding and flowering showed quite similar
patterns of correlation during a complete annual cycle
for all climate variables (Fig. 1). Both events showed the
greatest influence of climate during Qo. Leaf unfolding
and flowering advanced in warmer and drier springs
under positive values of NAO (Fig. 2). Nevertheless, a
remarkable delayed effect of the previous autumn was
found. Both events advanced after cool and wet au-
tumns under negative values of NAO (Fig. 1). Only in
the case of precipitation did correlation values in Q (i.e.
immediate effect) and Q_s (i.e. delayed effect) have
similar magnitude (17| ~ 0.4).

Leaf falling showed small correlations in most cases
(Fig. 1). This event was delayed when the period from
the end of summer to the beginning of autumn
(August—October) was warm and dry (Fig. 2). It is
interesting to note that the effect of precipitation
reached its maximum at Q_,, which is at the height of
summer (June-August). Leaf falling also delayed after
cool springs, but only in some species (the large error
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Fig. 1 Evolution of Pearson’s correlation coefficients between phenological time-series and all climatic variables along a complete
annual cycle. Mean value of correlations for all species available in each event is shown for each quarter from the moment when the
phenophase occurs (Qo) to one year before (Q_1,). An extra quarter (Q ; 1) has been added to improve visualization. In the left part of the
figure, there are graphs for average dates time-series, while in the right for standard deviation time-series. Error bars are standard errors.
Correlations between growing season length and 20 quarters (see ‘Materials and methods’) are shown as independent graphs in the
bottom of the figure. See embedded colour legend for correspondence with climate variables.
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bar in Fig. 1 denotes high variability among species).
The effect of NAO on this phenophase was negligible.

Fruit ripening and harvesting showed the same pat-
tern. Greatest correlations were found with a certain
delay (in Q_4 and Q_s), but only reached significance
with temperature. Fruiting advances when the period
between the end of spring and the beginning of summer
(around May and June) is warmer and drier and has
negative values of NAO. Nevertheless, it is important to
note that there was much variability among pheno-
phases, as the large error bars denote (Fig. 1).

The growing season was maximally correlated with
climate during the February-April quarter (Fig. 1).
Leaves live longer in those years with a warm and dry
February—April quarter with positive values of NAO.
Some effect of autumn, both of the current and previous
year, was also found. Interestingly, each autumn had an
opposite effect. The growing season is longer in those
years preceded by a cool and wet autumn and with a
warm and dry autumn in the current year. Interestingly,
autumn rainfall from the preceding year showed some
effect, which suggests indirect effects through soil moist-
ure. The effect of NAO shifts radically from February-
April to May-July, since positive values of NAO at the
beginning of the summer shorten the growing season. In
summary, growing season showed the same climate
effects as leaf unfolding and falling.

Climatic effects during a complete annual cycle on
standard deviation

Standard deviation did not show clear patterns of corre-
lation with climate during a previous annual cycle in
most events (Fig. 1). Although average correlation values
for each quarter were significantly different from 0 (i.e.
there is some effect), such average r had low values
(range between —0.2 and 0.2). Phenophases compressed
in most cases their range of onset dates in response to
warm and dry quarters under positive values of NAO
index. The greatest effects were found during Q,
although such effects were only noticeable for flowering
and leaf unfolding (Fig. 2). In the particular case of

temperatures, fitting with Q 41 was better than with Qo
(Fig. 1). This fact could stress a more immediate impact of
temperature for standard deviation than for average date.

Climate effects showed greatest fluctuations during
the annual cycle in the case of the growing season (Fig.
1). Warmer temperatures were related to decreased
variability in the length of the growing season (Fig. 2).
Main effects were found in spring (March—June) and in
autumn of the preceding year (October-December). How-
ever, large amounts of precipitation decreased intersite
variability, but only when rained during the autumn of the
current year. Precipitation during the preceding spring
had the opposite effect. NAO effects were in general
weaker than those of temperature or precipitation. The
most important period was February-April. High va-
lues of NAO index during this quarter reduced the
variability of the growing season.

Differences in the explanatory capacity of temperature,
precipitation and NAO

The explanatory capacity both in average date and stan-
dard deviation models differed among climate variables
and phenological events (Fig. 3; see Appendix S3, Table
S1). Temperature showed the highest explanatory capacity
in all cases. NAO and precipitation had similar R? values,
with the exception of the time-series of growing season
average dates. Flowering, leaf unfolding and growing
season stood out as the best modelled phenological
events. The interaction between the phenological event
and the type of climatic variable was only significant for
average dates (Table S1). In fact, differences between
temperature, precipitation and NAO were larger in flow-
ering and leaf unfolding than in the rest of the events. It is
important to note that the explanatory capacity of stan-
dard deviation models was remarkably smaller than the
explanatory capacity of average date models (Fig. 3).
Differences in the explanatory capacity of models
were partially due to the number of variables included.
In models for average date, temperature models in-
cluded on average 1.9 predictors, while precipitation
included 1.4 and NAO 1.6. The mode for the three types

>

Fig. 2 Effects of temperatures on plant phenology. Each point is the annual average anomaly of phenology and temperatures for all
available species in each event. We have represented anomalies instead real values to avoid scale effects when merging data from all
species. Phenological anomalies were calculated as departures of the annual phenological values (average dates or standard deviations)
from the average of each phenological time-series during the period 1943-2003. For annual average dates, positive values denote late
years, while negative values early years. For the standard deviation, positive values denote years with a broader range of dates (i.e. more
spatial variability), while negative values denote years with a narrower range (i.e. more synchronization in the onset of phenophases
among sites). Temperature anomalies were also calculated as departures of annual temperatures from the average temperature during
the period 1943-2003. Error bars in the x- and y-axes are not represented to improve visualization. A smoothed line has been added to
show relationship between phenology and temperature. Negative trends imply advancement of dates or compression of dates’

distributions in response to warmer temperatures.

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1082-1106
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of climate variables was two predictors because most
species included both immediate and delayed climatic
effects. Only three out of 118 phenophases were not
related to any temperature variables, while we found
up to 15 and 12 phenophases for precipitation and

NAO, respectively. Nevertheless, the degree of para-
meterization of models could not fully explain differ-
ences in the explanatory capacity of models among
phenological events. Flowering and growing season
included the highest number of variables (2.0 and 1.9
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Fig. 3 Explanatory capacity of climatic models for average date and standard deviation time-series. Mean values for adjusted R? (in the
left) and for pure adjusted R? (in the right) are shown for all events and types of variables. Error bars denote the 95% confidence interval.
LU, leaf unfolding; FL, flowering; RIP, fruit ripening; HAR, fruit harvesting; LF, leaf falling; GS, growing season.

on average, respectively). However, best explanatory
models were found for leaf unfolding (Table 1; Fig. 3),
which included 1.6 variables on average. The same
number of variables was found for fruit ripening, but
models for this event showed a patently lower expla-
natory capacity than leaf unfolding (Table 1; Fig. 3). In
standard deviation models, precipitation and NAO
models showed a poor modelling ability because many
phenophases were not related to any quarter (56 and 55
out of 118 phenophases, respectively). For those species
with a significant model, an overwhelming majority
included just one predictor (67 for temperature, 46 for
precipitation and 50 for NAO), which in most cases
corresponded to Q.

Differences in the effect of mean, maximum and minimum
temperatures

Mean and maximum temperature models showed si-
milar and large explanatory capacities, while minimum
temperature showed the lowest explanatory capacity
(Appendix S3, Fig. S1). Mean temperatures showed the
best modelling ability in all events. The inability of
minimum temperatures to model time-series was espe-
cially evident in average dates of flowering and leaf
unfolding. In the case of standard deviation, differences

among temperature types were more subtle than in the
case of average dates, but differences were still strongly
significant (Appendix 53, Table S2).

Complete climatic models for average dates: explanatory
capacity and composition of variables

Modelling abilities shown by complete models de-
creased markedly from early to late phenophases dur-
ing the year (r=-0.681, t9=9.027, P<0.0001).
However, date effect disappeared when the relationship
was nested within phenological events (Fig. 4a; Appen-
dix S3, Table S3). Leaf unfolding and flowering (the
earliest events of the year) showed the highest expla-
natory capacity of complete models (Table 1). However,
leaf falling, the latest event of the year, was the worst
modelled (Table 1). Fruit ripening and fruit harvesting
showed intermediate models (Table 1). This ordination
pattern is the same found for single climatic models
(Fig. 3). Therefore, there is a decrease of climate model-
ling abilities from early to late events, but not from early
to late phenophases within each event. In the case of the
growing season, explanatory capacity of complete mod-
els was not related to the length of this period
(r =—0.085, t,, =—0.381, P = 0.707).

Explanatory capacity of complete climatic models
was not related to the standard deviation (o) of each

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1082-1106
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Fig. 4 Scatterplots of explanatory capacity (adjusted R*) of
complete climatic models for average date time-series with

absolute average date (a) and standard deviation (b). Fitted lines
represent nested relationship within each event. Dotted lines are

0.05. Leaf

unfolding, O ;flowering, ® ; fruitripening, A; fruit harvesting,

A; leaf falling, [J; growing season, +.

nonsignificant and solid lines are significant at P

1.414, P =0.160;

phenophase overall (r=0.130, ty15

Fig. 4b). Interestingly, a significant effect of standard
deviation arose when this relationship was nested with-

in the phenological events (Fig. 4b; Table S3). In all

events, with the exception of leaf unfolding and grow-
ing season, species with greater variability among sites

were related to poor modelling abilities of climate. This

effect was especially strong for flowering.

Insect-pollinated species showed significantly better
models than wind-pollinated species (average adjusted

Differences in the explanatory capacity of complete
climatic models among phenological events mimicked

R?>=0.781 & 0.032 and 0.502 =+ 0.034, respectively). The
almost exactly differences among events found with

pollination mechanism accounted for up to 60% of varia-
bility among explanatory capacity of species climatic
models (One-way ANOVA: F; », = 35.49, P <0.0001).
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temperature models (Fig. 3; Fig. S1). Such resemblance
was due to the overwhelming majority of temperature
variables in complete models (199 out of 263 climate
variables included). This ratio was strongly biased in
relation to the initial pool of climatic variables used to
build complete models (239 temperatures, 175 precipi-
tations and 196 NAOs). Temperature explained the
greater part of variance as a consequence of this over-
representation of temperature variables in complete
models (Fig. 3; Table S4). However, the pure effect of
climatic variables was markedly reduced in relation to
their particular models (Fig. 3). This fact highlights the
strong concomitance of the three types of climatic vari-
ables (see also Appendix S1).

Complete climatic models for standard deviation:
explanatory capacity and composition of variables

Models for standard deviation had higher explanatory
capacity in phenophases early in the year than in later
ones (r=—0.402, toe =—4.253, P<0.0001; Fig. 5a). Leaf
unfolding and flowering showed slightly better models
than the rest of the events (Table 1). The calendar effect
was just marginally significant, when the average date
(u) effect was nested within each event (Table S3). Date
effect was only significant for flowering and leaf falling.
In the case of the growing season, explanatory capacity
of complete models was negatively related to the length
of this event (r =—0.471, t,, =—2.391, P = 0.027). Hence,
the longer the growing season, the lesser the climate
control in the spatial variability of this event.

The explanatory capacity of complete climatic models
was not related to the standard deviation (o) of each
event both overall (r =0.175, tos = 1.725, P = 0.088; Fig.
5b) and within each event (Table S3). Only in the case of
leaf falling, did species with higher spatial variability
show the worst climatic models for this variable.

Insect-pollinated species tended to show better mod-
els than wind-pollinated species (One-way ANOVA:
Fy 5, =3.70, P<0.067).

The majority of variables included in complete mod-
els were temperatures (89 out of 166, with only 44 for
precipitation and 33 for NAO). This ratio was biased
towards temperature variables in relation to the initial
pool of predictor climatic variables used to build mod-
els (109 temperatures, 78 precipitations and 78 NAOs).
This composition of climatic variables caused signifi-
cant differences in the pure effect of each type of climate
variable (Table S4). However, R? values did not dimin-
ished so much in relation to those values obtained for
single models (Fig. 3). Therefore, each type of climate
variable is indeed acting on different aspects of the
temporal trends of standard deviation values. Never-
theless, it is important to stress that explanatory capa-
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Fig. 5 Scatterplots of explanatory capacity (adjusted R?) of
complete climatic models for standard deviation time-series with
absolute average date (a) and standard deviation (b). Fitted lines
represent nested relationship within each event. Dotted lines are
nonsignificant and solid lines are significant at P =0.05. Leaf
unfolding, O ;flowering, ® ;fruitripening, A; fruit harvesting,
A; leaf falling, [J; growing season, +.

city of complete climate models was overall around 20%
(Table 1) and hence the real contribution of each type of
climate variables was indeed small (<7%).

Relationship between temporal trends of phenology and
climate sensitivity

Those phenophases with the greatest sensitivity (both
positive and negative) showed the greatest temporal
phenological changes in their average dates (Fig. 6).
However, when the relationship between these vari-
ables was nested within each event, marked and sig-
nificant differences arose among events (Table 2). Leaf
unfolding and flowering trends were dependent on the
degree of sensitivity, while fruit ripening and harvest-
ing was never dependent on the degree of sensitivity.
Leaf falling also showed significant relationships
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between temporal trends and sensitivity to precipitation
and NAO. The slope had a sign opposite to that for leaf
unfolding or flowering, but its biological meaning was
the same: a greater temporal shift is related to higher
sensitivity. Such a difference arose from the fact that leaf
falling is affected in a different way by climate (Fig. 1
and 2). In the particular case of growing season, simple
correlations between temporal trends and slopes
with temperature and NAO at Qe yielded strong
positive associations (temperature: r = 0.966, t,, = 16.67,
P<0.0001; NAO: r = 0.678, ty, = 4.12, P = 0.0005). In both
cases, higher sensitivity was related to greater lengthen-
ing of this phase from 1973 to 2003. In the case of
precipitation, the relationship was only marginally sig-
nificant (r =—0.389, t,, =—1.89, P <0.073). This fact was a
result of the identity of the quarter selected for Qpest- Nine
species selected a quarter from spring (i.e. negative slope
with rainfall; see Fig. 1), while 12 species selected a
quarter from autumn of the previous year (i.e. positive
slope). Greater lengthening of the growing season from
1973 to 2003 was related to greater sensitivity (slope), but
such sensitivity had positive values (slopes) in species
that selected an autumn quarter as Qpest and negative

values in species that selected a spring quarter as Qpest-
Such a difference in signs blurred the relationship be-
tween sensitivity and temporal trends. If we remove the
sign of the slopes with Qpes, We obtain a strongly
significant relationship (r=0.780, t» =5.58, P <0.0001)
for precipitation sensitivity as well. Overall, climate sen-
sitivity accounted for between 68% and 75% of temporal
trends variability (Table 2). Thus, differences among
events and species in temporal trends were mainly due
to their particular sensitivity to climate.

Those phenophases with the greatest sensitivity to
climate also showed the greatest temporal changes in
the last decades in their ranges of onset dates (Fig. 7).
Nested design was especially suitable due to the
marked differences in slopes among events (Table 2).
Leaf unfolding and flowering showed opposite relation-
ships in relation to leaf falling, while fruiting events
did not show any relationship. Such differences among
leaf unfolding, flowering and leaf falling are due to
the different effects of climate on the standard deviation
of each event (see Fig. 1). In the particular case of
the growing season, temporal trends of standard devia-
tion were significantly related only to temperature
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Table 2 Results of the six ANOVA for the temporal trends of phenology (slope for the period 1973-2003) as a dependent variable and
the relationship with each climatic variable at the moment when the phenophase occurs (slope with Qo) as a predictor nested within

the phenological event

Temperature Precipitation NAO
df ss MS F P SS MS F P SS MS F P

Average dates

Event 4 1519 0380 1232 <0.001 2.636 0.659 16.46 <0.001 1.790 0448 11.79 <0.001

Slope Qo(Event) 5 2412 0482 15.66 <0.001 1.618 0324 8.081 <0.001 1797 0359 9466 <0.001

Error 86 2.650 0.031 3.444  0.040 3.265 0.038

Adjusted R? 0.753 <0.001 0.679 <0.001 0.696 <0.001
Standard deviation

Event 4 0.039 0010 0.667 0.617 0.040 0.010 0.528 0.716 0.017 0.004 0.249 0.910

Slope Qp(Event) 5 0.697 0.139  9.622 <0.001 0.326 0.065 3.474 0.007 0451 0.090 5203 <0.001

Error 86 1246 0.014 1.616  0.019 1492 0.017

Adjusted R* 0.374 <0.001 0.188 0.001  0.251 <0.001

Tests for average dates are in the upper portion and for standard deviation in the inner portion. Degrees of freedom (df), sum of
squares (SS), mean squares (MS), F-statistic (F) and p-value (p) for each predictor variable are shown. In the last row of each model,
the explanatory capacity (Adjusted R?) and its significance is also shown.

sensitivity (r =0.714, t», =4.55, P =0.0001). Sensitivity
to precipitation (r = 0.116, t», = 0.51, P = 0.611) or NAO
(r=—0.365, t,, =—1.75, P = 0.094) was not related to the
temporal trends, and this fact was not due to differences
in signs. Overall, models accounted for less variability
in the temporal trends of standard deviations than in
the case of average dates, although temperature model
was able to explain a noteworthy 37% of variability
among phenophases (Table 2).

Discussion

Climate: a key factor to understand fluctuations in plant
phenology

The main conclusion of the present study is that plant
phenology is strongly controlled by climate and as
consequence phenological temporal changes observed
during last decades can be attributed to the recent
climate change. Therefore, plants are a reliable bioindi-
cator of climate change. This conclusion is not a novel
finding, since many studies have demonstrated this fact
yet (Sparks et al., 2000; Chmielewski & Rotzer, 2001;
Menzel et al., 2001, 2006a; Fitter & Fitter, 2002; Ahas &
Aasa, 2006; Doi, 2007; Estrella et al., 2007; Miller-Rush-
ing et al., 2007, 2008c; Doi & Katano, 2008). However, the
value of our study is its broad spatial and long-term
temporal scales, which are the largest and the longest,
respectively, available for the Mediterranean region
(Penuelas et al., 2002; Gordo & Sanz, 2005). Moreover,
this large spatial scale nature of our dataset offered a
unique opportunity to study another poorly explored
facet of plant phenology: the intersite variability. In a

previous study, we demonstrated that not only the
position in the calendar but also the shape of distribu-
tions of onset dates changed during the last decades
(Gordo & Sanz, 2009). Here, we have shown that time-
series for annual standard deviation values are signifi-
cantly related to climate and this could be the cause for
the observed temporal trends. Warm and dry years
reduced spatial variability in plant phenology, while
cold and wet years increased it (see Fig. 1). These results
fully agree with recent findings in artic ecosystems,
which have demonstrated that changes in spatial varia-
bility of plant phenology in response to climate fluctua-
tions have serious consequences for the reproductive
success of higher trophic levels, such as herbivores (Post
et al., 2008a, b). Unfortunately, we do not know whether
observed changes in the spatial variability of plant phe-
nology are having or not an impact in other trophic levels
of Mediterranean ecosystems. However, if spatial varia-
bility plays an important role in phenological matching
processes between trophic levels, we suggest that climate
change may have additional impacts in Mediterranean
ecosystems through alterations in the spatial variability of
phenology. Future climate scenarios predict warmer and
drier conditions for the Mediterranean region (de Castro
et al., 2005; Solomon et al., 2007) and hence, there will be
further compression in the range of onset dates of plant
phenology.

We used a simple approach based on multiple regres-
sions and monthly climate variables to study the effect
of climate on plant phenology, similarly to other pre-
vious studies (Sparks et al., 1997, 2000; Menzel, 2003;
Tryjanowski et al., 2006; Miller-Rushing et al., 2007; Doi
& Katano, 2008). However, plant phenology studies

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1082-1106
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have traditionally used models based on variables, such
as cumulative degree days, chilling requirements, sen-
sitivity thresholds or photoperiod (Leith, 1974; Hunter
& Lechowicz, 1992; Kramer, 1994; Chuine et al., 1999).
Such phenology modelling techniques are complex, but
provide accurate tools for plant phenology prediction.
Probably, the studied time-series here could be better
modelled using this kind of variables with a daily basis
and defined according to plant physiology. Neverthe-
less, our aim was not to find the most accurate and
predictive model for each one of the 118 studied pheno-
phases. Our approach based on simple regressions and
easily available climatic variables was perfectly suited to
answer key questions such: Is there a significant effect of
climate on plant phenology? How is the influence of
different types of variables? What are the interspecific
patterns of variability? Is climate change the origin for
phenological responses? Moreover, our models were
really good for some species, especially in leaf unfolding
and flowering events (see Table 1). This fact supports the
idea that even simple modelling techniques can be useful
to discover the most important climate effects on plant

phenology and hence, are suited methods to explore
causal links between climate change and phenological
alterations.

Dual climate triggers on plant phenology?

The effect of climate at the moment of phenophase
occurrence (Qo) showed the greatest impact on phenol-
ogy, but many phenophases were also affected simulta-
neously by climate of previous seasons. For instance,
78% and 52% of complete climatic models for average
date and standard deviation time-series, respectively,
included ‘delayed’ quarters, i.e. quarters ending several
months before phenophase occurrence. Therefore, it is
necessary to consider the whole annual cycle because
plant phenological responses are also triggered by past
weather. Interestingly, present and past climate showed
opposite effects on plant phenology (see Fig. 1). For
instance, warmer temperatures advance spring phenol-
ogy but only when such positive anomalies occur dur-
ing the spring. During late summer (August-
September), increased temperatures delay spring events

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1082-1106
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of the following year (Fitter et al., 1995; Sparks et al.,
2000; Heide, 2003; Chmielewski et al., 2005; but see
Williams & Abberton, 2004). Therefore, climate condi-
tions during the initiation of bud dormancy are impor-
tant to understand phenological responses of buds in
the next spring. According to our results, a marked
warming of autumn temperatures in relation to spring
temperatures could lead plants to delay their spring
phenology, which seems a counterintuitive phenologi-
cal response in a warming world (Heide, 2003). Such
dual effect of climate on all phenological events (ex-
cepting fruiting) offers a complex regulation of phenol-
ogy by climatic counterweights, which may constrain
plant phenological responses. Therefore, if we aim to
make reliable predictions about plant phenological re-
sponses to future climatic conditions, it is necessary to
know climatic influences over a complete annual cycle
and the climate change experienced during each season.

Rainfall is concentrated at two peaks, one during
spring and another during autumn, in Mediterranean
climates (McKnight & Hess, 1999). Interestingly, plant
phenology was maximally influenced by climate during
these seasons (see Fig. 1). This fact suggests that plants
in Mediterranean climates have evolved to become
especially sensitive to climate during these two key
times of the year. One could argue that such dual
triggering of phenology by spring and autumn climate
is a result of some temporal autocorrelation between
successive seasons. However, this hypothesis is not
supported by our findings. First, most of the climatic
models (both for each type of variable and for complete
models) included spring and autumn quarters together.
Second, there are indeed weak or null relationships
between climate during a certain season and the rest
of the seasons of the year (see Appendix S1).

Temperature: the most important climatic variable

Temperature effect over plant phenology remarkably
surpassed effects of precipitation and NAO. This is in
agreement with most previous studies (Fitter et al., 1995;
Sparks et al., 2000; Cayan et al., 2001; Stockli & Vidale,
2004; Gordo & Sanz, 2005; Ahas & Aasa, 2006; Menzel
et al., 2006a, b; Zheng et al., 2006; Doi, 2007; Estrella et al.,
2007; Doi & Katano, 2008), although these three climatic
variables have never been simultaneously examined. A
simultaneous approach is important due to the strong
collinearity among climatic variables (see Appendix S1).
Such collinearity causes an overestimation of the true
magnitude of their effects, when they are individually
modeled. For instance, single models for average dates
overestimated the explanatory capacity of all climate
variables by 20-30% (see Fig. 3). In the case of rainfall
and NAO, such a reduction implied that both variables

have a really low relevance for plant phenology. There-
fore, most of their effects in single models are because of
collinearity with temperature. In the case of rainfall, this
result went against our prediction. Water availability is a
key element for plant function in Mediterranean ecosys-
tems and has demonstrated effects on plant phenology
(Ogaya & Peiiuelas, 2004; Pefiuelas ef al., 2004; Llorens &
Pefiuelas, 2005; Prieto et al., 2008; Matesanz et al., 2009;
but see Gordo & Sanz, 2005). This result becomes espe-
cially striking when considering that rainy seasons
(spring and autumn) were in fact the most influential
seasons for plant phenology. In the case of NAO, its lack
of true relevance means that plant phenology is better
modelled by local weather than by macroscale climatic
indices. Thus, there is no reason to use this index despite
its predictive power. Plant phenology should be related to
and modelled by climate variables recorded in weather
stations close to the studied populations because local
weather has the true effect on plant phenology (Schwartz
& Chen, 2002; Schwartz et al., 2006). Interestingly, NAO
had the same effect on spring events as in northern
latitudes (Post & Stenseth, 1999; Chmielewski & Rotzer,
2001; Post et al., 2001; Scheifinger et al., 2002; Menzel,
2003; Menzel et al., 2005b; Ahas & Aasa, 2006; Nordli et al.,
2008). This was unexpected as NAO typically results in
opposite climatic consequences in the Mediterranean
Basin (Ottersen et al., 2001).

Minimum temperature was noticeably less relevant
for plant phenology than maximum or mean tempera-
ture. Interestingly, minimum temperatures are chan-
ging at the fastest rate (see Appendix S2) and hence, it
is of paramount importance to determine if an inability
to tune precisely phenology to nocturnal temperatures
imposes some level of constraint in plant responses to
climate change (Alward et al., 1999).

Delayed effects of climate on fruiting phenology: potential
causes and consequences

Fruit ripening and harvesting phenology were poorly
correlated to climate during Q. For this reason, tem-
poral trends during 1973-2003 and climate sensitivity
were not related in these events (see Figs 6 and 7).
Nevertheless, fruiting phenology is affected by climate,
at least its onset date, as the high R? values for complete
climatic models of average date demonstrated (see
Table 1). Interestingly, climate affected fruiting with
some delay. The most influential quarter for fruit ripen-
ing and harvesting phenology was March-May in the
majority of studied species (see Fig. S2). This result fully
agrees with correlations reported by Estrella et al. (2007)
for fruit trees in Germany. These authors found highest
correlation coefficients between fruit ripening/picking
phenology and climate from April to June. This period
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in Germany is equivalent to March-May in Spain, since
phenology in Germany is delayed ca. 1 month due to its
northernmost location [Rotzer et al., 2001; compare data
of Table 1 with flowering dates reported by Estrella
et al., 2007: Prunus armeniaca 11 April, P. persica 19 April,
P. communis 2 May, Malus domestica (early varieties) 9
May]. March-May period is the main flowering period
for most of the studied species in Spain (average flower-
ing date of our studied species, 14 April; see Table 1).
We suggest three hypotheses to understand such de-
layed climate effect on fruiting phenology (see Fig. 8).

Fruit yield effect. Weather conditions, such as temper-
atures, number of rainy days, humidity, wind or sun
radiation hours, affect fruit crop. In wind-pollinated
species, such as the olive Olea europaea, warmer and
drier conditions enhance pollen production and release
and as a consequence pollination success is increased
(Galan et al., 2004; Garcia-Mozo et al., 2008). In insect-
pollinated trees, warm and dry weather during flowering
season favour activity and abundance of pollinator
insects (Vicens & Bosch, 2000; Willmer & Stone, 2004)
along with a decrease of cold-induced damages in
flowers” buds, fertile flowers or even incipient fruits in
those earliest species (Inouye, 2000; Chmielewski et al.,
2004). More abundance of fruits may favour an earlier
presence of some ripe fruits just by an effect of population

size (Miller-Rushing et al., 2008a). Unfortunately, we do
not have information about fruit yield in the studied
species during our study period to check this hypothesis.

Cascade effect. Flowering and ripening/harvesting are the
beginning and the end, respectively, of one reproductive
cycle in spermatophytes. If flowering date advances in
response to warmer and drier conditions during the
spring, fruiting will advance being fruit development
length equal. The average correlation coefficient between
flowering and fruit ripening time-series in the studied
species was r = 0.459 (SD 0.143). This value is relatively
low and become even lower if correlations are calculated
with detrended (i.e. without year effect) time-series for
both events (r = 0.383, SD 0.172). Such correlation values
are smaller than those observed between fruiting pheno-
logy and spring climate (see Fig. 52). Thus, empirical
evidence gives little support to this hypothesis. Moreover,
if spring weather is affecting fruiting phenology through
flowering onset, why are maximum correlations reached
during March-May instead of February-April, the truly
most important period for flowering phenology?

Real effect. Our results could be showing a real effect of
climate during spring on fruiting phenology. For
instance, experimental manipulation of temper-
atures during the postblooming period in apple trees

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1082-1106
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Malus domestica have demonstrated that many
biochemical and physiological features of fruits are
different under low or high temperature treatments
(Tromp, 1997; Warrington et al., 1999). Among these
features, ripening rate in the final stage of fruit
development was dependent on the temperature
experienced by fruits during their earlier development
stages. Such modulation of fruit development by
climate helps to understand better the relatively low
dependence of fruiting dates on flowering dates.

Our results do not allow disentangling the real cause
for the effect of spring climate on fruiting phenology.
Moreover, the proposed hypotheses are not mutually
excluding (Fig. 8). Whichever the cause is, spring
climate predicts accurately the onset of the fruiting
season. This fact may be useful for agricultural plann-
ing and managing (fertilization, application of biocides
or temporary manpower contracting), since the timing
of the fruiting season can be predicted in advance
several months before. Under an ecological perspec-
tive, this temporal gap between plant phenotype
expression (i.e. onset of fruit ripening) and its best
predictive trigger (i.e. spring temperatures) gives rise
to interesting questions. We realize most of our studied
species are fruit trees and thus, a general discussion
about ecological consequences of their fruiting pheno-
logy would be purely speculative. However, a few
species of our dataset, the olive, the chestnut Castanea
sativa and the walnut Juglans regia, play an important
ecological role, at least in some areas of the
Mediterranean region. Olive groves have replaced
original Mediterranean shrublands in large areas of
the Mediterranean basin. As a consequence, olive groves
have become the main habitat for large numbers of
passage and wintering birds (especially genus Sylvia,
Turdus, Sturnus and Erithacus; Rey, 1993). All of these
bird species are frugivorous and exploit the abundance
of olives during the autumn to obtain essential fat
reserves to continue their migration or to survive during
the winter (Soler et al., 1988; Gonzalez-Solis & Ruiz, 1990;
Blanco et al, 1994). As any trophic interaction, the
interaction between birds and olives should rely on a
good spatio-temporal matching of both participants. If the
best environmental cue to predict olive fruiting season is
climate during the spring (e.g. the correlation between
March-May temperature and olive ripening date is
r=0.684), how can birds predict the optimal passage
and/or arrival date to the Spanish olive groves? This is
a key question due to the observed changes in olive
phenology. The onset of ripening and harvesting dates
has advanced 19 days and the spatial variability has
reduced 9 days during the last three decades in
response to climate change (Gordo & Sanz, 2009). We
predict further advance and compression of fruiting dates

as a consequence of expected warming in Spain during
the current century (de Castro et al., 2005). If frugivorous
birds arrive at the same date than three decades ago, they
will find no olives yet in many areas. Furthermore, the
increased synchronicity would reduce chances to use
spatial heterogeneity of olives harvesting to find other
suitable places. Gordo & Sanz (2005) showed that two
wintering species advanced their arrival date in a locality
from northeastern Spain, but other studies have
demonstrated no changes (e.g. Mezquida et al., 2007) or
even delays (e.g. Jenni & Kéry, 2003) in passage dates of
short-distance migrants. Therefore, there is a potential for
a serious mismatching between birds and one of the most
important trophic resources for migrating and wintering
bird populations, if birds are unable to use a reliable cue
of fruiting phenology, such as spring climate, to adjust
properly their arrival schedule to Spain.

The chestnut and the walnut are an important part of
the diet of many forest mammals. During autumn and
winter, hard mast constitute a 87% of the diet in wild
boars Sus scrofa from northern Spain (Irizar et al., 2004)
and a 55% in the brown bear Ursus arctos (Clevenger et al.,
1992). These species are sedentary and thus, the spatio-
temporal matching between both trophic levels is
ensured. However, the onset of the chestnuts and
walnuts season may vary more than 20 days in
response to cold or warm springs. In fact, fruiting dates
have advanced more than 1 week in both species during
the last decades (Gordo & Sanz, 2009). Therefore, it would
be important to know the ecological consequences of
these interannual variations in the timing of availability
of trophic resources for forest animals. Does fruiting
phenology have an effect on winter survival, health
condition or future fitness of mast-eater animals? If so,
wildlife managers could use spring weather to predict
the onset of chestnuts and walnuts availability and apply
the necessary measures, for instance, to improve con-
servation of critically endangered species, such as the
Iberian brown bear.

Climate sensitivity and temporal trends

Leaf unfolding, flowering and growing season were the
phenological events most strongly influenced by cli-
mate, while leaf falling was the least influenced (see
Table 1 and Fig. 3). Fruiting was intermediate. This
mirrors the observed order in magnitude of temporal
responses of plant phenology (Gordo & Sanz, 2009),
which is also the chronological order of phenological
events within the year (excluding the growing season).
Therefore, phenological events at the beginning of the
annual plant cycle (spring) are more affected by weath-
er than events at the end of the cycle (autumn)
and hence, events early in the year undergo greater
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temporal responses given a similar change in climate.
Moreover, differences in the sensitivity among events
are enhanced by differences in climate trends among
seasons (see Appendix S2). Spring is becoming mark-
edly warmer, while autumn is not. Thus, spring events
are prone to advance and reduce their ranges of onset
dates, while autumn events show little change due
to their lesser sensitivity and the smaller changes of
autumnal climate.

Gordo & Sanz (2009) found that event identity was
important per se to account for differences in the tem-
poral trends of plant phenology in Spain. However,
they failed to find a convincing origin for intraevent
variability, because the date of occurrence (u) or the
plasticity (o) of each species explained only partially the
observed variability in temporal trends within a few
events. Here, we have solved this question because we
have demonstrated that differences in climate sensitiv-
ity are the main origin for differences in temporal
responses among species in each event (see Figs 6 and
7). Therefore, events and species respond differently to
climate and this is the primary origin for the observable
variability in their temporal trends in recent decades.
This result leads us necessarily to the next question:
why do events/species differ in their sensitivity to
climate? Miller-Rushing et al. (2007) found that re-
sponses to temperature were closely related to the
flowering date in cherry trees (genus Cerasus). However,
we found that phenophase date (1) and variability (o)
were not related in most cases to the explanatory
capacity of climate (see Figs 4 and 5). Biological char-
acteristics of species may explain the variety of respon-
siveness to climate (Fitter et al., 1995; Fitter & Fitter,
2002; Pefiuelas et al., 2002; Miller-Rushing et al., 2008b).
Pollination mechanism explained up to 60% of varia-
bility in climate modelling ability of flowering dates
in the studied species. Phenology of insect-pollinated
species was better fitted to climate than that for wind-
pollinated species, but interestingly sensitivity to cli-
mate (i.e. slope) did not differ significantly between
both groups. The average slope with temperature dur-
ing Qo in insect-pollinated species was —6.87 days °C ™",
while in wind-pollinated species was —6.73 days °C ™"
(t-test: ty» = 0.295, P = 0.771). Therefore, climate has the
same effect in both groups, but insect-pollinated species
respond more accurately to climatic fluctuations. This
suggests that insect-dependent species have evolved to
respond strongly to climate fluctuations, as insects do
(Roy & Sparks, 2000; Stefanescu et al., 2003; Gordo &
Sanz, 2006b), and to maintain a perfect match with their
insect pollinators. Nevertheless, insect-pollinated spe-
cies are advancing their flowering dates more
dramatically than some insects, such as the honey bee
Apis mellifera (Gordo & Sanz, 2006b, 2009). The honey

bee advances its appearance by only —6.06 days °C~"
during the February—April quarter (Q, for most
plant species). This small but significant difference (-
test: t13=-2.849, P=0.015) could lead to a growing
mismatching between both trophic levels under future
climate scenarios. Furthermore, plant responses to
temperature were perfectly linear through all observed
temperatures range (see Fig. 2). Therefore, if plant
phenotypic plasticity does not diminish under extreme
values of temperature (Sparks et al., 2000; Menzel
et al., 2005a), there will potentially be a further increase
in mismatching between insects and plants (Hegland
et al., 2009). In addition, spatial variability of flowering
dates diminishes on average by —1.39days °C'
in insect-pollinated species. A reduction in the range
of flowering dates may further impair mismatch-
ing processes (Post et al., 2008b; Gordo & Sanz,
2009).

In our previous study (Gordo & Sanz, 2009), we
found that wind-pollinated species advanced more
their flowering dates than insect-pollinated ones. This
temporal response cannot be due to a greater sensitivity
to climate. Furthermore, flowering dates were quite
similar in both groups (insect-pollinated April 10,
wind-pollinated April 17, see Table 1) and thus, they
were subjected to the same rate of climate change
during the last decades. This result is probably reflect-
ing that other factors acting also in a long-term tempor-
al scale are affecting plant phenology. Miller-Rushing
et al. (2008a) demonstrated that an increase of popula-
tion size may advance detected first flowering dates.
However, our phenological measures were done at
population level (see ‘Materials and methods’) in com-
mon species and thus, this artefact does not seem
probable in our data. Similarly, sampling methodology
has been kept without changes during 60 years and
there is no reason to expect an excess of monitoring
effort in flowering dates of wind-pollinated species in
relation to insect-pollinated ones (Miller-Rushing et al.,
2008a). The latter hypothesis is supported by the ab-
sence of significant differences in temporal trends for
leaf unfolding dates between both groups of species
(wind-pollinated —0.517daysyr™"; insect-pollinated
—0.476 days yr'; t-test: t,o = 0.480, P = 0.636). Leaf un-
folding occurs at similar dates than flowering and
consequently leaf unfolding monitoring could suffer
also from this hypothesized sampling artefact. There-
fore, differences in flowering phenology trends are real
and not an artefact, although there is no climatic origin
for them. An important feature of the studied insect-
pollinated species is that half of them are fruit trees.
Interestingly, their temporal trends and temperature
sensitivity in Qp were significantly smaller than for
the rest of insect-pollinated species (fruit trees:
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—0.386 days yrfl, —6.14 days °C™'  nonfruit trees:
—0.709 daysyr !, —7.72 days °C"'; t-tests for both vari-
ables P <0.001). In conclusion, insect-pollinated species
advance their flowering dates less than wind-pollinated
species due to fruit trees, which have smaller sensitivity
to temperature and phenological trends than the rest of
studied species. This result agrees with the hypothesis
that plant species or phenophases under human influ-
ence (‘false’” phases) are less responsive to climate
change (Menzel et al., 2006b). In spite of the fact that
fruit trees are less plastic than wild species, fruit trees
have also altered their phenology in response to climate
change and thus they can be used as reliable bioindi-
cators (Chmielewski ef al., 2004; Estrella et al., 2007).
Moreover, information for species with an agricultural
interest may be valuable for crop managing in the
future.

Why are some phenological responses disproportionate in
the Mediterranean?

The comprehensive analysis of climate effects carried
out in the present study provides us the essential tool to
understand why flowering and leaf unfolding (spring
phenophases) in Spain are showing some of the largest
phenological responses to climate change reported in
plants (Menzel et al., 2006a; Gordo & Sanz, 2009). Gordo
& Sanz (2009) suggested that a higher sensitivity to
temperature in southern populations could be the ori-
gin for these observed disproportionate advances. Now,
we can check this hypothesis by comparing our results
to some others reported previously. For instance, flow-
ering dates advanced overall by —6.47 days °C~!in the
27 study species (see Fig. 2). In the case of leaf unfold-
ing, the rate is even greater at —6.99days °C™"'. The
latter value is similar to the estimates for the beginning
of the growing season in Europe using data from the
International Phenological Gardens (—6days o1
Menzel & Fabian, 1999; —6.7 days °C~!, Chmielewski
& Rotzer, 2001), which did not include any station in
southwestern Europe (Menzel et al., 2005b). However,
leaf unfolding sensitivity is notably greater than the
estimated value for Germany (—4.7 days °C~'; Chmie-
lewski et al., 2004; see also Estrella et al., 2007). Differ-
ences with a country-wide assessment of Germany can
be statistically tested for by paired t-tests using the
published results by Menzel (2003) in seven pheno-
phases that were also studied in the current work. The
explanatory capacity of temperature was slightly larger
in Germany (R? = 0.66) than in Spain (R = 0.62), but the
difference was not significant (paired t-test: t; = 1.323,
P =0.234). However, sensitivity estimates were mark-
edly larger in Spanish populations (8.80 days °C~! than
in German populations (3.68 days oc L paired t-test:

t;=6.358, P<0.001). In summary, a comparison of
sensitivity coefficients to temperature reported in litera-
ture for the same species in other parts of Europe
suggests a higher sensitivity of populations in the
Mediterranean. This fact would agree with the higher
sensitivity found in plant populations from warmer
regions (Menzel ef al., 2005a; Lu et al., 2006; Tryjanowski
et al., 2006; Doi & Takahashi, 2008), which could be a
result of the lower probability of late frost damage
(Askeyev et al., 2005).

A combination of high sensitivity and sharp increases
in temperature during a key quarter, as in February-
April (see Appendix S2), promoted very strong
responses in plant phenology in the Mediterranean
(Gordo & Sanz, 2009). Nevertheless, the advance of
flowering and leaf unfolding dates since the 1970s is
greater than expected. Spring temperature showed si-
milar rates of shift in prior decades. For instance,
temperatures in the February-April quarter decreased
during the period 1943-1972 at a similar rate to its
increase during 1973-2003 (—0.048 vs. + 0.053 “Cyr").
Moreover, the average temperature did not differ be-
tween periods (1943-1972: 9.31°C; 1973-2003: 9.26 °C;
tso = 0.240, P =0.811). However, flowering phenology
delayed between 1943 and 1972 at a rate of +0.292
daysyr~!, while during recent decades it advanced at a
rate of —0.592 days yr '. Therefore, while temperatures
had a similar magnitude and changed at a similar rate
during both periods, plants are responding at almost
double this rate during recent decades. Plant phenology
may respond more to warming than to cooling because
below a certain threshold of low temperatures plant
phenology becomes unresponsive (Sparks et al., 2000;
Menzel et al., 2005a; Tryjanowski et al., 2006). However,
this hypothesis is not supported by our data. Plant
responses coped perfectly with the entire range of
temperatures experienced during the 60 years of study
without a decrease in their plastic response both in
spring and autumn events (see Fig. 2).

The previous autumn is another influential period for
spring phenology (see Fig. 1). Interestingly, since the
mid-1970s spring and autumn temperatures have
shown opposite temporal trends (see Fig. 9; Appendix
S2). During the first decades of our study period, spring
events delayed their dates due to the cooling of spring
temperatures. However, Cooling of autumn tempera-
tures partially counterbalanced the effect of spring
temperatures and consequently spring phenology de-
layed less than expected. Since the mid-1970s, increas-
ing spring temperature is accompanied by a marked
decrease in autumn temperatures (see Fig. 9). Currently,
spring phenology is doubly triggered towards early
dates. In the rest of the phenological events, there were
no disproportionate temporal shifts, as in flowering or
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Fig. 9 Evolution of temporal trends of spring and autumn
temperatures. Spring temperature is represented by the Febru-
ary—-April quarter, while autumn temperature by September—
November. The slope of temperatures during each quarter has
been calculated in a moving window of 20 years between 1943
and 1983. The arrow shows the moment when trends in tem-
peratures of both seasons became decoupled.

leaf unfolding, because there is no such synergy be-
tween climate trends of influential seasons.
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APPENDIX S2

In this appendix, temporal trends of the employed climatic variables during the period
1943-2003 are shown. These results may help to understand better long-term
phenological responses of plant phenology.

Firstly, we carried out multiple regression models with climate time-series for the
period 1943-2003 as dependent and year as explanatory variables. We included the
quadratic term of the year, when it was significant, to account for non-linear trends.

Results for each quarter and climatic variable are shown in the next table:

Climatic variables JEM  FMA  MAM  AMJ MJJ JJA JAS ASO SON OND NDJ DJF

Mean Temperature

year 0.012 -0.073 -0.096 -0.093 -0.003 0.002 -0.001 -0.002 -0.007 0.001 0.007 0.006
year? 0.0012 0.0014 0.0013

Max Temperature

year 0.016 -0.090 -0.097 -0.095 0.000 0.007 0.004 -0.001 -0.010 -0.003 0.004 0.013
year? 0.0015 0.0015 0.0014

Min Temperature

year 0.010 -0.056 -0.094 -0.091 -0.056 -0.049 -0.006 -0.005 -0.004 0.005 0.010 0.013
year? 0.0009 0.0013 0.0013 0.0008 0.0008

Precipitation

year -0.170 -0.176 -0.098 0.028 -0.026 -0.062 -0.030 0.082 0.227 0.272 0.645 0.038
NAO

year 0.015 -0.062 -0.007 -0.016 -0.004 0.000 -0.009 -0.015 -0.017 -0.007 0.000 0.008
year” 0.0011

In bold significant parameters at P<0.05. Acronyms for quarter are initial letters for each month (e.g., JFM=January,
February, March).

Only 19 out of 60 climatic models showed significant temporal trends during the period
1943-2003. Most of them (12) included also the quadratic term of the year. Therefore,
some variables showed curvilinear temporal patterns. All of these quadratic models had
a negative sign in the linear term and a positive in the quadratic one. Therefore, climate
variables decreased up to mid-1970s and increased since then. In the case of mean and

maximum temperatures, winter quarters (DFJ and JFM) showed a warming trend during



all the period. Precipitation did not show any significant temporal trend. Quarterly NAO
values showed a quadratic model only for FMA, while for the intervals of AMJ, ASO

and SON showed a significant negative linear trend.

Non-lineal patterns were comprehensively explored by splitting the study period into
two periods. Regression coefficients for all climatic time-series during the period 1943-
1973 and the period 1973-2003 are plotted in the next figures (dotted lines indicate

thresholds of significance at P<0.05):
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During the period 1943-1973, both temperature and NAO tended to diminish.
Nevertheless, this trend was only significant in a few spring quarters. Patterns were
completely opposed during the period 1973-2003. This fact is especially obvious for
temperatures. There were positive trends (warming) in most quarters of the year. In
almost all cases, minimum temperatures showed steeper increases than mean or
maximum temperatures. Such differences reached their greatest range in some summer
and autumn quarters. Interestingly, minimum temperatures increased between JAS and
NDJ, while maximum temperatures decreased.

It is also important to note that summer and autumn showed a remarkable stability in
temperatures trends during both periods. However, winter and especially spring showed
a noteworthy cooling during 1943-1973, while a manifest warming during 1973-2003.
During the period 1973-2003, the first half of the year (January to June) tended to be
drier, while the second half (July to December) moister. However, only temporal trend
of rainfall during SON quarter was significant. NAO showed a quite similar pattern to
temperature with the highest increase in FMA quarter and the highest decrease around

September.

Another important difference between both sub-periods is the strong agreement in
quarterly trends among three types of climatic variables since 1973. Pearson’s
correlation coefficients between quarterly temporal trends of climatic variables are

shown in the next table:
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Mean Maximum Minimum
temperature temperature temperature Precipitation NAO

Mean temperature 0.850 0.700 -0.100 0.130
Maximum temperature 0.970 0.230 -0.530 0.330
Minimum temperature 0.760 0.620 0.490 -0.210
Precipitation -0.810 -0.870 -0.450 -0.400
NAO 0.870 0.910 0.390 -0.750

Annual slope 43-73 -0.017 -0.015 -0.019 3.144 -0.021
Annual slope 73-03 0.025 0.014 0.038 0.973 -0.008

In bold significant values at P<0.05

In the upper half of the correlation matrix, there are correlation values for the period
1943-1973. In the inner part, there are values for the period 1973-2003. The slope for
the annual values of all variables is also shown for both periods. Temperature,
precipitation and NAO are co-fluctuating closely during the last three decades (|| >

0.81), while they did not do in the period 1943-1973 (|| < 0.13).
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APPENDIX S3

Table S1: Results of the two repeated-measures ANOVA (one for average dates and
another for standard deviation) to test for differences in the explanatory capacity of
temperature, precipitation and NAO models. The phenological event was included also
as factor. Degrees of freedom (d.f.), sum of squares (SS), mean squares (MS), F-statistic
(F), unadjusted p-value (p), adjusted p-value according to Greenhouse-Geisser epsilon

(pcc) and according to Huynh-Feldt epsilon (prr) for each factor are shown.

Average date Standard deviation

d.f. SS MS F p P e P HF SS MS F p P e P Hr
between species
Event 5 4959 0.992 30.77 <0.001 <0.001 <0.001 0.321 0.064 4.643 <0.001 <0.001 <0.001
Error 112 3.610 0.032 1.546 0.014
whithin species
Variable 2 3989 1.995 25468 <0.001 <0.001 <0.001 0.171 0.085 11.42 <0.001 <0.001 <0.001
Event x Variable 10 0.443 0.044 5.651 <0.001 <0.001 <0.001 0.109 0.011 1452 0.159 0.164 0.159
Error 224 1.754 0.008 1.673 0.007
Average date ANOVA:
Greenhouse-Geisser epsilon egg = 0.959
Huynh-Feldt epsilon eur= 1.000

Standard deviation ANOVA:
Greenhouse-Geisser epsilon g = 0.941
Huynh-Feldt epsilon enr= 0.999
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Fig. S1: Explanatory capacity (adjusted R”) of complete climatic models for the three
types of temperature in all phenological events for average date and standard deviation.
Mean values and error bars (95% confidence interval) are shown. Acronyms: LU Leaf
Unfolding, FL Flowering, RIP Fruit Ripening, HAR Fruit Harvesting, LF Leaf Falling,

GS Growing Season. Legend: mean 0, maximum 0O, minimum A.
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Table S2: Results of the two repeated-measures ANOVA (one for average dates and
another for standard deviation) to test for differences in the explanatory capacity of
mean, maximum and minimum temperature models and including the phenological
events as factor. Degrees of freedom (d.f.), sum of squares (SS), mean squares (MS), F-
statistic (F), unadjusted p-value (p), adjusted p-value according to Greenhouse-Geisser

epsilon (pgg) and according to Huynh-Feldt epsilon (pur) for each factor are shown.

Average date Standard deviation

df. SS MS F P Pcc  PHr SS MS F p Pcc  PHr
between species
Event 5 5145 1.029 17.40 <0.001 <0.001 <0.001 0569 0.114 4.54 <0.001 <0.001 <0.001
Error 112 6.624 0.059 2.808 0.025
whithin species
Variable 2 1.023 0511 116.17 <0.001 <0.001 <0.001  0.033 0.016 9.58 <0.001 <0.001 <0.001
Eventx Variable 10 0.558 0.056 12.67 <0.001 <0.001 <0.001  0.116 0.012 6.76 <0.001 <0.001 <0.001
Error 224 0.986 0.004 0.384 0.002
Average date ANOVA:
Greenhouse-Geisser epsilon egg=0.569
Huynh-Feldt epsilon cur= 0.596
Standard deviation ANOVA:
Greenhouse-Geisser epsilon ggg=0.611
Huynh-Feldt epsilon cur= 0.642
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Table S3: Results of the ANOVA for the explanatory capacity (adjusted R”) of
complete climatic models of average dates and standard deviation as dependent
variables and the absolute average date (upper part) and standard deviation (inner part)
as predictors nested within the phenological event. Degrees of freedom (d.f.), sum of
squares (SS), mean squares (MS), F-statistic (F) and p-value (p) for each predictor
variable are shown. In the last row of each model, the explanatory capacity (adjusted R%)

and its significance is also shown.

R? climatic models average date R? climatic models standard deviation
d.f. SS MS F D SS MS F D

Event 4 0.308 0.077 3.476 0.011 0.082 0.021 2.192 0.077
Date(Event) 5 0.204 0.041 1.841 0.113 0.107 0.021 2.291 0.053
Error 86 1.885 0.022 0.806 0.009

Adjusted R* 0.542 <0.001 0.184 0.001
Event 5 0.316 0.063 3.079 0.012 0.072 0.014 1.426 0.221
SD(Event) 6 0.561 0.093 4.553  <0.001 0.068 0.011 1.116 0.358
Error 106 2175 0.021 1.060 0.010

Adjusted R* 0.532 <0.001 0.181 <0.001
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Table S4: Results of the two repeated-measures ANOVA (one for average dates and
another for standard deviation) to test for differences in the pure explanatory capacity of
each type of climatic variable. Models included phenological event as factor. Degrees of
freedom (d.f.), sum of squares (SS), mean squares (MS), F-statistic (F), unadjusted p-
value (p), adjusted p-value according to Greenhouse-Geisser epsilon (pgg) and

according to Huynh-Feldt epsilon (pyr) for each factor are shown.

Average date Standard deviation

d.f. SS MS F p Pec  PHr SS MS F p Pec  PHr
between species
Event 5 0613 0123 1858 <0.001 <0.001 <0.001  0.096 0.019 5.048 <0.001 <0.001 <0.001
Error 112 3.610 0.032 0426 0.004
whithin species
Variable 2 2846 1423 30322 <0.001 <0.001 <0.001  0.155 0.077 13.83 <0.001 <0.001 <0.001
Eventx Variable ~ 10 0.252 0.025 5.364 <0.001 <0.001 <0.001  0.083 0.008 1.492 0.143 0.148 0.143
Error 224 1.051 0.005 1251 0.006
Average date ANOVA:
Greenhouse-Geisser epsilon ecg=0.796
Huynh-Feldt epsilon cur= 0.842
Standard deviation ANOVA:
Greenhouse-Geisser epsilon egg = 0.946
Huynh-Feldt epsilon eur= 1.000
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Fig. S2: Delayed effect of climate on fruiting phenology. A) In this graph, the average
date (u) of fruit ripening (®) or harvesting (A) is plotted against the identity of Qpes
(i.e., the quarter with the highest correlation value) with mean temperature. Qpest 18
further in the calendar as fruiting phenology is later in the year because in almost all
species highest climate influence on fruiting was reached during the end of the spring
(March-May). B) Evolution of correlation values between fruiting dates and mean
temperature during each quarter for all the studied species (each line represents one
species; — ripening; —— harvesting). Pattern is almost the same in all species despite
fruiting range between June and December. Highest correlations are reached with
March-May or April-June quarters. Dashed horizontal lines denote significance
threshold at P < 0.05. Quarters followed by -1 belong to the previous year. C y D)
Relationship between fruit ripening and harvesting dates and temperatures during Qpest.
Each point is the annual averaged value for all species. Compare with the analogous

graphs of Fig. 2. See legend of Fig. 2 for details.
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