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1.INTRODUCTION 
 
Most of the concepts in theoretical and empirical finance that have been developed over the past 
decades rest upon the assumption that asset returns follow a normal distribution.  
 
By now, there is, however, ample empirical evidence that many – if not most – financial return 
series are heavy-tailed and, possibly, skewed.  
 
This is not only of concern to financial theorists, but also to practitioners who are, in view of the 
frequency of sharp market downturns, troubled by the “compelling evidence that something is 
rotten in the foundation of the statistical edifice…” (Richard Hoppe) 
 
The work builds upon Benoit Mandelbrot’s fundamental work in the 1960s, which strongly rejected 
normality as a distributional model for asset returns. Examining various time series on commodity 
returns and interest rates, he conjectured that financial return processes behave like non-Gaussian  
processes.  
 
Mandelbrot’s contributions give rise to a new probabilistic foundation for financial theory and 
empirics; and they are of similar importance as the fundamental contributions of Louis Bachelier 
(1900) and Paul Samuelson (1955). His early investigations on asset returns were carried further by 
Eugene Fama l1965), among others. 
 
Partly in response to these empirical “inconsistencies”, various alternatives have been proposed in 
the literature. Among the candidates considered were the fat-tailed distributions.  
 
Our work investigates the consequences of relaxing the normality assumption and developing 
generalizations of prevalent concepts in modern theoretical and empirical finance that can 
accommodate heavy-tailed returns. Under the mathematical idea of Lévy processes. 
 
The asset price models we are going to test are some of the most famous ones representing some 
new approach into the late literature. 
In Section 3 we review all these models. Section 4 compares different models by different criteria. 
Finally we briefly summarize the results.  
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2.BASIC CONCEPTS 

 
 
 Lévy Process:  
 
An adapted real-valued process  withtX 00 =X , is called a Lévy process if: 

• It has independent increments;  that is, for any choice of  and  1≥n nttt <<<≤ ...0 10

• It is time-homogeneous; that is, the distribution of { }0; ≥−+ tXX sst  does not depend upon s. 

• It is stochastically continuous;  that is, for any 0>ε , { } 0Pr →>−+ εsts XX  as  0→t

• As a function of t, it is right-continuous with left limits. 

 

Processes that satisfy (i) and (ii) are called processes with stationary (or time-homogeneous) 
independent increments (PIIS).  Some authors (e.g. Bertoin) simply define a Levy process to be a PIIS 
process with .  Such processes can be thought of as analogs of random walks in continuous 
time. 

00 =X

 
One important implication of the independence and stationarity of increments is that the 
distributions of a Lévy process are completely determined by their one dimensional distribution.  In 
other words 

[ ] [ ] tiuXiuX eIEeIE t )( 1=   
 

Alternatively, if we denote the characteristic triplet of a Lévy process  by tX ( )ttt Lm ,, 2σ
 and the 

characteristic triplet of its one-dimensional distribution at 1=t  with ( )Lm ,, 2σ  we have 

that ,  and .  See Nielsen-Shephard (2001)  tmmt =
22 σσ tt = tLLt =

 

 
 The Lévy-Khintchine Representation  
 
The Lévy Kintchine theorem characterizes all infinitely divisible random variables in terms of their 
characteristic function. 
Let  be a Levy process.  Then the characteristic function can be written as tX

( ) [ ] ( ) ( )
{ } ⎥⎦

⎤
⎢⎣
⎡ −+−== ∫ −0

22 1
2
1exp

IR

iuxiuX
X dxLettumitueIEu t

t
σφ  

 
Where the drift rate   and the diffusion coefficient,IRm∈ 0≥σ . The Levy measure L must satisfy 

( )∫ − < ∞<
0 )1(

21
IR x dxLx  

 
Loosely speaking the Lévy measure dxxlxL )()( =  specifies the arrival rate of jumps of size 

.Hence it must be nonnegative and no measure is assigned to the origen. So well the 
process has well defined quadratic variation. See Feller (1971).   

),( dxxx +

 

If ( )z
t

φ , , is an infinitely divisible characteristic function, then it has the next Levy-

Khintchine representation. 

bza << Im
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The Levy-Khintchine representation has the form ( ) ( )[ ]utu
tX ψφ −= exp , where ( )[ u ]ψ  is called the 

characteristic exponent. 
 
Like all characteristic functions, they are Fourier transforms of a density and typically have an 
analytic extension 
 

 
3. FRAMEWORK 

 
We will consider a market place in which a stock or security price follows an exponential 

Lévy  process  on two continuous-time probability space. 

0≥tS

tX ),)(,,( PIRtt +∈ΛΛΩ   

Under , the stock price at  evolves as P Tt = )exp(0 TT XTSS += µ  
 
To prevent an arbitrage opportunity, the stock price (net of the cost of carry) must be a local 

martingale under Q . That is,  satisfying  [ ] t
t eSSIE µ

0= 1))(exp( , =tLEVYXIE
 
For those Lévy processes with +∞≤))(exp( ,tLEVYXIE  , this normalization can be achieved by the 

drift adjustment ω . So we will consider: 
 
Therefore we will consider a relatively simple class of continuous-time process where all non-

overlapping increments  are independent random variables with stationary 

distributions. These set of processes  are Lévy processes with stationary independent increments. 

)/log( 0SSs Tt =

ts

The statistical stock price dynamics are assumed to be given by 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= tst XtmSS ωexp0       with   0≥t

 
and the characteristic function for the statistical log asset price process   

{ }tstt XtmSSs ++== )()/log( 0 ω    process is: 

( ) [ ] [ ] [ ]tst

t

iuXtmiuius
t

s
s eIEeIEeIEu )(

,
ωφ +==         

therefore 

( )u
t

s
st ,

φ )()))(exp( utmiu
tXs φω+=  

 

[ ] ))(exp()exp()(, utiuXIEu t
s
Xt

ψφ −==  

 
Where )(uψ is the characteristic exponent, so to organize the forward price at )exp(0 tS µ , we 

take the value of sω  as defined by )( it −φ  
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4. ASSET MODELS 
 
 
 The Classical Lognormal Model. 
 
This model proposed by Samuelson (1955) and Osborne (1959), and later it was used by Black-
Scholes (1973). 
 
Considering the stochastic, non-negative, and stationary independent increments process 

{ }0, ≥= tTT t  also called the intrinsic time process or stochastic internal time, and the stochastic 

process  which represents the noise process.  The process subordinated to the 

standard Wiener process W  by the independent intrinsic process 

{ 0, ≥= tWW t }
T  is denoted by 

{ }0,, ≥= tWX
tTtCL  is usually called driving process, is another stochastic process with stationary 

independent increments. 
 
Let , i.e. the intrinsic time process is deterministic and identical to physical time, 

then at this particular case

{ 0, ≥= ttT }
{ }0,, ≥= tWX ttCL .  Hence the Lévy measure for ∆  

or we can say that  jumps only come from a normal distribution, then 
tCLX , ≈ ),0( 2tN σ

[ ] 22
, 2

1)(log))(log( tuitueIEu s
ius

ts
t

t
σωµφ −+==  

 
 

The Merton Statistical Jump-Diffusion Model 
 
In Merton’s model (1976), as we have seen at introduction formula (1), the stock price is driven by a 
(1 dimensional) Brownian motion  and independent pure jump process. tW
 
According to this specification, the arrival of normal information leads to price changes as a 
lognormal diffusion, while the arrival of abnormal information, is model as a Poisson process and 

give rise to jumps size , in the security return. )1( −tYe
 
For this process the Lévy measure has the form dxxfdxxxL MERTON )()()( λµ ==  and 

( ), with Poisson intensity )(xf ≈ N 2,ξς λ  and finite activity, that 

means  the Lévy-Khintchine representation admits the next 

decomposition, Sato (1999, Theorem 8.1) 

∞<=∫ ∫
IR IR

dxxfdxxf )()( λλ

[ ] [ ]
{ }

dxxettuitueIEu MERTONR

iux
s

ius
ts

t

t
)(1

2
1)(log))(log(

0

22
, µσωµφ ∫ −

−+−+==  

And )()( xfxMERTON λµ =  with )(xf ≈ N ( )  2,ξς

 

And hence 

))1)((
2
1)(exp()( )(

22
, −+−+= uttuituu xfstst

φλσωµφ  
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And therefore the characteristic function for the statistical process log ( ) is:  tS

))1)((
2
1)(exp()logexp()( )(

22
0log ,

−+−+= uttuituSiuu xfs
s

tSt
φλσωµφ  

 
 
 The Double Exponential Jump Diffusion, and the Eraker’s model 

The double exponential jump diffusion Kou (1999) is one of the models that have been proposed to 
incorporate the leptokurtic feature, that is high peaks and heavy tails in asset returns and volatility 
smirk.  It was based on the importance of the memoryless property of the exponential distribution. 
 
In this model the price of the underlying asset is modelled by two parts, a continuous part driven by 
Brownian motion, and a jump part with the logarithm of jump sizes having a double exponential 
distribution and the jump times corresponding to the event of a Poisson process the double 
exponential jump diffusion model is a special case of Lévy processes. 
 
We are going to obtain the characteristic function for )/log( 0SSs Tt = double just like we did for 

Merton model.  Here, the Lévy measure has the form dxxfdxxxL KOU )()()( λµ ==  

and )(xf ,2/)/exp( ηηκ−−≈ x  0<η  <1, where κ  and η  are two real parameters.  Hence: 

∞<=∫ ∫
IR IR

dxxfdxxf )()( λλ   

λ = Poisson rate 
 
And )()( xfxKOU λµ =  

With )(xf ,2/)/exp( ηηκ−−≈ x  0<η  <1, where κ  and η  are two real parameters 

 

And hence ))1)((
2
1)(exp()( )(

22
, −+−+= uttuituu xfs

s
tst

φλσωµφ  

 

And the characteristic function for the double exponential density 

 ),1/()1)(exp()( 222
)( ηηκφ uiuuxf +−=

 
Another example, of finite jumps activity is Eraker, Johannes, and Polson (2000) and Eraker (2001), 

incorporate compound Poisson jumps into the process assuming that the jump size is controlled by a 

one-sided exponential density. 

The Lévy measure has the form dxxfdxxxL ERAKER )()()( λµ ==  and )(xf ,/)/exp( ηηx−≈  

. 0>x
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 C.G.M.Y. 
 
The model is called the CGMY model, after the authors of this model. Carr, Geman, Madan and Yor 
(2000). 
 
The jump component of such processes is completely characterized by L(x) this Levy density.  
 
The CGMY Levy density with parameters C,G,M,Y, for this process is, L(x)=      and    

 is given by 

dxxlCGMY )(
( )xlCGMY

 

( ) =xlCGMY  
( )

Yx

xG
C

+

−
1

exp
  for x<0                 (4) 

  
( )

Yx

xM
C

+

−
1

exp
 for x>0 

 
Where C >0;G ¸M > 0;Y < 2:  The condition Y <2 is induced by the requirement that Levy densities 
integrate x2 in the neighbourhood of 0: We denote by  the infinitely divisible process of 

independent increments with Levy density given by (4). 
tCGMYX ,

The parameter C may be viewed as a measure of the overall level of activity. 
 
For example, later to construct a model with a stochastic aggregate activity rate, then we could 
model C as an independent positive process, possibly following a square root law of its own.  
 
The parameters G and M respectively control the rate of exponential decay on the right and left of 
the Levy density, leading to skewed distributions when they are unequal.  For G <M; the left tail of 
the distribution for  is heavier than the right tail. tCGMYX ,

 
The exponential factor in the numerator of the Levy density leads to the finiteness of all moments 
for the process  as we typically construct a process at the return level, it is reasonable to 

enforce finiteness of the moments at this level. 
tCGMYX ,

 
The parameter Y is particularly useful in characterizing the fine structure of the stochastic process. 
For example, one may ask whether the up jumps and down jumps of the process have a completely 
monotone Levy density, and whether the process has finite or infinite activity, or variation, for 
example 1 the paths have infinitely many jumps in any finite interval if  , and they have 

infinite variation if 

[ )2,0∈Y
[ )2,1∈Y .  

 
Following Carr, Geman, Yor, Madan (2000) Theorem 1, the characteristic function for the infinitely 
divisible process with independent increments and the CGYM Levy density (4) is derived from the 
Levy Khintchine theorem, by  

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −= ∫

∞

∞−
dxxketu CGMY

iux
tXCGMY

1exp,φ  

 
The integral in the exponent may be written as the sum of two integrals of the form 

( ) ( )
∫
∞

+

−
−

0 1

exp1 dx
x

xCe Y
iux β

 

 

                                                 
1  Carr,Geman,Yor,Madan(2000) for further detai about this issue 
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For β  equal to G and M respectively, with iu replaced by - iu for G=β . This integration may be 
performed as follows. 
 

( )( ) ( )[ ]∫
∞ −− =−−−−

0

1 expexp dxxxiuCx Y ββ   ( ) ( )∫
∞ −− −−

0

1 exp dwwwiuC YYβ

       ( )∫
∞ −− −

0

1 exp dwwwC YYβ

      ( ) ( )[ ]YYiuYC ββ −−−Γ=  

The result follows on substituting M and G for β  and evaluating the case G=β  at -iu 
 

( ) ( ) ( ){ }( )YYYY
tX GiuGMiuMYtCu

CGMY
−++−−−Γ= exp)(,φ  

 
Carr, Geman, Madan and Yor (2000) extend the model to include an orthogonal diffusion component.  
Define the extended CGMY process as the process 

ttCGMYe WXX tCGMY ηη += ,,,  

 
The characteristic function for the logarithm of the stock price in this diffusion extended CGMY 
model is given by 

( ) )2/exp()())2/(exp( 22
,

2
, uuiutu tXs

s
tCGMY CGMY

ηφηωµφ −−+=  

 
 
 The Variance Gamma Model. 
 

The VG process, is a generalization of the two parameter stochastic process studied in  Madan, Carr, 

Chang (1998). 

There are two representations for the variance gamma process, which are both useful in different 

contexts.  In the first representation, which gave rise to the name, the variance gamma process is 

interpreted as a Brownian motion with drift, time changed by a gamma process.  Let  be a 

standard Brownian motion with drift 

tW

.θ  and let  be an independent gamma 

process with mean rate unity, and variance rate v:  The density of the gamma process at time t is 

given by 

}0,{ ,1 ≥= tGT tt
ν

( )
⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛−

=

−

v
tv

v
xx

xf
vt

vt

tTt
/

1/

,

exp
  0>x

 

While the  characteristic function is given by }0,{ ,1 ≥= tGT tt
ν

( ) ( )[ ]
vt

tG ivu
iuGEu

t

/
,1

1
1exp,1

1
⎟
⎠
⎞

⎜
⎝
⎛
−

== ν
νφ  
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The variance gamma process has three parameters, v,σ  and θ  and the process 

 is given by: tVGX , ≈ ),( ,1
2,1

νσθ ν

tGt WGN

tVGX , νσθ ν

tGt WG +=  

 
Consequently, the distribution of is a variance-mean mixture of normals, with a gamma 

distribution as mixing distribution. 
tVGX ,

dwwdwwxNxf
t

GVG )1,;(),;()( ,1
2

0
1, ν

νσθ ν∫
∞

=  

dwwf
w
wx

u tG )(
2

)(exp1
2

1
,1

1
0

2

2

ν

σ
θ

πσ ∫
+∞

⎭
⎬
⎫

⎩
⎨
⎧ −
−= . .)( IRx∈  

 
The three parameters provide control over the skewness and kurtosis of the return distribution. 
σ  the volatility of the Brownian motion,ν  the variance rate of the gamma time change. These 
parameters measure the degree by which VG models fail to reproduce market prices. θ   is consider 
the drift in the Brownian motion with drift.   
 
The process therefore provides two dimensions of control on the distribution over and above that of 
the aggregate volatility.  We observe below that control is attained over the skew via θ  and over 
kurtosis withν . 
 
In terms of ( )θσ ,, v  one may write the Lévy measure of the variance gamma as 

( )
( )

dxxv
xv

x
dxxkVG

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+

−=
σ
σ
θ

σ
θ 2

2

2

2

exp
exp

   (8) 

 
The special case of 0=θ  in (8) yields a Lévy measure that is symmetric about zero.  It can be also 
observe from (8) that when 0<θ  negative values of x receive a higher relative probability than the 
corresponding positive value.  Hence, negative values of θ  give rise to a negative skewness.  We 
note further that large values of ν , lower the exponential decay rate of the Lévy measure 
symmetrically around zero, and hence raise the likelihood of large jumps, thereby raising tail 
probabilities and kurtosis.   
The distribution of the log returns, that is, the variable s t =  therefore: )/log( 0SST

[ ]t
t

ius
s

s eIEu =)(φ = ))(exp( tiu sωµ + )(
,

u
tVGXφ  

 
 
 Generalized Hyperbolic Distributions 
 
This class of distributions was introduced by Barndorff-Nielsen(1977), and firstly was used in various 
scientific fields, as the turbulence theory. 
An important aspect is, that GH distributions embrace many special cases, respectively limiting 
distributions, of hyperbolic, normal inverse gaussian(NIG), and some others.  
We consider   the generalized hyperbolic Lévy-process. GHX
The Lévy measure for the generalized hyperbolic distribution, dxxghypxL )()( =  
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⎩
⎨
⎧

=)(xghyp
( )
( ) ( )( ) )

22
2exp

(
0 222

2
x

x

edy
yYyJy

xy
x

e α

λλ

β

λ
δδπ

α −∞

∫ +
+

+−
        0≥λ  

 

⎩
⎨
⎧

=)(xghyp
( )
( ) ( )( ) )

22
2exp

(
0 222

2
x

x

edy
yYyJy

xy
x

e α

λλ

β

λ
δδπ

α −∞

−−
∫ +

+

+−
     0<λ  

 
However, numerical evaluation of these expressions is cumbersome, especially for small values of 

x , where the decay of the exponential term in the numerator becomes very slow, because of the 

two Bessel functions  and appearing in the denominator . λJ λY

For 0≥λ ∫
R

xL )( is infinite, so Poisson intensity can not exist. 

 
Generalized Hyperbolic distributions are infinitely divisible. This fact was shown by proving the 
infinite divisibility of the GIG. Are then infinitely divisible by Barndorff-Nielsen (1977).  
We might get the characteristic function for the Lévy process  by the Lévy-Khintchine 

representation of GH distribution. For an arbitrary 
GHX

λ  that is rather unpleasant, but we are mainly 
interesting for 0>λ cases, wich version is simpler.  
 
Let the Lévy- measure  dxxghypxL )()( 0≥= λ

 
The Lévy-Khintchine representation of the natural logarithm of the characteristic function can be 
written as  2

 

[ ]=Ε=−= tGHiuX
tGH eutu ,log))(log())(log( , ψφ ( )

{ }
( )xLet

IR

iux∫ −
−−

0
1  

 
It was pointed out by Barndorff-Nielsen (1977) that the hyperbolic distribution can be represented as 
a normal variance mean mixture where the mixing distribution is generalized inverse Gaussian GIG, 
with density 

( ) ( )
( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ +−= −− xxx

K
xdGIG ψγ

ψγ
γψ λ

λ

λ
11

2/

2
1exp

2
/

 ( )0>x    (10) 

 

Let  and .  This fact was shown by proving the infinite divisibility of the GIG. by 
Barndorff-Nielsen(1977)  

2δγ = 22 βαϕ −=

 
Let, a Wiener process with mean zero, and tW ≈tT ),,,( γψλGIG , the increment of the intrinsec 
time process with density 

( ) ( )
( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ +−= −− xxx

K
xdGIG ψγ

ψγ
γψ λ

λ

λ
11

2/

2
1exp

2
/

 ( )0>x    (11) 

 

Let  and   2δγ = 22 βαψ −=
by { }0,, ≥= tWX

tTtGH    driving process 

 

λK  and are the modified Bessel functions of the third kind with orders λ . 

                                                 
2   For details see prause(1999) 
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For get symmetry 0=β  so now Let  and  2αψ = 2δγ =
 
And the Laplace transform, at the symetric case, 0=β : 
 

( ) 2/2

2

0 2

)2(
)(

)()( λ
λ

λ

λ

α

αδ
αδ

α

s

sK
K

dxxdesLAPLACE GIG
sx

Tt +

+
== ∫

∞+ −                    )0)(Re( ≥s

For the general case   3

 

( ) ( )
( )( )

2/

22

22

22

22

2
2

.
λ

λ

λ

βα
βα

βαδ

βαδ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−

−

+−
=

sK

sK
sLAPLACE

tT        )0)(Re( ≥s

And by Lema 1.37 Prause (1999) if we represent GH as a normal variance-mean mixture 
 

dwwdwwxNxf GIGGH ),,;(),;()( 222

0

βαδλβ −= ∫
∞

 

 
Where is the normal density function with respect to mean and variance.   N
 
Therefore: 

∫∫
+∞

∞−

+∞

∞−

== iux
GH

iux
GH edxxfeu )()(φ dwdxwdwwxN GIG ),,;(),;( 222

0

βαδλβ −∫
∞

= 

dwwdxdwwxNe GIG
iux ),,;(),;( 222

0

βαδλβ −= ∫ ∫
∞ +∞

∞−

=

∫
+∞

+ −=−−
0

2
)(

2

))
2

(()())
2

(exp( uiuLAPLACEedwwdwuiu iu
GIG ββ ωµ ; 

 
hence 

( ) ( )
( )

( )( )
( )( )λ

λ

λ

λ

βα

βαδ

βαδ

βα
φ

22

22

22

22

1,
.

iu

iuK

K
u

GHX

+−

+−

−

−
=  

 
The characteristic function of the time-t element of the convolution semigroup generated by  

( ) ( )
( )

( )( )
( )( ) t

t

t

t

tX

iu

iuK

K
u

GH λ
λ

λ

λ

βα

βαδ

βαδ

βα
φ

22

22

22

22

, .
+−

+−

−

−
=  

 
Note that we have be careful when taking the “t-th power” of the characteristic function; the main 
branch of the t-th power function, applied to the complex number 1,GHφ , in general does not yield 

the desired characteristic function.  
The domain of variation of the parameters is as follows.  ( ) 0,,,0, >−∈>∈ δααβαλ IR  

and IR∈ωµ, .  The functions  and  are the modified Bessel functions of the third kind 

with orders 
λK 2/1−λK

λ  and 2/1−λ , respectively. 
 

                                                 
3   For details see prause(1999) lema 1.39 
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Different scale and location-invariant parametrizations of the generalized hyperbolic distributions 
have been proposed in the literature. 
 
 
 Subclasses:  
 
 
 Hyperbolic 

 
Setting the first parameter 1=λ  yields the four-parameter class of hyperbolic distributions. 
 
The log density of a hyperbolic distribution is a hyperbola, which is the origin of the name 
hyperbolic distribution. Recall that for normal distributions the log-density is a parabola, so one can 
expect to obtain a reasonable alternative for heavy tail distributions.  
 

 Normal Inverse Gaussian Distribution(N.I.G.) 
 
Setting 2/1−=λ  leads to the class of Normal Inverse Gaussian (NIG) distributions.  The name of 
this class stems from the fact that a NIG distribution can be represented as a variance-mean mixture 
of normal distributions, where the mixing distribution is inverse Gaussian.  (See e. g. Barndorff-
Nielsen (1998), Section 2). 
 
In contrast to the case of hyperbolic distributions, the characteristic function of NIG is expressible 
by elementary functions:  The Bessel function ( )zK 2/1−  is equal to  by Abramowitz and 
Stegun (1968), 9.6.6, which in turn can be reduced to elementary functions  

( )zK 2/1

 

( ) ( ) ( )

( )
( )( )

( )( ) ( )t

t

t

t

tX

iu

iuK

K
u

NIG 2/122

22
2/1

22
2/1

2/122

, . −
−

−

−

+−

+−

−

−
=

βαδ

βαδ

βαδ

βαδ
φ  

 

= ))(exp()exp( 2222 iutt +−−− βαδβαδ  
 

 
 Student-t Model 

 
Praetz (1972) and Blattberg & Gonedes (1974) proposed for the asset price process to be driven by a 
process with increments that are Student distributed.  This occurs in a Generalized Hyperbolic, 

when

t

νλ
2
1−

= , νδ =   and    =β 0=α  ,ie 0<λ . 

 

Then we consider the Wiener process , and we form the increment of the 

intrinsic time as 

tW tW ),0( 2tIN σ≈

tt TT −+1 )(
)0,,

2
( 2 νχ

ννν
≈−≈ GIG  . 0≥t

 

Where  denotes the chisquare distribution with )(2 νχ ν  degrees of freedom.  And we have the 

driving process { }0,, ≥= tWX
tTtSTUDENT .  So that the subordinated process has t -Student 

increments. 
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Following Hurst (1995),  as c.f.  tSTUDENTX ,

 
t

tX

uuK
u

STUDENT

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
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νσνσ
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 F.M.L.S. 

The stable generalization of the familiar standard Brownian motion is often called the Lévy α -
stable motion and is the subject of two recent monographs by Samorodnitsky and Taqqu (1994).   
 
However, in the nondegenerate case of a 2<α , any finite interval almost surely contains an 
infinite number of discontinuities, and unfortunately, a symmetric Lévy α -stable motion for log 
prices with 2<α  has infinite expected arithmetic return.   
 
Wu and Carr (2000) use a Lévy α -stable process, ,  with jumps and finite moments, finite 

but maximum negative skewness , which decreases like the reciprocal of the square-root of 
maturity, and finite kurtosis, which decreases with the reciprocal of maturity (see Konikov and 
Madan (2000) for a proof). 

tFMLSX ,

The use of a Lévy α -stable process retains the key advantages of a non-normal return distribution 
and self-similarity. The imposition of maximum negative skewness is required to deliver finite 
conditional moments of all orders for the stock price,. 
Under the FMLS model,  the structure of jumps is controlled by a maximum negatively 

skewed 
1, −=βαLX

α -stable Lévy process.  The arrival rate of jumps of size x is given by its Lévy measure 

 dxxlxL L )()( 1,−=
α

1/)(
1,,

+±=
−

α

α
xcxlL  

 
Where  for 0=+c ( ∞)∈ ,0x  and ( )α−Γ=− /1c  for ( ]0,∞−∈x .  
 
Although the random component of the process features only negative jumps, the predictable 
component of the process compensates by so much that the support of the distribution for any 
positive time is the entire real line. 
 

∫
∞

∞−
∞=

−
dxxlL )(

1,α
, so there are too many small jumps around the origin, and not poisson intensity 

can exist then. 
 
For this type of Lévy process is easy to derive the characteristic function from the canoncal Lévy-
Khintchine representation using the Lévy measure dxxlxL L )()(

1,−
=

α
, see Prause (1999). 

In general, a stable random variable    ( )βσ
α

,,mXx L≈   

The parameter  α   governs the thickness of tails. It takes values ∈α  (0,2] and in particular when 

α  = 2 we get the Normal distribution. This is the most important parameter that characterises 

Lévy-Stable variables since it can be seen as a "departure" from the Gaussian case as α  moves away 

from α = 2. 
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The parameter ≥σ 0 is the scale parameter. It cannot be interpreted as the standard deviation of 

the process since this is only true for the Gaussian case. However, the largerσ   is, the 'wider' is the 

pdf of the random variable. 

The parameter ∈β  [-1,1] dictates the skewness of the density function. When 

β = 1 the distribution is "totally skewed" to the right and similarly, when β = -1 it is "totally skewed" 

to the left. When β =0 we have a symmetric pdf. The location parameter is .  IRm∈

 

However it can be represented by its characteristic function: 

( ) ]=≡ iux
L eEu [
α

φ  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−

2
sgn1exp παβσ αα tanuiuium  if 1≠α     (14) 

   ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +− uuiuium logsgn21exp

π
βσ  if  1=α  

As a result of this tail behavior, the Laplace transform of an α -stable variable ( )βσα ,,0LX , is not 

finite unless 1=β .  When 1=β , the Laplace transform is given by: 

( ) [ ]=≡ − x
tX eELAPLACE

L

λλ
α , { ⎟

⎠
⎞

⎜
⎝
⎛−

2
secexp απσλ αα  if 1≠α     (Re( )0)( ≥λ           (15)    

( ) [ ]=≡ − x
tX eELAPLACE

L

λλ
α , { ⎟

⎠
⎞

⎜
⎝
⎛− λλ

π
σ log2exp t        if 1=α  

 
With  αLX ( 1,,0 −≈ )σαLX  that is m=0 and 1−=β . 
 
The characteristic function of the log return )/log( 0SSs tt = ,that is  
 

( ) [ ] [ ] [ ]αωµφ lst

t

iuXiuius
ts eIEeIEeIEu )(

,
+== = )())exp((

,
uiut

tLXs α
φωµ +  (16) 

That means, ( 1,,
,

)−+≈ σωµ
α stLt Xs so we get the characteristic function from  (16) given by: 

( ) )
2

sec)(exp())exp((,
πασωµφ αiutiutu stst

−+=     .21 <<α  

 

 Laplace Model 
 
In Mittnik and Rachev (1993) the asset process is driven by the symmetric geometric-stable process 
is proposed. In particular the symmetric Laplace process belongs to this class of processes playing 
the role of the Wiener process in the geometric summation scheme.  For the subordinated 
process  to become the symmetric Laplace process we require the intrinsic time process  tLAPLACEX ,

T  to be a negative  exponential process with increments.   
 

tt TT −+1 )(λExp≈ .  
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For all  and  0≥t 0>λ  .The increment of T  has probability density function 
).exp()( xxf λλλ −=   for  .0>x

 

We consider the   Brownian motion   ),0( 2tNWt σ≈
Then   under   subordination   we have the driving Lévy process  

{ }0,, ≥= tWX
tTtLAPLACE  

that means, like always,  the distribution of the  process  will be defined as a normal 

variance-mean mixture where 

tLAPLACEX ,

)(λExp  is the mixing distribution. 
 
The  Laplace transform is given by:                

u
uLAPLACET +

=
λ
λ)(1,   for  .0≥u

 
 
 The Fama Model 
 
Mandelbrot (1963, 1967) and Fama (1963, 1965) proposed the log asset price process to be driven  by  
a  symmetric  α -stable  Lévy  process.  For  the  subordinated  driving  process X  = { W , 

t }  to become a symmetric 

tFAMA, tT

0≥ α -stable Lévy process it is required the intrinsic time process T to 
be a scaled maximally skewed α /2-stable Lévy process (see e.g. Mandelbrot & Taylor (1967)). This 
means we require T to have stationary non-negative independent increments 
 

)0,1,))4(cos(2(
2

2

α
α

πα sSTT tst ≈−+          s,t  0≥

where   ∈α (0,2) and the notation is consistent with Samorodnitsky & Taqqu (1994).  
 
The first parameter  α /2 denotes the index of stability. The second parameter is a scale parameter 
and is chosen such that the increments are closed under convolutions. The third parameter 
represents the skewness and here obtains its maximal value of 1. Finally the fourth parameter is a 
location parameter that is set to zero. We note here that the increments are non-negative because 
a stable distribution with index of stability less than one, maximal skewness of one and zero location 
parameter is always non-negative (see e.g. Samorodnitsky & Taqqu (1994)). 
 
The increment of T has c.f. 
 

⎭
⎬
⎫

⎩
⎨
⎧

−−= )sgn()4tan(1)(4cos(2exp)( 22
, uiususT

παπαφ
αα

  IRu∈  

 
and Laplace transform 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧−= 22exp)(

α
λλ sLAPLACE

tT                    0)Re( ≥λ                                (19) 

By using   )
2
1()( 22

,
uLAPLACEu

ttFAMA TX σφ =      and (19) the c.f. of the increment of L is therefore 

 

)exp()(,
αασφ ututX FAMA

−=          IRu∈                         
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. Peter K. Clark Model 
 
Clark, P.K. (1973) proposed the process { }0,, ≥= tWX

tTtCLARK  where    is a Wiener process  

, and   T  has increments 

tW

tW ),0( 2tIN σ≈
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⎜⎜
⎝

⎛
≈−
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+ ϕ
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2
1

1 eTT tt             . 0≥t

 
That is, The increment  , where   has probability density function. tt TT −+1 0≥t
 

πϕ 2
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1
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exp
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where 0≥ϕ . Here log denotes the lognormaI distribution ( consistent with Kotz et al. (1988)) 
where the first parameter is a location parameter that is set to zero. The second parameter is a 
scale parameter and is chosen such that the increments tt TT −+1 ,   have a mean of one. 

Finally, the third parameter 

0≥t
ϕ  is a shape parameter  which reflects the tail thickness. The larger  

ϕ , the larger the tail thickness. Furthermore it can be shown that as 0→ϕ   the intrinsic time 
process T asymptotically approaches physical time which leads us to the lognormal model. The Clark 
model has certain similarity to the stochastic model proposed by Hull & White (1987).  
The Hull & White (1987) stochastic volatility model has the logarithmic instantaneous variance 
modelled by a Wiener process with drift.  
  
By using  the Levy-Kinntchine representation we  have 
 

dxxfxuu TX tCLARK
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2
1exp)(
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0

22∫
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⎬
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⎩
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The c.f. for 0,, CLARKsCLARK XX − for all s is then defined by 0≥

)(
1,

u
tCLARKXφ =( )(

1,
u

tCLARKXφ )    since the increments are stationary and independent s

 
 
.The Meixner Process 
 
The Meixner process is a special type of Lévy process which originates from the theory of orthogonal 
polynomials.  It is related to the Meixner-Pollaczek polynomials. 
 
The Meixner process is very flexible, has a simple structure and leads to analytically and numerically 
tractable formulas.  It was introduced in Schoutens,W.and Teugels,J.L.(1998) also and originates 
from the theory of orthogonal polynomials and was proposed to serve as a model of financial data in 
Schoutens(2002).This is another infinite jumps models, so it allows  wider tails and prolonged skew. 
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Schoutens(2002) provide evidence that the Meixner  model performs also significabtly better than 
the Black-Scholes model. 
The Meixner process { }0, ≥tM t  is a stochastic process wich stars at zero and has independent and 
stationary increments. 
 
{ 0, ≥tM t } has no Brownian part and a pure jump part. That  Meixner process has no Brownian part 

and a pure jump part governed by the Lévy measure dxxmxL )()( =  
 

( ) ( )
( ) dx

axxsinh
abxxL
/

/exp
π

=  

 
The Lévy measure for this GZ-Process is given by 

( ) =xLGZ  
( )
( )( )dx
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axbd
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1
bb +=  and 

π22
1

2
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we obtain   dxxmxL )()( =

The Generalized z-distribution (GZ), Grigelionis, B. (2000) is defined through the characteristic 
function: 
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Where  and . 0,,, 21 >dbba Rm∈
 
This distribution is infinitely divisible and we can associate with it a Lévy process, such that its time 
t distribution has characteristic function ( )mtdtbbazGZ ,,,,; 21φ . 
Again setting 
 

π22
1

1
bb +=  And 

π22
1

2
bb −=  

 
The Meixner (  c.f. is given by )mdba ,,,
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Where , 0>a ππ <<− b , , and  the distribution of an increment over [ ] , i.e. 

 has  as characteristic function 

0>d 0,,, ≥+ tstss

sst XX −+ ( )( tuφ )
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 The distribution of the log returns, that is, the variable s t =  therefore: )/log( 0SSt

[ ]t
t

ius
s

s eIEu =)(φ = ))(exp( tiu sωµ + )(
,

u
tMXφ  

[ ] ))(exp()exp()( ,, utiuXIEu MtM
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Where )(uMψ is the characteristic exponent, so to organize the forward price at )exp(0 tS µ , we 

take the value of sω  as defined by )(, itM −φ  

 

 

 Truncated Lévy Processes 

 

The infinite moments of Lévy-Stable random variables are due to the fact that the so called "fat-

tails" do not allow finiteness of moments. 

The truncated Lévy distribution is Lévy like in the central part of the distribution, but has a cut-off 

in the far tails that is faster than the Lévy power law tails.  

The cut-off will ensure the variance of the truncated Lévy distribution is finite. 

 

What is interesting is the existence of a characteristic timescale separating the Lévy and Gaussian 

regimes.  This timescale can be arbitrarily long due to the stable nature of the Lévy distribution. 

Mantegna and Stanley (1994) were the first to make the above observations 

Inspired by these results, Koponen (1995),and later Cartea, A. (2002), Boyarchenko, S.I. and 

Levendorskii, S.Z. (2000) among others researchers derived an analytical form for the characteristic 

function of a truncated Lévy distribution with an exponential cut-off in the tails.  

Truncation of the tails is one obvious choice to ensure finite moments.  Mantegna and Stanley (1994) 

were the first to propose a truncation or cut-off of the tails at some arbitrary point. Koponen (1995) 

introduced a smooth exponential cut-off of the tails.  For the sake of brevity, we consider only 

symmetric distributions of this family, with characteristic function defined by: 

[ ][ ])1(/))/(cos()1)/((1exp)( 2/222
,

−+−−= ααλαλλσφ α uarctanuu
tKOPONENX  

 

Where 0,0 >> λσ and ( ] 1,2,0 ≠∈ αα are the model’s parameters.  We have here chosen a 

normalization s that the variance is independent of α and .λ  

 

Inside this family for α =2,we obtain  which means that is a gaussian 

distribution. In the limit 

)2/exp()( 22
,

uu
tKOPONENX σφ −=

,0+→λ  we recover a Lévy distribution with 

[ ])1(/)2/cos(exp)(
,0

−−=
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αααπφ α

λ
ucu
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Under Koponen approach Cartea, A. (2002), consider the Lévy measure  of a Lévy-Stable 

random variable 

)(xL

( )βσ
α

,,0LXx ≈  described by 
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0>C  a scale constant,   and 01 ≥≥ p α  is the scale constant.  Now, introduce an exponential 

cut-off to obtain the truncated Lévy measure dxxlxL trunctrunc )()( =  for the truncated Lévy 

process ),,,0( λβσ
αTLPX . 
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When 0→λ , we recover the usual Lévy-Stable measure. 

 

Using the Lévy-Khintchine representation, the characteristic function for the Truncated Lévy 

distribution is 
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S.I. Boyarchenko and S.Z. Levendorskii (2000) use a purely non-Gaussian Lévy-process, called Kobol 

process with Lévy measure  with order dxxlxL )()( = ( )2,0∈α  and steepness parameters 0<−λ  

and 0>+λ . 
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Where  and > 0 .  Direct calculation show that if { 0,xmaxx =+ }
−
+C ( ) ,1,2,0 ≠∈ αα and 

then the characteristic function ,0>== −+ CCC ))(exp()( utu kobolkobolX ψφ −= defined by 

characteristic exponent is of the form 

{ }αααα λλλλαψ )()()()()( iuiuCukobol −−−−++−−Γ= −−++  
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 MODELS ESTIMATION  
 
The p.d.f. is calculated by taking the Fourier transform of the characteristic function. Note that the 
characteristic function is by definition the inverse Fourier transform of the p.d.f. 
Following Carr, Geman, Madan, Yor (2001),  
The fast Fourier transform was used to invert the characteristic function once for each parameter 
setting.  This method efficiently renders the level of the probability density at a prespecified set of 
values for returns.  For integration spacing of .25; where N is a power of 2 used in the fast Fourier 
discrete transform. For N = 4096; the return spacing is too coarse at .00613592.  We used instead N 
= 16384; and a return spacing of 0 .00153398. 
 
With the density evaluated at these prespecified points, we binned the return series by counting the 
number of observations at each pre-specified return point, assigning data observations to the closest 
pre-specified return point.  We then searched for parameter estimates that maximized the 
likelihood of this binned data.  
In order to use maximun likelihood estimation procedure for the Clarck model, the c.f. involves an 
improper integral which we calculat by transforming the integral to a definite integral and then use 
the extended midpoint rule (see e.g. Press et al.(1992),Chapter 4. 
 
 
 THE DATA 

 
The data  comprise 3037 daily closing values of the future of  IBEX-35.  
 
We formed the time series of daily log price relatives, as: 
Let n be the number of observations of the index and = be the observation of the index on 

day , j=0,1,2,..,n-1. Here is the first observation (January 7, 1990)and is the last obsevation 

,(December  30,2002). The sample of   increments of the log index is defined by 

jS
jtS

jt 0t 1−nt
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Then 

1loglog −−= jjj SSR                 (j=1,2,…,n-1) 

 
 

 COMPARISON AND TESTS OF THE MODELS 
 
 The Likehood ratio 

 

To answer the question, "Which market index model, in comparison to the classical lognormal 
model, is the best model to fit and explain the observed data?", one has to specify a criterion. 
Maximun Likelihood it may be viewed as an overall measure of goodnes of fit. 

We choose the best model to be the model whose likelihood value,  is significantly the 
largest, when compared to the likelihood value for the classical lognormal model. That is, the model 

LogL
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that is adding the most information to the classical lognormal model by allowing some extra 
parameter. We can check what we gain by allowing for extra parameters. 
We define the likelihood ratio. 4

 

other

normal

LogL
LogLlog=Λ  

 
Where   is the  likelihood value of the two parameter classical lognormal model and 

  is the likelihood value of the other model we are testing. 

normalLogLlog

otherLogL
The asymptotic distribution of Λ− log2  is chisquare, with degrees of freedom equal to the 
difference in the number of parameters between the two models (see e.g. Hoel et al. (1971) 
§3.4).Under this criterion above, the model with the larger absolute likelihood value will be the best 
model. 
 

Model log L Parameter Estimates 
Classical Lognormal -8.6676e+003 =σ 0.0139 

=m 0.0003 
Symmetric Laplace -8.7864e+003 =σ 0.0102 

=m 0.0000 
Eraker                                    -8.7002e+003 =σ 0.0132 

=λ 0.0374 
=η 0.0174 
=m -0.0030 

Merton exponential -8.7830e+003 =σ 0.0119 
=λ 0.0430 
=ς 0.0008 

=ξ 0.0268 
=m 0.0000 

Double exponential -8.8106e+003 =σ 0.0088 
=λ 0.7904 

            =κ 0. 0003 
            =η 0.0085 
            0.0000        =m  

Hyperbolic         1=λ  -8.7891e+003 =δ 0.0001 
=α 98.3092 
=β -0.0002                   
=m 0.0005 

Normal Inverse Gaussian 
2/1=λ  

-8.8147e+003 =α 75.9420 
=β -4.9442 

=δ 0.0145 
=m 0.0013 

FMLS -8.7198e+003 =α 1.9545 
            =σ 0.0094 
            0.0003 =m

Fama-Mandelbrot -8.7966e+003 =σ 0.0083 
            =α  1.7546 
            0.0005 =m

t-Student -8.8150e+003 =σ 0.0105 
            =ν  1.7546 

                                                 
4    A version of this ratio has been used by some authors before see Hoel et al (1971) 
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            0.0005 =m
Meixner -8.8151e+003             0.4291 =d

=a 0.0298 
=b -0.1565 
=m 0.0013 

Variance gamma -8.8078e+003 =σ 0.0137 
=ν 0.6089 
=θ -0.0009 
=m 0.0012 

Clark 
8.7876e+003 =µ -8.9548 

=ϕ 1.3468 
=m 0.0003 

CGMY -8.8153e+003             C  = 0.0036 
G = 47.9424 
 M = 57.0024 
Y = 1.0763 
 =η -0.0010 

=m 0.0012 
Boyarchenko -8.8142e+003 =c 0.0008 

=α 1.3231 
  =+λ 30.7690 

    =−λ -39.7861 
=m 0.0010 

Cartea -8.7981e+003 =c 0.0001 
=α 1.7150 
=λ 1.6663 
=p 0.3968 
=m -0.0003 

Koponen 
 

-8.8140e+003 =σ 0.0139 
=α 1.1174 
=λ 49.3473 
=m 0.0005 

 
 Table: The Likehood Ratio results 
 
 
.Some Kurtosis 
 
A more intuitive way of comparing the best models would be to use their kurtosis. The one day 
kurtosis for Meixner, t-Student, and CGMY are given below . These values can be compared to the 
sample one day measure of kurtosis of Ibex-35. 
 

MODEL 
Kurtosis 

MEIXNER (4 parameters model) 5.3589 
CGMY (6 parameters model) 6.3745 
t-STUDENT(3 parameters model) 15.4275 
IBEX-35 6.0571 

 
 Table:   Some model’s kurtosis 
 
Some people may argue that the large negative increment caused by the stock market crashes like 
September 2001, is too much influencing in these results. Namely in favour of a model with very 
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heavy tails opposed to one with less heavy tails. For principle reasons we do not like to exclude the 
extreme events such as stock market crashes from the sample because it is this feature (namely tail 
heaviness) we are explicitly emphasising to model in the simplest way.  
 
 

 The Kolmogorov distance 
 
As a mesure for the goodness of the fit we also can use distances between the fitted data and the 
empirical cumulative density function (CDF): The Kolmogorov distance is defined as the supremum 
over the absolute differences between two cumulative density functions. 

 

)()( xFxFmaxK estempIRx
−=

∈
 

 
Model 

Kolmogorov-Statistic 
Classical Lognormal 0.5079 
Symmetric Laplace 0.4961 
Eraker                                    0.4977 
Merton exponential 0.4881 
Double exponential 0.4971 
Hyperbolic         1=λ  0.4962 

Normal Inverse Gaussian    2/1=λ  0.4957 
FMLS 0.4799 
Fama-Mandelbrot 0.4799 
t-Student 0.4802 
Meixner 0.4978 
Variance gamma 0.4926 
Clark 0.4973 
CGMY 0.4925 
Boyarchenko 0.4876 
Cartea 0.4798 
Koponen 
 0.4919 

 
 Table :  Kolmogorov-Statistic results 
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2.7.3. Graphical Comparison 
 
We provide plots of the best fitting models and some others interesting plots of models inside the 
same family or with very close likelihood function.  
It is obvious that all models are leptokurtic, i.e. the peak in the center is higher and there is more 
mass in the tails than for the normal distribution. 
 

Figures  2.10  (probability density functions) 
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.Conclusions 

We tested a large number of asset models based on Lévy processes, whose returns have 
distributions with heavy tail properties. The parameters of interest were estimated by 
maximum-likelihood. 

It is clear that there is not  only a model by far better than the rest   but, sophisticated 
models as CGMY, NIG, Koponen, Boyarchenko, Kou, Meixner, with four, five, and six, 
parameters fit reasonably better the returns of the Spanish index than models with less 
parameters . However, we should outstand the Student- t model, which reflects the tail 
probabilities of this market, just like these models above but only using one extra parameter 
to the celebrated lognormal model. 

Our preliminary investigations suggested that stochastic time change might be profitably used 
to improve the fit of our models even further. 
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