

Curso Académico 2019-20

ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS (800691)

Créditos: 6

Créditos presenciales: 2,60 Créditos no presenciales: 3,40

Semestre: 4

PLAN/ES DONDE SE IMPARTE

Titulación: GRADO EN INGENIERÍA MATEMÁTICA **Plan**: GRADO EN INGENIERÍA MATEMÁTICA

Curso: 2 Ciclo: 1 Carácter: Obligatoria

Duración/es: Segundo cuatrimestre (actas en Jun. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: CONTENIDOS INICIALES/ECUACIONES DIFERENCIALES ORDINARIAS

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
RODRIGUEZ BERNAL, ANIBAL	Análisis Matemático y Matemática Aplicada	Facultad de Ciencias Matemáticas	arober@ucm.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
LUQUE MARTINEZ, TERESA	Análisis Matemático y	Facultad de Ciencias	t.luque@ucm.es	
ELVIRA	Matemática Aplicada	Matemáticas		
PRIETO YERRO, M. ANGELES	Análisis Matemático y	Facultad de Ciencias	angelin@ucm.es	
	Matemática Aplicada	Matemáticas		
GARRIDO CARBALLO, MARÍA	Álgebra, Geometría y	Facultad de Ciencias	maigarri@ucm.es	
ISABEL	Topología	Matemáticas	32	
MAKAROV SLIZNEVA, VALERIY	Análisis Matemático y	Facultad de Ciencias	vmakarov@ucm.es	
	Matemática Aplicada	Matemáticas		
RUIZ BERMEJO, CESAR	Análisis Matemático y	Facultad de Informática	cruizb@ucm.es	
	Matemática Aplicada			

SINOPSIS

BREVE DESCRIPTOR:

Iniciación a las ecuaciones diferenciales ordinarias, aprendiendo a resolverlas de forma exacta o aproximada, y estudiando en profundidad la teoría lineal.

REQUISITOS:

Es conveniente haber cursado las asignaturas de Análisis de Variable Real, Álgebra Lineal y Cálculo Diferencial.

OBJETIVOS

Conocer y manejar los conceptos y resultados básicos de las ecuaciones diferenciales escalares y de sistemas lineales. Relacionar los contenidos matemáticos y la resolución de problemas en algunas aplicaciones en la ciencia, la cultura y la tecnologia.

COMPETENCIAS:

Generales

Comprender la importancia de las ecuaciones diferenciales en el ámbito de las Matemáticas y sus aplicaciones a los campos de la Ciencia y la Técnica

Transversales:

Incorporar herramientas del cálculo diferencial e integral de funciones de variable real y del álgebra lineal para la resolución y análisis de soluciones de ecuaciones diferenciales

Específicas:

Entender los conceptos de Ecuación Diferencial, solución general y problema de valor inicial.

Conocer la teoría de ecuaciones diferenciales ordinarias lineales de orden arbitrario y de sistemas de EDOs lineales, como la forma de encontrar su solución.

Aprender técnicas de resolución (bien de forma cerrada, mediante solución explícita; bien de forma aproximada, mediante

Curso Académico 2019-20

ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS Ficha Docente

resolución numérica) de ecuaciones diferenciales.

Conocer el lenguaje y las aplicaciones más elementales de las ecuaciones diferenciales escalares y de los sistemas lineales a problemas de las ciencias (física, quimica, biología).

Otras:

CONTENIDOS TEMÁTICOS:

Parte 1 Introducción a las ecuaciones diferenciales: solución general y problemas de valor inicial. Campos de direcciones e isoclinas. Parte 2 Métodos elementales de resolución de ecuaciones diferenciales escalares. Estudio de algunos modelos sencillos de las ciencias (física, química, biología,...). Parte 3 Ecuaciones diferenciales lineales de orden superior con coeficientes constantes. Estructura del conjunto de soluciones. Comportamiento cualitativo de las soluciones. Modelos y

Sesiones académicas de problemas.

	aplicaciones. Parte 4 Sistemas de ecuaciones lineales de primer orden. Estructura del conjunto de soluciones. Matrices
	fundamentales de un sistema lineal homogéneo. Método de variación de las constantes. Exponencial de una matriz.
	Comportamiento cualitativo de las soluciones de un sistema de ecuaciones de coeficientes constantes. Diagrama de fases de
	sistemas planos. Modelos y aplicaciones. Parte 5 Método de series de potencias para la resolución de ecuaciones y sistemas
	lineales. Modelos y aplicaciones. Parte 6 Otros métodos de resolución. Transformada de Laplace. Resolución numérica de
	ecuaciones diferenciales.
ACTIV	/IDADES DOCENTES:
Clase	s teóricas:
	Sesiones académicas teóricas.
Semir	narios:
Clase	s prácticas:

Trabajos de campo: Prácticas clínicas:

Laboratorios:

Exposiciones: Presentaciones:

Otras actividades:

TOTAL:

EVALUACIÓN:

Se realizarán exámenes finales que supondrán un mínimo de 80% de la nota final. El resto podrá resultar de la realización de controles intermedios, entrega de problemas, asistencia.

BIBLIOGRAFÍA BÁSICA:

M. Braun, Ecuaciones diferenciales y sus aplicaciones. Grupo Editorial Iberoamericano (1990).

W.E. Boyce y R.C. DiPrima, Ecuaciones diferenciales y problemas con valores en la frontera, Limusa Wiley (2010).

C. Fernández Pérez, F. Vázquez Hernández, y J.M. Vegas Montaner, Ecuaciones diferenciales y en diferencias. Thomson, 2003

A. Kiseliov, M. Krasnov y G. Makarenko, Problemas de ecuaciones diferenciales ordinarias, Mir (1988).

J. López-Gómez, Elementos de Ecuaciones Diferenciales y Variable Compleja, Pearson Educación, Madrid 2001.

J. López-Gómez, Elementos de Ecuaciones Diferenciales y Variable Compleja, Problemas y Ejercicios resueltos, Prentice Práctica, Madrid 2002.

F. Simmons, Ecuaciones Diferenciales con aplicaciones y notas históricas. Mc Graw-Hill (1977).

D.G. Zill, Ecuaciones diferenciales con aplicaciones de modelado, Cengage Learning (2009).

OTRA INFORMACIÓN RELEVANTE