
Review Article
The Anti-Inflammatory Mediator, Vasoactive Intestinal
Peptide, Modulates the Differentiation and Function of Th
Subsets in Rheumatoid Arthritis

Raúl Villanueva-Romero, Irene Gutiérrez-Cañas, Mar Carrión, Selene Pérez-García,
Iria V. Seoane, Carmen Martínez, Rosa P. Gomariz, and Yasmina Juarranz

Departamento de Biología Celular, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Complutense
de Madrid, Madrid, Spain

Correspondence should be addressed to Yasmina Juarranz; yashina@ucm.es

Received 25 April 2018; Accepted 19 July 2018; Published 1 August 2018

Academic Editor: Jacek Tabarkiewicz

Copyright © 2018 Raúl Villanueva-Romero et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Genetic background, epigenetic modifications, and environmental factors trigger autoimmune response in rheumatoid arthritis
(RA). Several pathogenic infections have been related to the onset of RA and may cause an inadequate immunological tolerance
towards critical self-antigens leading to chronic joint inflammation and an imbalance between different T helper (Th) subsets.
Vasoactive intestinal peptide (VIP) is a mediator that modulates all the stages comprised between the arrival of pathogens
and Th cell differentiation in RA through its known anti-inflammatory and immunomodulatory actions. This
“neuroimmunopeptide” modulates the pathogenic activity of diverse cell subpopulations involved in RA as lymphocytes,
fibroblast-like synoviocytes (FLS), or macrophages. In addition, VIP decreases the expression of pattern recognition receptor
(PRR) such as toll-like receptors (TLRs) in FLS from RA patients. These receptors act as sensors of pathogen-associated
molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) connecting the innate and adaptive immune
system. Moreover, VIP modulates the imbalance between Th subsets in RA, decreasing pathogenic Th1 and Th17 subsets
and favoring Th2 or Treg profile during the differentiation/polarization of naïve or memory Th cells. Finally, VIP regulates
the plasticity between theses subsets. In this review, we provide an overview of VIP effects on the aforementioned features of
RA pathology.

1. An Introduction to the Physiopathology of
Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic inflammatory
disease mainly manifested with peripheral polyarthritis.
Genetic background, epigenetic modifications, and environ-
mental factors are considered the aetiological factors that
could cause an inadequate immunological tolerance towards
critical self-antigens, characteristic of all autoimmune dis-
eases [1, 2]. As consequence, chronic inflammation in the
joints and an imbalance between different Th subsets are
triggered in this pathology [2, 3]. Altered oral, intestinal, or
lung microbiota, such as Porphyromonas gingivalis, Aggrega-
tibacter actinomycetemcomitans, Proteus mirabilis, Prevotella

copri, orMycoplasma fermentans, and other infectious agents
such as EpStein-Barr virus interfere with the equilibrium
between inflammation and tolerance [4–8]. They can trigger
the pathology through molecular mimicry by means of two
important characteristics, the generation of autoantibodies
such as anticitrullinated protein antibodies (ACPA) or rheu-
matoid factor and the inflammatory response [1, 2].

The first step in the activation of an inflammatory
response is the recognition of two kinds of ligands by specific
receptors named PRRs. In the initial stages, they recognize
the conserved molecular structures expressed by invading
microbes named pathogen-associated molecular patterns
(PAMPs). The uncontrolled inflammation in chronic dis-
eases leads to tissue damage generating endogenous danger-
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associated molecular patterns (DAMPs) including stress sig-
nals such as damaged or apoptotic cells [9–11], representing
the second kind of ligands recognized by PRRs [11]. The
stimulation of these receptors produces the expression of
proinflammatory cytokines such as tumor necrosis factor
(TNF)α, interleukin- (IL-) 6, IL-1β, or IL-12 by several innate
cells such as dendritic cells (DCs) or macrophages, which
link innate and adaptive immunity. Inflammation in RA
patients is maintained by sustained activation of multiple
inflammatory positive-feedback regulatory pathways in a
variety of cells [12]. As a consequence of all these processes
that have been unleashed in early RA, there is an alteration
in the balance between the different subpopulations of Th
lymphocytes. Paracrine and autocrine actions of cytokines,
along with persistent adaptive immune responses, can per-
petuate the disease and ultimately lead to cartilage and bone
destruction in the joints [1].

Naïve CD4+ T helper cells can differentiate into Th1,
Th2, Th17, Th9, Th22, follicular helper T (Tfh), and regula-
tory T (Treg). Th subset differentiation is orchestrated by
complex regulatory networks that allow for shared transcrip-
tional programs and plasticity across T cell subsets [13, 14].
Among all subtypes of Th cells, Th17 are the most heteroge-
neous and plastic subsets [13–15]. The heterogeneity of Th
phenotypes generated in the primary response is mirrored
in the heterogeneity of memory Th cells that persist once
the pathogen has been eliminated [16]. This heterogeneity
of Th cells serves to target the cells to the tissues where they
are needed and to define the class of immune and tissue
response that is appropriate for the type of pathogen attack.
However, some of these subpopulations have been related
to a greater or lesser extent with the malfunctions of the
immune system, specifically with autoimmune diseases, like
RA. About half of infiltrated cells in the synovial sublining
in established RA are Th cells and contribute directly along
with macrophage-like synoviocytes (MLS), fibroblast-like
synoviocytes (FLS), and other adaptive immune cells to the
damage in cartilage and bone due to synovial invasion into
adjacent articular structures, being a cardinal sign of RA [1].

Prior to the discovery of Th17 cells in 2005, Th1 was
the subset involved in RA pathology showing an imbal-
ance between Th1 and Th2 subsets [17]. Nowadays,
Th17 cells have acquired a main role in the pathogenesis of
RA [2, 15, 18, 19]. This subset is heterogenic and can show
a pathogenic or nonpathogenic profile, depending on the
cytokine balance present in the microenvironment during
its differentiation/activation. The cytokines that produce
each one are different. Pathogenic Th17 cells express RORC,
the transcription factor characteristic for Th17 cells, as well
as the transcription factor characteristic for Th1, T-bet. Thus,
this pathogenic Th17 cells produce, in addition to IL-17 or
IL-21 (cytokine characteristic of Th17 subset), IFNγ, IL-22,
GM-CSF, and other proinflammatory cytokines [20].
Memory Th17 cell cultures “ex vivo” from early RA patients
show more pathogenic profile than Th17 cells from healthy
donors [19, 21]. It was revealed that these pathogenic Th17
cells can shift to Th1 cells (named “ex-Th17” or “nonclassical
Th1” cells), which are reported to be more pathogenic than
Th17 cells per se in RA [15, 17, 19, 22]. These ex-Th17 or

nonclassical Th1 cells are accumulated in the joints of rheu-
matoid arthritis patients and can explain the observation that
the therapeutic strategies against IL-17 are not sufficient in
RA [22, 23]. The hypothesis resides on the “switch” into
pathogenic Th17 and nonclassical Th1 at the sites of local
inflammation such as the joints [2], promoting GM-CSF pro-
duction that is the weapon of pathogenic Th17 cells and one
of the novel therapeutic target in RA [24–26].

CD4+CD25+FoxP3+ T cells (Treg) can suppress other
immune cells by regulating their proliferation and cytokine
production. No differences were detected in the number of
total Treg and bona fide Treg subsets (CD45RA+FoxP3low

naïve Treg, CD45RA−FoxP3high activated Treg, and
CD45RA−FoxP3low non-Treg) from seropositive arthralgia
patients compared to healthy donors [27]. Whether Tregs
are functionally different is still unknown [14]. Nonpatho-
genic Th17 cells are closely related with Treg, expressing
transcription factor FoxP3 and producing IL-10 among
others [20, 28]. In RA patients, the transdifferentiation of
Th17 from Treg contributes to perpetuation of RA during
anti-TNF treatment [29].

CD4+CXCR5+ T cells, follicular helper T cells or Tfh,
collaborate with B cells to produce antibodies and are closely
related to the other Th subsets. Differential expression of
CXCR3 and CCR6 within CD4+CXCR5+ T cells defines three
major subsets: CXCR3+CCR6− (Tfh1), CXCR3−CCR6−

(Tfh2), and CXCR3−CCR6+ (Tfh17) [30]. RA patients, both
with active disease and in remission, demonstrate an
increased frequency of Tfh and overrepresentation of Tfh
subsets bearing a B cell helper phenotype [30, 31]. There
are few studies conducted in RA regarding the Th22 subpop-
ulation; nevertheless, its characteristic cytokine, IL-22, which
can also be produced by pathogenic Th17, has shown to have
a pathogenic role associated with disease activity in RA, pro-
moting osteoclastogenesis and bone destruction in RA [32].
The percentage of CD4+IFNγ−IL-17−IL-22+ (Th22) cells in
RA patients was markedly increased comparing with healthy
donors and positively correlated with DAS28 [33]. With
respect to the last subset, Th9, although with lesser impor-
tance than the others, Th9 cells and IL-9 were frequently
detected in peripheral blood mononuclear cells and synovia
of RA patients [34].

1.1. A Panoramic View of VIP’s Role in Rheumatoid Arthritis.
It is important to bear in mind that RA is a dynamic disease
in its development, so a complete understanding of how RA
develops over time is important to set up therapies that pre-
vent disease progression rather than treating its symptoms
[35]. The importance of the neuroimmune network in joint
homeostasis has been shown. Indeed, several neuropeptides
identified in joint tissues, including vasoactive intestinal pep-
tide (VIP), have been suggested to have a role as neuroosteo-
logical regulators in bone metabolism. VIP is a homeostatic
and immunoregulatory peptide involved in the control of
both innate and adaptive immune response. It has only one
chain of 28 amino acids, with some residues crucial to its
functions, which sequence is highly conserved during evolu-
tion. It belongs to the secretin/glucagon family of peptides
which share an α-helix structure [36]. This neuropeptide
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can act locally or systematically as it is produced by sympa-
thetic nerve endings, lymphocytes, or even FLS in the joint
[37, 38]. VIP is involved in a broad range of functions
through its binding to its specific G-protein-coupled recep-
tors, VPAC1 and VPAC2 [39]. Healing effects of exogenous
administration of VIP in animal models of inflammatory/
autoimmune diseases have been described; specifically, VIP
prevents arthritis in a CIA model through its anti-
inflammatory and immunomodulatory actions [40, 41]. In
humans, “ex vivo” effects of VIP have been demonstrated
in lymphocytes, macrophages, and FLS [21, 38, 42]. In
summary, VIP is a microenvironment mediator capable of
modulating all the stages mentioned above in RA from the
arrival of pathogens to the differentiation of Th cells. It exerts
a direct antimicrobial activity against a variety of pathogens
[43, 44] and modulates TLR expression in several cells, even
in FLS from RA patients [45–47]. In addition, VIP decreases
proinflammatory mediators in lymphocytes and FLS from
RA patients [21, 38, 48–50] and modulates the differentiation
of several Th cells from RA patients, including a decrease
in the pathogenic profile and plasticity of some of them
[21, 50, 51]. In addition to the role of VIP in “ex vivo” sam-
ples from RA patients, endogenous VIP also plays a major
role in patients with RA, allowing to stratify patients with
early RA for therapeutic decision making in the “window of
opportunity” [52]. VIP gene polymorphisms, associated with
its serum levels, predict treatment requirements in early
rheumatoid arthritis [43, 53]. Indeed, lower levels of its
receptor, VPAC1, in PBMCs are associated with more severe
inflammation and higher disease activity in RA patients [54].

Taking all this into consideration, this review provides a
deep description of the role of this anti-inflammatory medi-
ator, VIP, in the differentiation and function of Th subsets
in rheumatoid arthritis, capable to modulate all the stages
between the arrival of pathogens and the differentiation of
Th cells in RA.

2. Infectious Agents in Rheumatoid Arthritis
and Effect of VIP as Antimicrobial Mediator

In recent years, the significance of the role played by alter-
ations in microbiota and infections has deepened our under-
standing on the significance of this process in triggering RA.

One of the very first insights about the relation between
RA and infection came hand to hand with the increased risk
of arthritis associated with periodontal disease [55]. This
association is thought to be partly mediated by oral bacteria
members’ microbiota such as Porphyromonas gingivalis
[56] or Aggregatibacter actinomycetemcomitans [57]. These
two bacteria are capable of triggering autoimmunity in RA
by means of molecular mimicry, the former, and through
the production of leukotoxin A and the subsequent NETosis
process, the latter. In RA patients, it has been observed
that P. gingivalis, via PADI4 (peptidyl arginine deiminase
type IV), causes an aberrant citrullination of proteins induc-
ing loss of tolerance to citrullinated peptides [58, 59] provid-
ing a link between the infectious process and the
autoimmune response. An alternative form of action for
these bacteria consists of its possible binding to the PRR

toll-like receptor 2 (TLR-2), increasing the production of
interleukin-1 (IL-1) and consequently stimulating the differ-
entiation of T cells into the T helper 17 (Th17) subpopulation
[60]. In this context, it has been reported that in early arthri-
tis patients a prompt periodontitis treatment could avoid the
development of a chronic and progressive arthritis [61].

Besides oral microbiota, gut microbiota could also play
an important role in arthritis. In rodent studies, it has been
observed that susceptibility and severity of arthritis decreased
significantly when maintained in a germ-free environment or
in the presence of restricted bacterial flora [62, 63], suggest-
ing that microbiome can exert helper functions increasing
the autoimmune process of the pathology. In patients with
RA, it has been described an alteration in the gut microbiota
compared to healthy population. Specifically, it has been
found a decreased diversity of abundant commensal taxa
such as Bifidobacteria and Bacteroides species [64], parallel
to an expansion ofMycoplasma fermentans, Proteus mirabilis
[65], and rare taxa such as Actinobacteria (Collinsella,
Eggerthella) [66]. Moreover, intestinal levels of Prevotella
copri are higher in recent onset RA patients than in healthy
donors or in established RA patients, being a possible marker
of early disease [7]. Both in the case of oral and intestinal
microbiome, it has been observed that the alterations found
in patients with active RA are restored, at least in large part,
as a result of immunosuppressive treatment [67].

Lung mucosal microbiota has lately been involved in the
development of RA as infectious agents, such as Streptococcus
pyogenes and S. pneumoniae, both pulmonary pathogens, are
combined with smoking in causing a breakdown in immune
tolerance [68]. There is an increased incidence of ACPA in
smokers and also in RA-related lung disease [69, 70]. The
prevalence of oral mucosa infections in RA patients is high
[71], but RA patients without these infections might have
other bacterial organisms as disease initiators. For instance,
it has been described a lung dysbiosis in RA patients similar
to sarcoidosis patients which could be involved in the inflam-
matory process present in RA pathology [72].

The hypothesis that an infectious event could be involved
in RA induction has been taken into consideration for a long
time [4, 73], even though to date there is no clearly identified
causative pathogen nor a direct association with a specific
infection. In recent years, integrated theories have emerged
with force to clarify the RA etiopathogenesis. In these theo-
ries, together with genetic predisposition and environmental
factors, the mucous membrane of the lungs, the oral cavity,
and the gastrointestinal tract, could have a leading role, given
that they are the interface between external influences and
the immune system. Thus, RA, probably, could originate far
from the joints. As we have previously pointed out, a plausi-
ble explanation could be that stressful events in these tissues
lead to posttranslational modifications of peptides with the
consequent formation of autoantibodies directed against
them. These antibodies generated in the mucous membranes
could be transferred throughout the body through the blood-
stream, converting the local autoimmunity process into sys-
temic autoimmunity. Upon reaching the joint, they could
find additional antigens, unleashing local inflammatory
events in the synovium with the consequent activation of
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different cell types (fibroblasts,macrophages, osteoclasts, etc.).
Thus, activating the production of proinflammatory cyto-
kines would lead to synovitis, persistent inflammation, and
destruction of the bone and cartilage [74–76].

A recent study carried out in mice showed how microbial
infection at mucosal sites is able to provoke a break in toler-
ance leading to the generation of autoreactive and antipatho-
gen T cells, predominantly, Th17 cells [77]. In addition to
Th17 cells, other subsets of T cells could be regulated by
gut microbiota in autoimmune processes. Block et al. have
found that follicular helper T cells (Tfh) are critically impor-
tant for the development of arthritis in the K/BxN autoim-
mune arthritis model. Besides, Tfh cell differentiation is
modulated by the microbiota [78]. Although further studies
in humans are still required, these results point to the
capability of infections in triggering autoimmunity beyond
the epitope mimicry and the autoreactive T cell activation.

Regarding other infectious agents, Epstein-Barr virus
(EBV) infection has been classically associated with RA
[74], and a recent study has shown a strong relation between
the Chikungunya virus infection and the development of
polyarthralgia [79].

Although the study of the role of infections and microbi-
ota on RA in humans still need more profound research, the
role of VIP regulating pathogen microbes at different levels is
noteworthy. Young animal fed with prebiotic-enriched milk
showed higher ileal VIP expression and lesser relative abun-
dance of pathogenic microbes, such as Collinsella [80]. It has
been recently reported that this peptide exerts a direct anti-
microbial activity against a wide range of bacteria, including
S. aureus, E.coli, or P. aeruginosa [43] as well as against the
African trypanosome T. brucei [81]. VIP is also protective
in polymicrobial sepsis and cutaneous leishmaniasis [44],
and its release has been described under microbial-induced
inflammation [82]. Moreover, VIP decreases induced
responses by LPS from P. gingivalis on monocytes [83]
(Figure 1). The awareness of this ability added to the anti-
inflammatory and immunomodulatory properties of this
peptide opens new possibilities in its clinical application
against infectious diseases. In summary, removing inflamma-
tory stimuli rooted in infectious foci, specially in the intestine
and mouth, could achieve the inhibition of the chronic
immune loop, and thereby improvements in the arthritis
pathogenic process could be attained.

3. Effect of VIP on Functions Mediated by
Pattern Recognition Receptors in
Rheumatoid Arthritis

Immune system function is mainly based on discriminating
between self and non-self, allowing recognition and removal
of parasites and pathogens ranging from the smallest viruses
and bacteria to the largest multicellular parasites. This capac-
ity is dependent on the presence of PRRs. These receptors are
classified into three types namely, NOD-like receptors
(NLR), RIG-like receptors (RLR), and toll-like receptors
(TLR). NLR are implicated in the modulation of inflamma-
tory and apoptotic responses; RLR are related to intracellular

recognition of RNA virus replication, and TLR are involved
in warning the immune system against extracellular or endo-
somal PAMPs [84, 85]. Expression of these receptors is a
hallmark of the innate immune system, and activation of this
branch of immunity leads to the effective priming of adaptive
immune responses mediated by B and T cells. These cells
exhibit receptors for antigens and, by means of education
and cooperation, are able to distinguish self from non-self-
antigen and trigger subsequent actions. Thus, defects in the
coordinated action of both innate and adaptive systems as
well as in the recognition of self-antigens by the adaptive
immune system are the root cause of autoimmune diseases.
Specifically, TLR are the main players in the self-non-self-
discrimination, and it is well demonstrated that deficiency
in the TLR-mediated recognition of self-antigens triggers
many autoimmune disorders including rheumatoid arthritis
(RA) [86, 87]. In fact, RA seems to result from an autoim-
mune dysfunction in its early stages that later progresses to
chronic inflammation of the synovial joints [10]. Besides
the abovementioned hypothesis of the altered microbiota,
which postulates a systemic origin of RA where PRRs proba-
bly play a relevant role, potential ligands for these receptors
have been identified in the joint microenvironment of RA
patients, including PAMPs such as peptidoglycans, bacterial
DNA, and viral double-stranded RNA (dsRNA) or single-
stranded RNA (ssRNA) [88–90]. Moreover, it has also been
reported the presence of host-derived mRNA, heat-shock
proteins, fibronectin, and apoptotic and necrotic cellular
debris, which could contribute to RA perpetuation [91, 92].
Once exogenous or endogenous ligands initiate TLR signal-
ing, Toll/IL-1 receptor (TIR) domain binds to TIR domain-
containing adaptor proteins like myeloid differentiation
primary-response protein 88 (MyD88) or TIR domain-
containing adaptor protein inducing IFNβ (TRIF). Following
complex and tightly regulated signaling pathways, TLR stim-
ulation finally leads to the downstream activation of JNK,
p38 MAPKs, and transcription factors namely NF-κB and
IRFs. These transcription factors induce the synthesis and
secretion of proinflammatory cytokines, type I interferons,
and costimulatory molecules [84–86].

TLR are expressed in a variety of cell types in the joint,
such as myeloid cells, FLS, T and B cells, osteoclasts progen-
itors, and endothelial cells. These receptors are distributed
into two cell locations, namely plasma membrane (TLR1,
TLR2, and TLR4–6) and intracellular compartments (TLR3
and TLR7–9). All TLR, with the exception of TLR6 and
TLR10, are present in the synovial tissues and cells from
arthritic joints [88], being TLR2 and TLR4 the best charac-
terized and TLR5 and TLR8 the more recently described
[93, 94]. In recent years, TLR have been shown to be
involved in the pathophysiology of RA, participating in
synovial membrane inflammation, osteoclasts maturation,
angiogenesis, endothelial function, and in the functional
modulation of different subpopulations of T lymphocytes.
In this sense, activation of TLR2, TLR3, and TLR4 in FLS
from RA patients exacerbated inflammatory Th1 and Th17
cell expansion both in cell–cell contact-dependent and
inflammatory cytokine-dependent manner, which induced
more IFNγ and IL-17 accumulation [10, 95]. Moreover, it
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has been reported that the engagement of TLR3 can directly
induce the synthesis of IL-17A and IL-21 and drive differen-
tiation of human naive CD4+ T cells [96].

In particular, MLS and FLS are considered effector
cells with an essential role in TLR-mediated inflammatory
mechanisms involved in the onset and development of
RA [10].

3.1. Through the Modulation of Plasma Membrane Receptor
TLR4. As we have previously described, in humans, VIP is
produced by FLS which also expressed its receptors VPAC1
and VPAC2. Likewise, VIP expression is downregulated both
in RA-FLS and in TNFα-treated FLS, suggesting that a minor
presence of this endogenous anti-inflammatory factor may
contribute to the pathogenesis of RA [38]. It is worth to
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mention that resident FLS represent important players in RA
synovitis initiation and propagation, releasing proinflamma-
tory mediators, such as chemokines, that support inflamma-
tory cell retention and chronification of the disease.

On the basis of the abovementioned and given that FLS
express several members of the TLR family, our studies have
focused on the effects of VIP on TLR regulation in FLS from
RA patients. We have described the expression of TLR2
and TLR4 in RA FLS which exhibited increased levels of
TLR4 transcripts and protein compared with FLS from
osteoarthritis (OA) patients (Figure 1). Besides, VIP treat-
ment decreased the LPS- and TNF-induced expression of
TLR4 and MyD88 in FLS from RA patients, reducing down-
stream responses such as the production of CCL2 and CXCL8
chemokines [97]. Moreover, VIP also modulated TLR signal-
ing pathways by downregulating the LPS-induced overex-
pression of both CD14 and MD2, coreceptors required for
TLR4 signaling, as well as molecules of the MyD88-
dependent and MyD88-independent ways. VIP reduced gene
expression of several downstream molecules of MyD88-
dependent pathway, including different kinases. Regarding
MyD88-independent pathway, VIP also downregulated the
transcripts of TRIF and TRAM adaptor molecules involved
in the engagement of adaptive immunity. As an aside, VIP
treatment led to an impaired production of IL-6 and
RANTES/CCL5 after LPS stimulation, demonstrating the
functional significance of VIP effect on mediators derived
fromMyD88-dependent andMyD88-independent pathways,
respectively [46, 98]. Taken together, these results demon-
strate that VIP acts as a negativemodulator of TLR4 signaling,
regulating the production of several pivotal molecules of the
pathway (Figure 1).

3.2. Through the Modulation of the Functions of Intracellular
Compartment Receptors, TLR3 and TLR7.We have also stud-
ied the effect of VIP in FLS after TLR3 or TLR7 stimulation
by dsRNA and ssRNA analogous, respectively, by studying
the transcription factors involved and the subsequent effects
on antiviral IFNβ, proinflammatory CXCL8 chemokine,
and matrix metalloproteinase 3 (MMP-3). Results showed
that VIP was not able to diminish the expression of these
receptors but significantly reduced the dsRNA-induced
IRF3 nuclear translocation and consequently the production
of IFNβ. Concerning TLR7 signaling, VIP significantly
decreased activation of every transcription factor (NF-κB,
AP-1 c-Jun, and AP-1 c-Fos) on ssRNA-treated FLS, leading
to a subsequent decrease in CXCL8 and MMP-3 production,
which plays an important role in joint destruction [47]
(Figure 1).

3.3. Through the Modulation of RLR Receptors. RLR are cyto-
solic pattern recognition receptors that comprise helicase
retinoic acid-inducible gene I (RIG-I) and melanoma
differentiation-associated gene 5 (MDA5) which recognize
dsRNA. The constitutive and dsRNA-induced expression of
RIG-I and MDA5 has been described in FLS from RA
patients, and our results have shown that VIP is able to
inhibit significantly the dsRNA-induced gene expression of
RIG-I [47] (Figure 1).

4. VIP as Anti-Inflammatory Peptide in
Rheumatoid Arthritis

In addition to the decrease in inflammatory TLR signaling,
the anti-inflammatory action of VIP has been described
extensively in several animal models treated with exogenous
VIP or in the “ex vivo” treatment of human or murine mac-
rophages and T lymphocytes [37, 42, 99, 100]. Delgado
et al. first published its anti-inflammatory role in RA in
2001 [40, 101]. This study demonstrated that VIP treatment
dramatically suppresses clinical joint disease in murine
collagen-induced arthritis (CIA) regulates adaptive and innate
immune responses. Its pleotropic actions have a salutary
effect on both inflammation and immunity in the CIAmodel.

In human RA pathology, the effect of VIP as anti-
inflammatory peptide was confirmed in synovial tissue cells
and FLS from RA patients, where VIP downregulated chemo-
kine production and IL-6 more clearly after stimulation with
TNFα [102]. In FLS, VIP decreased IL-22-specific receptor
and prevented the contribution of rheumatoid synovial fibro-
blasts to IL-22-mediated joint destruction [48]. This anti-
inflammatory role of VIP has been detected in other immune
cells in RA, such asmacrophages or peripheral blood lympho-
cytes (PBL) from RA patients cultured “ex vivo” [42, 50]. The
presence of this neuropeptide decreased the levels of proin-
flammatory mediators for instance TNFα, IL-6, CXCL8, and
CCL2 after polyclonal stimulation with PMA/ionomycin in
PBLs from RA patients [50]. Besides, VIP decreases TNFα
and IL-6 while it augments IL-10 in macrophages polarized
to imitate those presented in the inflamed joint [42] (Figure 1).

Although its anti-inflammatory role has been widely
described, occasionally, we observed no effect or an opposite
effect, especially with no inflammatory stimulus in resting
cells, suggesting that this peptide may exhibit dual actions
depending on the activation status of the cell. By the way,
the presence of VIP when blood cells from RA patients were
cultured in the absence of activators or stimulators increased
some proinflammatory cytokines or decreased IL-4 produc-
tion [50, 103], showing a homeostatic function in these cells.

5. VIP Is Involved in the Generation of
Diversity/Plasticity of Th Subpopulations in
Rheumatoid Arthritis

In addition to its anti-inflammatory potential, Delgado et al.
first described the capacity to modulate subpopulations of Th
lymphocytes [40]. VIP suppresses Th1 cell function and
differentiation, as demonstrated by the decreased IFNγ
expression. On the other hand, Th2 function is enhanced in
VIP-treated mice, as determined by the observed increase
in IL-4 production. In the era of Th1/Th2 dichotomy, it
was thought that this peptide possibly “rebalanced” these
Th subsets in the immune system [40, 101]. This fact was also
observed in other animal models of autoimmune diseases
such as Crohn’s disease, multiple sclerosis, and autoimmune
diabetes [37, 104] regardless of the way of administration
since “in vivo” delivery of lentiviral vectors expressing
VIP complementary DNA had the same effect than

6 Journal of Immunology Research



intraperitoneal administration of VIP [105]. In this animal
model of RA, VIP not only shifted the immune response
towards a Th2-type response but also expanded CD4+CD25+

Treg in the periphery, which inhibited autoreactive T cell
activation/expansion [106]. After Th17 discovery, it has also
demonstrated that this neuropeptide also downregulates
Th17 response in CIA model, increasing the balance between
Treg/Th17 subsets and influencing in this way on the RANK/
RANKL/OPG system [41, 107, 108] (Figure 1).

These studies with exogenous administration of VIP in
animal models of RA were completed using samples
“ex vivo” of RA patients. In PBL from RA patients, the
presence of VIP increased the levels of IL-4 and IL-10 after
polyclonal stimulation with PMA/ionomycin, favoring a
Th2/Treg profile. Indeed, VIP potentiates Th2 differentiation
from healthy donors CD4+CD45RA+ (naïve T cells) [50]. Our
results with activated/expanded memory Th cell “ex vivo”
from early RA patients showed that these cells generate a
greater proportion of Th17 cells with pathogenic Th17 and
Th17/1 profile. VIP lowered this pathogenic profile, decreas-
ing IL-22, GM-CSF, IL-2, IL-21, IL-23R, IL-21R, T-bet, and
STAT3, although the effect was higher in healthy donors than
in RA patients [21]. These results are in agreement with the
fact that VIP maintains the nonpathogenic profile of human
Th17 polarized cells, decreasing their Th1 potential [109].
Even when memory Th cells from early RA patients were
polarized towards a nonpathogenic Th17 profile in the pres-
ence of TGFβ, they produced significantly more IL-22 and
IFNγ and show a more Th17/1 profile. The presence of VIP
in the conditioned medium reduced IL-22 levels but
increased IL-10 and IL-9. Indeed, VIP inhibits Th17 polariza-
tion bias to Th1-like cells, inducing a negative correlation
between the master regulators for Th1 and Th17 subsets,
Tbx21 (T-bet), and RORC (RORγt), respectively. These
data suggest that VIP reduces the pathogenic profile of
Th17-polarized cells from early RA patients, increasing
Treg/Th17 profile and decreasing Th17/Th1 profile [51].
VIP can exert the Th17 modulation in these cells since both
VPAC receptors are present in them; however, an unbalance
between VPAC1 and VPAC2 was observed. The proportion
of VPAC2 was higher in activated memory Th cells and
Th17-polarized cells from early RA patients than from
healthy donors [21, 51] (Figure 1).

The ability ofVIP tomodulate Th17 orTh1 effects inRA is
not restricted only to its effect on CD4 T lymphocytes since
VIP counteracts the enhancing effect of proinflammatory
molecules on IL-22R, IL-17R, and IL-12 family of cytokines
in FLS disfavoring the cross-talk between FLS and Th1/Th17
cells [49, 102].

In summary, given the importance of pathogenic Th17
and nonclassical Th1 cells in RA pathology, VIP is shown
as a mediator present in the microenvironment, capable of
modulating the pathogenicity of Th17 cells and their Th1
plasticity in RA patients.

6. Conclusions

VIP modulates all the stages between the arrival of pathogens
and the differentiation of Th cells in the pathology of RA

through its anti-inflammatory and immunomodulatory
actions. It acts as an antimicrobial peptide, decreases PRR
expression and its inflammatory signaling, downregulates
the production of proinflammatory cytokines and chemo-
kines, and counterbalances Th subsets decreasing pathogenic
Th17 cells and their capacity to shift to Th1 profile.

Taking into account, this endogenous peptide represents
excellent candidate for the development of multitarget thera-
peutic strategies that modulate both innate and adaptive
immune system.
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