Abstract: Mergers and tidal interactions between massive galaxies and their dwarf satellites are a fundamental prediction of the Lambda-Cold DarkMatter cosmology. These events are thought to influence galaxy evolution throughout cosmic history and to provide important observational diagnostics of nonlinear structure formation. Thin stellar streams in the Milky Way and Andromeda galaxies are spectacular evidence for satellite disruption at the present day. However, constructing a statistically meaningful sample of tidal streams beyond our immediate cosmic neighborhood has proven a daunting observational challenge, and their potential for deepening our understanding of galaxy formation has yet to be realized. In this talk, I present the results of the Stellar Tidal Stream Survey in the last decade, a project devoted to undertake a systematic deep imaging survey of stellar tidal streams with amateur telescopes (and recently with deep archival DECam data) around a sample nearby galaxies, including many Milky Way analogues. The goal of our survey is to constrain the rate of occurrence of tidal streams in the local Universe and construct robust distributions of their mass, morphology and colour. These data will allow us, as part of this project, to make the first direct, quantitative comparisons of tidal stream statistics to predictions from state-of-the-art Lambda-CDM cosmological simulations. I will also discuss our plans to use some of these streams as test of natural "particles" to trace the dark matter content of nearby galaxies using the future MOSAIC spectrograph at the ESO Extremely Large Telescope.