

Curso Académico 2018-19

ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS (800581)

Créditos: 6

Créditos presenciales: 2,6 Créditos no presenciales: 3,4

Semestre: 4

PLAN/ES DONDE SE IMPARTE

Titulación: GRADO EN MATEMÁTICAS Plan: GRADO EN MATEMÁTICAS Curso: 2 Ciclo: 1

Carácter: Obligatoria

Duración/es: Por determinar (no genera actas), Segundo cuatrimestre (actas en Jun. y Jul.)

Idioma/s en que se imparte:

Módulo/Materia: CONTENIDOS INICIALES/ECUACIONES DIFERENCIALES ORDINARIAS

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
LOPEZ GOMEZ, JULIAN	Análisis Matemático y	Facultad de Ciencias	jlopezgo@ucm.es	
LOI LE GOIVILE, GOLIAIN	Matemática Aplicada	Químicas	jiopezgo@dcin.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
LUQUE MARTINEZ, TERESA	Análisis Matemático y	Facultad de Ciencias	t.luque@ucm.es	
ELVIRA	Matemática Aplicada	Matemáticas	·	
AVILA TEJERA, JUAN JULIAN	Análisis Matemático y	Facultad de Informática	tejera@ucm.es	
	Matemática Aplicada			
PRIETO YERRO, M. ANGELES	Análisis Matemático y	Facultad de Ciencias	angelin@ucm.es	
	Matemática Aplicada	Matemáticas		
BRAUER , UWE RICHARD OTTO	Análisis Matemático y	Facultad de Ciencias	oub@ucm.es	
	Matemática Aplicada	Químicas		
GARRIDO CARBALLO, MARÍA	Álgebra, Geometría y	Facultad de Ciencias	maigarri@ucm.es	
ISABEL	Topología	Matemáticas		
RUIZ BERMEJO, CESAR	Análisis Matemático y	Facultad de Informática	cruizb@ucm.es	
	Matemática Aplicada			

SINOPSIS

BREVE DESCRIPTOR:

Iniciación en las ecuaciones diferenciales ordinarias y sus aplicaciones. Ecuaciones y sistemas lineales. Construcción de sistemas fundamentales de soluciones en el caso de coeficientes constantes. Ecuaciones no lineales escalares. Técnicas fundamentales de resolución exacta.

REQUISITOS:

Aunque no sea imprescindible, es conveniente haber cursado las asignaturas de Análisis de variable real, Cálculo diferencial y Álgebra Lineal.

OBJETIVOS:

1. Estudiar las propiedades generales de las ecuaciones y sistemas lineales. 2. Construir con soltura sistemas fundamentales de soluciones para los sistemas y ecuaciones lineales con coeficientes constantes. 3. Adquirir destreza en el uso de las técnicas elementales de resolución explícita de las ecuaciones escalares no lineales de primer orden. 4. Identificar y resolver problemas matemáticos mutidisciplinares con técnicas de ecuaciones diferenciales.

Curso Académico 2018-19

ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS Ficha Docente

COMPETENCIAS:

Generales

Comprender la importancia capital de las ecuaciones diferenciales en el ámbito de la Ciencia y la Técnica e identificar todas aquellas que son resolubles con los métodos de integración existentes. Desde el desarrollo del cálculo diferencial por Newton y Leibnitz las ecuaciones diferenciales se han ganado el prestigio de ser la herramienta matemática más potente para la resolución de todo tipo de problemas en ciencias aplicadas e ingeniería, desde la confirmación matemática de las leyes de Kepler, hasta el desarrollo del electromagnetismo, la predicción de la curvatura de la luz sometida a campos gravitatorios por Einstein, la demostración de la existencia de agujeros negros por Hawking y Penrose, o la evaluación de activos financieros a partir de la teoría de Black, Scholes y Merton, quienes por su desarrollo fueron laureados con el Nobel de Economía.

Transversales:

En lo posible, dependiendo del curso y titulación en que se imparta la asignatura, se tratarán de facilitar las siguientes competencias transversales:

- 1. Introducción al Análisis Funcional estudiando el espacio de las funciones vectoriales continuas en un intervalo compacto y el teorema de la aplicación contractiva de Banach con el objetivo expreso de obtener el teorema de existencia y unicidad de solución para el problema de valores iniciales asociado a un sistema general de primer orden con coeficientes continuous e inferir, a partir de él, las dimensiones y propiedades fundamentales de su conjunto de soluciones, así como sus ecuaciones paramétricas.
- 2. Manejo de la forma canónica de Jordan con objeto de calcular fluidamente exponenciales de matrices para construir sistemas de referencia afín que permitan parametrizar los conjuntos de soluciones de los sistemas lineales de primer orden con coeficientes constantes.

Específicas:

- 1. Demostrar la existencia y unicidad de solución para problemas de valores iniciales relativos a las ecuaciones y sistemas lineales de primer orden y derivar a partir de ella todas las propiedades de estructura de sus conjuntos de soluciones.
- 2. Construir fluidamente soluciones generales para ecuaciones y sistemas lineales de primer orden con coeficientes constantes.
- 3. Resolver ecuaciones lineales con coeficientes analíticos por el método de desarrollo en serie de potencias.
- 4. Resolver ecuaciones lineales utilizando transformaciones integrales; competencia que puede relajarse dependiendo del curso y titulación en que se imparta la asignatura.
- 5. Manejar fluidamente las técnicas fundamentales de integración elemental de las ecuaciones escalares no lineales de primer orden.
- 6. Conocer algunos fundamentos de análisis numérico de ecuaciones diferenciales; competencia que puede relajarse dependiendo del curso y titulación en que se imparta la asignatura

Otras:

Fecha ficha docente: 19/03/2018

Identificar en cada titulación particular algunas de las ecuaciones diferenciales más importantes cuyo tratamiento matemático ha sido más fructífero desde el punto de vista de sus aplicaciones. Por ejemplo, mientras que la ecuación logística es una pieza clave en dinámica de poblaciones, la ecuación de Bessel es de importancia capital en Física, así como la del oscilador armónico unidimensional, que es la ecuación de tipo Schrödinger más simple existente.

CONTENIDOS TEMÁTICOS:

PARTE I: ECUACIONES Y SISTEMAS LINEALES.

- 1. La ecuacion lineal. Ecuaciones y sistemas lineales de primer orden. Estructura del conjunto de soluciones. Teorema de existencia y unicidad de solución para los problemas de valores iniciales asociados. Existencia de matrices fundamentales de soluciones de ecuaciones y sistemas homogéneos. Propiedades fundamentales. Método de variación de las constantes. Soluciones generales.
- 2. Construcción de sistemas fundamentales de soluciones y resolución de ecuaciones lineales de orden superior con coeficientes constantes. Exponencial de una matriz. Construcción de sistemas fundamentales de soluciones para sistemas de primer orden con coeficientes constantes. Fórmula de variación de las constantes. Solución general. Comportamiento cualitativo de las soluciones.
- 3. Construcción de sistemas fundamentales de soluciones por desarrollo en serie de potencias para ecuaciones lineales de segundo orden con coeficientes analíticos. La ecuación de Bessel y el oscilador armónico unidimensional (optativo dependiendo

Curso Académico 2018-19

ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS Ficha Docente

de la titulación).

4. (Adaptable dependiendo del curso y titulación en que se imparta la asignatura): Resolución de ecuaciones lineales con la transformada de Laplace.

PARTE II: INTRODUCCIÓN A LA TEORÍA NO LINEAL.

- 5. Métodos elementales de resolución de ecuaciones diferenciales escalares de primer orden: (a) ecuaciones de Bernouilli y Riccatti, (b) la ecuación logística, (c) teorema de existencia y unicidad para los problemas de valor incial relativos a las ecuaciones en variables separadas, (d) ecuaciones homogéneas y reducibles a homogéneas, (e) construcción de haces integrales y diagramas de fases para los sistemas planos de primer orden con coeficientes constantes, (f) ecuaciones diferenciales exactas. Fenómenos de no unicidad y explosión en tiempo finito.
- 6. (Adaptable dependiendo del curso y titulación en que se imparta la asignatura): Breve introducción a los sistemas no lineales. Campos de direcciones e isoclinas. Modelos de interés en ciencias sociales, experimentales e ingeniería.
- 7. (Adaptable dependiendo del curso y titulación en que se imparta la asignatura): Breve introducción a la resolución numérica de ecuaciones diferenciales. Esquemas de Euler y Runge-Kutta.

ACTIVIDADES DOCENTES:

Clases teóricas:

Sesiones académicas teóricas

Seminarios:

Los Seminarios programados se dedicarán a completar las clases teóricas y prácticas, con cuestiones teórico-prácticas sometidas a debate y ejercicios expuestos por los estudiantes, a la resolución de dudas, tanto teóricas como prácticas, o podrán ser dedicados a controles.

Clases prácticas:

Sesiones académicas de problemas

Trabajos de campo:

Prácticas clínicas:

Laboratorios:

Exposiciones:

Se podrá solicitar a los estudiantes que expongan resultados o problemas.

Presentaciones:

Se podrán encargar presentaciones a los estudiantes.

Otras actividades:

TOTAL:

EVALUACIÓN:

En la convocatoria ordinaria, la calificación del examen final constituirá entre un 50% y un 80% de la nota final. El porcentaje restante se obtendrá a partir de la realización de entre uno y cuatro controles intermedios, así como por la asistencia continuada a clase y la resolución de los ejercicios y tareas propuestos por las/os profesoras/es y su exposición en la pizarra. La calificación final en la convocatoria ordinaria será el máximo entre la calificación obtenida de esta manera y la otorgada en el examen final de la asignatura. En la convocatoria de septiembre, únicamente se tendrá en cuenta la calificación obtenida en el examen, que, por tanto, contabiliza el 100% de la nota.

BIBLIOGRAFÍA BÁSICA:

M. Braun, Ecuaciones diferenciales y sus aplicaciones. Grupo Editorial Iberoamericano (1990).

W.E. Boyce y R.C. DiPrima, Ecuaciones diferenciales y problemas con valores en la frontera, Limusa Wiley (2010).

- J. López-Gómez, Elementos de Ecuaciones Diferenciales y Variable Compleja, Pearson Educación, Madrid 2001.
- J. López-Gómez, Elementos de Ecuaciones Diferenciales y Variable Compleja, Problemas y Ejercicios resueltos, Prentice Práctica, Madrid 2002.
- C. Fernández Pérez, F. Vázquez Hernández, y J.M. Vegas Montaner, Ecuaciones diferenciales y en diferencias. Thomson, 2003
- A. Kiseliov, M. Krasnov y G. Makarenko, Problemas de ecuaciones diferenciales ordinarias, Mir (1988). F. Simmons, Ecuaciones Diferenciales con aplicaciones y notas históricas. Mc Graw-Hill (1977).
- D.G. Zill, Ecuaciones diferenciales con aplicaciones de modelado, Cengage Learning (2009).

OTRA INFORMACIÓN RELEVANTE

Se facilitarán hojas de problemas y diversos materiales teórico-prácticos para preparar y aprovechar al máximo la asignatura.

Curso Académico 2018-19 ELEMENTOS DE ECUACIONES DIFERENCIALES ORDINARIAS Ficha Docente