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Modelling drifting coeffi cients and volatilities

Dynamic Latent Variables in Macro

We have so far considered models where all dynamics are in observables.
That is, the only unobserved components are in the errors which do not
exhibit relevant dynamics.

However, in many instances, macroeconomic models involve latent dynamic
variables that we wish to take into account when drawing inference.

Some leading examples:
1 Factor models and Factor-augmented VARs
2 Dynamic Stochastic General Equilibrium models
3 Time Varying Parameters models (TV-VAR, unobserved component models)
4 Stochastic Volatilty models
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Modelling drifting coeffi cients and volatilities

Basic Set-up and Goals

We have observed a set of N variables Yt over T time periods.

These in turn depends on k latent variables, or state variables, or simply
"states" st .

We then wish to:
1 Estimate the parameters governing the dynamics of (Yt , st ).
2 Predict and forecast both observed and latent variables.

To reach these two goals, we need a model specifying their joint dynamics.

This lecture: Linear Gaussian State Space Models, which allow for simple
estimation and prediction via ML and through the use of the so-called
Kalman filter.

However, this class of SS is kind of restrictive - linear and Gaussian.

Andrea Carriero (QMUL) Drifting coeffi cients and volatilities January 2018 3 / 42



Modelling drifting coeffi cients and volatilities

Linear Gaussian State Space Models (SS)

The linear SSM’s consists of two equations

Space (measurement, observation): Yt = Φst + εt ,

State (transition): st = Fst−1 + ηt .[
εt
ηt

]
∼ i .i .d .N

(
0,
[

Ωε 0
0 Ωη

])
.

Yt vector of N observed variables, while st vector of k unobserved states

Φ and F are N × k and k × k coeffi cient matrices
Intercepts or additional exogenous regressors in both equations are omitted
but can be introduced easily.

Similarly, time variation in the coeffi cient matrices Φ and F can be allowed
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Modelling drifting coeffi cients and volatilities

Example - ARMA as SS

Let the observed time series Yt solve

Yt = φ1Yt−1 + ut + ϑut−1, ut ∼ i.i.d. N
(
0, σ2u

)
.

We can rewrite this model as:{
Yt = st + ut

st = φ1st−1 + (φ1 + ϑ)ut−1

Which is in SS form with Φ = 1, F = φ1, εt = ut , ηt = (φ1 + ϑ)ut−1 with
Ωε = σ2u , Ωη = (φ1 + ϑ)2σ2u .

Indeed:

→ st = φ1(st−1 + ut−1) + ϑut−1 = φ1Yt−1 + ϑut−1
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Modelling drifting coeffi cients and volatilities

Example - ARMA as SS

There are more ways to write a SS from the same model:

Yt = φ1Yt−1 + ut + ϑut−1, ut ∼ i.i.d. N
(
0, σ2u

)
.

We can write:  Yt = s1t + ϑs2t
s1t = φ1s1t−1 + ut ;

s2t = s1t−1

Which is in SS form with st = (s1t , s2t )′,

Φ =
[
1 ϑ

]
, F =

[
φ1 0
1 0

]
, εt = 0, ηt =

[
ut
0

]
,

Ωε = 0 , Ωη =

[
σ2u 0
1 0

]
.

Indeed:

Yt = (φ1s1t−1 + ut ) + ϑ(φ1s1t−2 + ut−1)

= φ1(s1t−1 + ϑs1t−2) + ut + ϑut−1
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Modelling drifting coeffi cients and volatilities

Example - ARMA as SS

ARMA(2,1):

Yt = φ1Yt−1 + φ2Yt−2 + ut + ϑut−1, εt ∼ i.i.d. N
(
0, σ2u

)
.

Can be written as:

Yt =
[
1 ϑ

] [ s1t
s2t

]
= s1t + ϑs2t[

s1t
s2t

]
=

[
φ1 φ2
1 0

] [
s1t−1
s2t−1

]
+

[
ut
0

]
,

Indeed:

Yt = φ1s1t−1 + φ2s2t−1 + ut + ϑ(+φ1s1t−2 + φ2s2t−2 + ut−1)

= φ1(s1t−1 + ϑs1t−2) + φ2(s2t−1 + ϑs2t−2) + ut + ϑut−1
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Modelling drifting coeffi cients and volatilities

Example - VARMA as SS

Let the observed time series Yt solve

Yt = AYt−1 + ut + But−1, εt ∼ i.i.d. N (0,Ωu) .

We can rewrite this model as

Yt = st + ut ,

st = Ast−1 + (A+ B) ut−1.

Indeed:
Yt = A(st−1 + ut−1) + ut + But−1,

In particular, εt = ut and ηt = (A+ B) ut−1 are uncorrelated.

More generally, any VARMA(p, q) model with parameters θ can be
formulated as a SS with {Φ, F , Ωε, Ωη} = f (θ)
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Modelling drifting coeffi cients and volatilities The Kalman Filter

The Kalman Filter - Learning about states from data

The Kalman filter is designed to produce and update linear projections of the
latent variable st given observations of Yt .

Useful in its own right, and is also employed in estimation.

The Kalman filter is a recursive algorithm that at each time point computes
the current best estimate (in MSE terms) of the latent process given
observations of Yt .

Define:
st |s := E [st |Y1:s ] , Pt |s := Var [st |Y1:s ] .

We then wish to do:

Filtering : st |t and Pt |t , t = 1, ...,T .

Smoothing: st |T and Pt |T , t = 1, ...,T .
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Modelling drifting coeffi cients and volatilities The Kalman Filter

Derivation of Kalman Filter

Assume you start by knowing st−1 ∼ N(st−1|t−1,Pt−1|t−1). The filter is a
rule to update to st ∼ N(st |t ,Pt |t ) once we observe data Yt .
The first step is to find the joint distribution of states and data in t,
conditional on past observations (1, ..., t − 1):[

st
Yt

]∣∣∣∣ It−1 ∼ N
([

st |t−1
Yt |t−1

]
,

[
Pt |t−1 C ′t |t−1
Ct |t−1 Σt |t−1

])
(1)

The moments above can be calculated easily using the equations of the
system, Yt = Φst + εt , st = Fst−1 + ηt ⇒

st |t−1 = E [st |Yt−1 ] = FE [st−1 |Yt−1 ] + E [ηt |Yt−1 ] = Fst−1|t−1,
Yt |t−1 = E [Yt |Yt−1 ] = ΦE [st |Yt−1 ] + E [εt |Yt−1 ] = Φst |t−1.

Pt |t−1 = Var [st |Yt−1 ] = FPt−1|t−1F ′ +Ωη,

Σt |t−1 = Var [Yt |Yt−1 ] = ΦPt |t−1Φ′ +Ωε,

Ct |t−1 = Cov (Yt , st |Yt−1) = ΦPt |t−1.
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Modelling drifting coeffi cients and volatilities The Kalman Filter

Conditional and joint normals

We have now specified the distribution (st ,Yt |Yt−1) we now look for the
distribution (st |Yt ,Yt−1) = (st |Yt ).
This is easy to do using basic results regarding Normal distributions: Let
(a, b) be normally distributed,[

a
b

]
∼ N

([
µa
µb

]
,

[
Ωaa Ωab
Ωba Ωbb

])
. (2)

Then the conditional distribution of a conditional on b is given as

a|b ∼ N
(

µa|b ,Ωa|b
)
, (3)

where

µa|b = µa +ΩabΩ−1bb (b− µb) , Ωa|b = Ωaa −ΩabΩ−1bb Ωba.

So all is needed is to apply the result (3) when (2) is the joint distribution in
(1)
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Modelling drifting coeffi cients and volatilities The Kalman Filter

Updating a linear projection

By doing so we obtain:[
a = st
b = Yt

]∣∣∣Yt−1 ∼ N ([ µa = st |t−1
µb = Yt |t−1

]
,
[

Ωaa = Pt |t−1 Ωab = C ′t |t−1
Ωba = Ct |t−1 Ωbb = Σt |t−1

])
and by applying the result (3)

st |Yt−1,Yt ∼ N
(

µa|b = st |t ,Ωa|b = Pt |t
)

(4)

with

st |t = st |t−1 + C
′
t |t−1Σ−1t |t−1

(
Yt − Yt |t−1

)
(5)

Pt |t = Pt |t−1 − C ′t |t−1Σ−1t |t−1Ct |t−1 (6)

So we have moved from (st−1 |Yt−1) to (st ,Yt |Yt−1) (prediction) and then
from (st ,Yt |Yt−1) to (st |Yt ) (update).
We can now repeat and use (st |Yt ) to move forward to (st+1 |Yt+1)
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Modelling drifting coeffi cients and volatilities The Kalman Filter

Kalman gain and updating equations

The Kalman Filter updating equations are therefore:

st |t = st |t−1 + C
′
t |t−1Σ−1t |t−1

(
Yt − Yt |t−1

)
Pt |t = Pt |t−1 − C ′t |t−1Σ−1t |t−1Ct |t−1

Using Ct |t−1 = ΦPt |t−1 (see (1)) these can be re-written as:

st |t = st |t−1 +Kt |t−1vt |t−1 (7)

Pt |t = Pt |t−1 −Kt |t−1ΦPt |t−1 (8)

with Kt |t−1
Kt |t−1 = Pt |t−1Φ′Σ−1t |t−1 (9)

denoting the Kalman Gain and vt |t−1 =
(
Yt − Yt |t−1

)
denoting the 1-step

ahead prediction error.
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Modelling drifting coeffi cients and volatilities The Kalman Filter

The Kalman Filter recursions

The inputs needed in the updating equations are the moments of (1):

st |t−1 = Fst−1|t−1 (state prediction)

vt |t−1 = Yt −Φst |t−1 (prediction error on y)

Pt |t−1 = FPt−1|t−1F
′ +Ωη (variance of state prediction)

Σt |t−1 = ΦPt |t−1Φ′ +Ωε, (variance of prediction error)

these are called the prediction equations.

The algorithm works as follows:
1) Start with an initial condition st−1 ∼ N(st−1|t−1,Pt−1|t−1)
2) Use the 4 prediction equations above to find st |t−1, vt |t−1,Pt |t−1,Σt |t−1,
3) Compute the Kalman gain (9)
4) Use the updating equations (7)-(8) to find st ∼ N(st |t ,Pt |t )
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Modelling drifting coeffi cients and volatilities The Kalman Filter

Likelihood

As a by product, the algorithm will provide the rime series of vt |t−1 and
Σt |t−1 for t = 1, ...T .
So at each t = 1, ...T we can compute and store:

l(Yt |Y1:t−1; θ) ∝ − ln |Σt |t−1 (θ) | − v ′t |t−1 (θ)Σ−1t |t−1 (θ) vt |t−1 (θ)}

where
θ = f −1(Φ, F , Ωε, Ωη)

The sum of the likelihoods of the forecast errors ∑ lt (θ) provides the
likelihood of the whole system

Therefore the KF offers a fast way to evaluate the likelihood of a SS model.
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

The Carter-Kohn algorithm

A recursive algorithm to draw from the states posterior distribution

Define the history of states and data up to time T

s1, ..., sT = s̃T , y1, ..., yT = ỹT ,

we desire to draw from p(s̃T |ỹT ).
This posterior can be factorized as follows

p(s̃T |ỹT ) = p(sT |ỹT )× p(s̃T−1 |sT , ỹT )
= p(sT |ỹT )× {p(sT−1 |sT , ỹT )× p(s̃T−2 |sT−1, sT , ỹT )}
= p(sT |ỹT )× {p(sT−1 |sT , ỹT )× {p(sT−2 |sT−1, ỹT )
×p(s̃T−3 |sT−2, sT−1, sT , ỹT )}}
...
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Factorizing the posterior of states

Because of the Markov property:

= p(sT |ỹT )× {p(sT−1 |sT , ỹT )× {p(sT−2 |sT−1, ỹT )
×p(s̃T−3 |sT−2, sT−1, sT , ỹT )}}
...

= p(sT |ỹT )× p(sT−1 |sT , ỹT−1)× p(sT−2 |sT−1, ỹT−2)
×p(sT−3 |sT−2, ỹT−3)
...

= p(sT |ỹT )×∏1
t=T−1 p(st |st+1, ỹt )
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Updating the posterior of states

We have:
p(s̃T |ỹT ) = p(sT |ỹT )×∏1

t=T−1 p(st |st+1, ỹt )

The last iteration of the KF gives sT |ỹT . We want to generate the terms
∏1
t=T−1 p(st |st+1, ỹt ) and eventually obtain p(s̃T |ỹT )

The KF gives us st |ỹt ∼ N(st |t ,Pt |t ). So the problem reduces to making the
move:

st |ỹt ∼ N(st |t ,Pt |t )→ st |st+1, ỹt ∼ N(st |t ,st+1 ,Pt |t ,st+1 )

with

st |t ,st+1 = E [st |ỹt , st+1 ] = E [st |st |t , st+1 ]
Pt |t ,st+1 = Var [st |ỹt , st+1 ] = Var [st |st |t , st+1 ]
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Drawing from the posterior of states

Again this can be done using the formula for updating a linear projection

We start with writing down the distribution of st , st+1 |ỹt :[
a = st
b = st+1

]∣∣∣∣ ỹt ∼ N
([

µa = st |t
µb = st+1|t

]
,

[
Ωaa = Pt |t Ωab = Pt |tF

′

Ωba = FP ′t |t Ωbb = Pt+1|t

])

where we have used:

COV (st+1, st |ỹt ) = COV (Fst + ηt+1, st |ỹt ) = FP ′t |t
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Drawing from the posterior of states

Then we use the formula for updating a linear projection:

a|b, ỹt ∼ N
(

µa|b ,Ωa|b
)
,

where

a = st , b = st+1
µa|b = µa +ΩabΩ−1bb (b− µb)

= st |t + Pt |tF
′P−1t+1|t

(
st+1 − st+1|t

)
= st |t ,st+1

Ωa|b = Ωaa −ΩabΩ−1bb Ωba

= Pt |t − Pt |tF ′P−1t+1|tFP
′
t |t = Pt |t ,st+1
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Drawing from the posterior of states

Finally, we use the fact that st+1|t = Fst |t and Pt+1|t = FPt |tF
′ +Ωη to

get:

st |st+1, ỹt ∼ N
(
st |t ,st+1 ,Pt |t ,st+1

)
, (10)

with

st |t ,st+1 = st |t + Pt |tF
′(FPt |tF

′ +Ωη)
−1
(
st+1 − Fst |t

)
Pt |t ,st+1 = Pt |t − Pt |tF ′(FPt |tF ′ +Ωη)

−1FP ′t |t

Starting from the initial draw sT |ỹT and the moments st |t ,st+1 and Pt |t ,st+1
can be used to recursively draw from st |st+1, ỹt ∼ N(st |t ,st+1 ,Pt |t ,st+1 ) for
t = T − 1,T − 2, ..., 1.
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Predetermined and exogenous variables

The model we considered:{
Yt = Φst + εt , εt ∼ i .i .d .N(0,Ωε),
st = Fst−1 + ηt , ηt ∼ i .i .d .N(0,Ωη),

(11)

with εt and ηt independent, is more general than it seems.

Say e.g. you want to add exogenous variables in the observation equation
and an intercept in the transition equation:{

Yt = cY Xt +Φst + εt , εt ∼ i .i .d .N(0,Ωε)
st = cs + Fst−1 + ηt , ηt ∼ i .i .d .N(0,Ωη)

defining Y ∗t = Yt − cY Xt , s∗t = (1, st ), F ∗ = [c ′s , F ′]′, and
η∗t = (0

′, η′t )
′ would lead to a representation like (11)

Watch out for identification problems!
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Predetermined and exogenous variables

Or, it might be convenient to leave the SS model with explicit intercepts and
exogenous variables and just modify the Kalman Filter equations accordingly.{

Yt = cY Xt +Φst + εt , εt ∼ i .i .d .N(0,Ωε)
st = cs + Fst−1 + ηt , ηt ∼ i .i .d .N(0,Ωη)

The predictions equations involving the means will change:

st |t−1 = cs + Fst−1|t−1 (state prediction) (12)

vt |t−1 = Yt − cY Xt −Φst |t−1 (y prediction error) (13)

Note that in the example above, setting Xt = (1,Yt−1, ...,Yt−p) we have a
FAVAR
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Example - ARMA(2,1) again

Consider the ARMA again:

Yt = φ1Yt−1 + ut + ϑut−1, ut ∼ i.i.d. N
(
0, σ2u

)
.

yt = φ1y1t−1 +
[
1 ϑ

] [ s1t
s2t

]
[
s1t
s2t

]
=

[
0 0
1 0

] [
s1t−1
s2t−1

]
+

[
ut
0

]
,

Note that in this case one needs to modify the filtering equations as the
measurement equation contains exogenous (predetermined) variables φ1y1t−1
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Time varying coeffi cient matrices

Since the filter is applied for each time t it is straightforward to allow for the
matrices of coeffi cients to be time-varying. For example:{

Yt = Φt st + εt , εt ∼ i .i .d .N(0,Ωε,t )
st = Fst−1 + ηt , ηt ∼ i .i .d .N(0,Ωη)

allows for time variation in Φt and Ωε,t .

The prediction equations that need to be modified are:

vt |t−1 = Yt −Φt st |t−1 (y prediction error) (14)

Σt |t−1 = ΦtP ′t |t−1Φ′t +Ωε,t , (prediction error variance) (15)

Setting Φt = Xt with Xt containing lags of Yt gives a TVP VAR.
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Applications - Time varying coeffi cients model

yt = β0t + β1tyt−1 + β2tyt−2 + ...+ βptyt−p + et ; et ∼ iid(0, σ2)
βit = ϕi βit−1 + vit ; vt ∼ iid(0,Ωv ), E [et , vis ] = 0 ∀i , s, t

State space is:

yt =
[
yt ... yt−p

]
xt

 β1t
...

βpt

+ et
 β0t
...

βpt

 =

 ϕ0 · · · 0
...

. . .
...

0 · · · ϕp


 β0t−1

...
βpt−1

+
 v0t

...
vpt

 ,
See Cogley and Sargent (2005) and Primiceri (2005).
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Applications - Time varying coeffi cients model

We choose ϕ = 1 and specify the priors:

Ωv ∼ IW (Q0, v0); σ2 ∼ IG (s0/2, n0/2)

the state equation is:
βit = βit−1 + vit ;

the posterior is obtained by:

1 Draw the posterior of the states using the CK algorithm:
p(βi1:T |y ,Ωv , σ

2, βi0)

2 Draw
Ωv |βi1:T , σ

2, y ∼ IW (Q0 + (βi2:T − βi1:T−1)
′(βi2:T − βi1:T−1), v0 + T );

3 Draw σ2 |βi1:T ,Ωv , y ∼ IG ((s0 +∑(yt − xtβt )2)/2, (n0 + T )/2)
Example: ARTVP.m
Note some of the conditioning can be suppressed (in particular Ωv and σ2 are
mutually redundant, and σ2 is redundant in drawing the states).
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Modelling drifting coeffi cients and volatilities Carter-Kohn algorithm

Applications - Time varying coeffi cients model
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Applications - Time varying coeffi cients model
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Applications - Time varying coeffi cients model
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

Applications - Stochastic Volatility models

Model

Yt =
√
htzt ,

log ht = ω+ α log ht−1 + ηt ,

where zt ∼ (0, 1).
In particular, ht = Et−1

[
Y 2t
]
is the conditional variance of the process.

Harvey et al. (1994) proposed to square and then take log’s in the
measurement equation to obtain

logY 2t = κ + log ht + εt , εt := log z2t − κ, κ = E [log z2t ].

Treating εt as an approximately normally distributed variable,
(
logY 2t , log ht

)
solves a linear state space model.
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

The Kim, Shepard and Chib (1998, KSC) algorithm

Consider changing the error term et ∼ iid(0, σ2) of the AR-TVP estimated
above to:

et =
√

σ2t εt , εt ∼ iid(0, 1),

with ln σ2t = ln σ2t−1 + ηt , that is, the error term is conditionally
heteroschedastic.

Now take the squares e2t = σ2t ε2t and transform in logs:{
ln e2t = ln σ2t + ln ε2t
ln σ2t = ln σ2t−1 + ηt

(16)

which is a linear but not Gaussian state space.

However εt is a Gaussian process with unit variance and hence ln ε2t is the log
of a chi-square.
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

The KSC algorithm

Kim, Shepard and Chib (1998) propose to approximate the distribution of ln ε2t by
using a mixture of normals:

f (ln ε2t ) ≈ ΣKi=1qi fG (ln ε2t |mi − 1.2704, v2i ),

which can be written also as:{
p(st = i) = qi

ln ε2t |st = i ∼ N(mi − 1.2704, v2i )

KSC choose K and the triplet qi ,mi , v2i that provides a good approximation:

st= 1 st= 2 st= 3 st= 4 st= 5 st= 6 st= 7
qi 0.0073 0.10556 0.00002 0.04395 0.34001 0.24566 0.2575
mi -10.12999 -3.97281 -8.56686 2.77786 0.61942 1.79518 -1.08819
v2i 5.79596 2.61369 5.17950 0.16735 0.64009 0.34023 1.26261
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

The KSC algorithm

Under such approximation, the state space in (16) becomes tractable,
conditionally on a draw of st
In particular, conditionally on a draw of st , t = 1, ...,T the observation
equation becomes

ln e2t |st = ln σ2t |st + ln ε2t |st (17)

with
(ln ε2t |st = i) ∼ N(mi − 1.2704, v2i ) (18)

and therefore -conditionally on st - the state ln σ2t can be simulated using the
standard Carter-Kohn algorithm

Andrea Carriero (QMUL) Drifting coeffi cients and volatilities January 2018 34 / 42



Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

The KSC algorithm

Note that this means

(ln e2t − ln σ2t |st = i) ∼ N(mi − 1.2704, v2i )

or equivalently

(ln e2t |st = i) ∼ N(ln σ2t +mi − 1.2704, v2i )

with Gaussian p.d.f. fG (ln e2t |st = i).
It follows that, to draw the states we can use:

p(st = i | ln e2t )
∝ p(st = i)× p(ln e2t |st = i)
= qi × fG (ln e2t | ln σ2t +mi − 1.2704, v2i )
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

Applications - AR with time varying variance and
coeffi cients

We are now able to produce draws from the posterior of this -more general- model:
yt = β0t + β1tyt−1 + β2tyt−2 + ...+ βptyt−p +

√
σ2t εt

βit = βit−1 + vit , i = 1, ...,N
ln σ2t = ϕi ln σ2t−1 + ηt ,

with:

εt ∼ iid(0, 1), ηt ∼ iid(0,Ωη), vt ∼ iid(0,Ωv ),

E [εt , ηs ] = 0 ∀ s, t; E [ηt , vi ,s ] = 0 ∀i , s, t; E [εt , vi ,s ] = 0 ∀i , s, t
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

Applications - AR with time varying variance and
coeffi cients

This model has the following parameter blocks, for which one needs to specify a
prior:

Ωv ∼ IW (Qv0 , vv0 ), Ωη ∼ IG (Qη
0 , v

η
0 )

and the states
ln σ2t , βit , i = 1, ...,N

To these states, we have to add the mixture states st necessary to be able to use
the approximation:

ln ε2t |st = i ∼ N(mi − 1.2704, v2i )
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

Applications - AR with time varying variance and
coeffi cients

The algorithm draws in turn from the following distributions:

1 Draw Ωv ,Ωη, βi1:T , s1:T | ln σ2t , y

a Draw βi1:T ,Ωv ,Ωη | ln σ2t , y

i Draw βi1:T |y ,Ωv , σ
2, βi0 using the CK algorithm

ii Ωη |βi1:T ,Ωv , ln σ2t , y ∼ IG (Q
η
0 + Σ(ln σ2t − ln σ2t−1)

2, v η
0 + T )

iii Ωv |βi1:T ,Ωη , ln σ2t , y ∼ IW (Q v0 + (βi2:T − βi1:T−1)
′(βi2:T − βi1:T−1), v

v
0 + T );

b Draw s1:T |βi1:T ,Ωv ,Ωη , ln σ2t , y

2 Draw ln σ2t |Ωη,Ωv , βi1:T , y , s1:T using the CK algorithm

Note that step 1a and 1b are not intercheangeable since they constitute a draw
from the joint of p(Ωv ,Ωη, s1:T |βi1:T , ln σ2t , y)
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

AR with time varying variance and coeffi cients
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

AR with time varying variance and coeffi cients
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Modelling drifting coeffi cients and volatilities Kim-Shepard and Chib algorithm

AR with time varying variance and coeffi cients
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AR with time varying variance and coeffi cients
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