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Modelling drifting coefficients and volatilities

Dynamic Latent Variables in Macro

@ We have so far considered models where all dynamics are in observables.
That is, the only unobserved components are in the errors which do not
exhibit relevant dynamics.

@ However, in many instances, macroeconomic models involve latent dynamic
variables that we wish to take into account when drawing inference.
@ Some leading examples:
@ Factor models and Factor-augmented VARs
© Dynamic Stochastic General Equilibrium models

@ Time Varying Parameters models (TV-VAR, unobserved component models)
@ Stochastic Volatilty models
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Modelling drifting coefficients and volatilities

Basic Set-up and Goals

We have observed a set of N variables Y; over T time periods.

These in turn depends on k latent variables, or state variables, or simply
"states" s;.

@ We then wish to:

@ Estimate the parameters governing the dynamics of (Y, s:).
@ Predict and forecast both observed and latent variables.

To reach these two goals, we need a model specifying their joint dynamics.

This lecture: Linear Gaussian State Space Models, which allow for simple
estimation and prediction via ML and through the use of the so-called
Kalman filter.

However, this class of SS is kind of restrictive - linear and Gaussian.
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Linear Gaussian State Space Models (SS)

@ The linear SSM’s consists of two equations
Space (measurement, observation): Y; = ®s; + ¢,
State (transition): s; = Fs;_1 +17,.

BREEH)

Y: vector of N observed variables, while s; vector of k unobserved states

® and F are N X k and k X k coefficient matrices

Intercepts or additional exogenous regressors in both equations are omitted
but can be introduced easily.

Similarly, time variation in the coefficient matrices ® and F can be allowed
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Modelling drifting coefficients and volatilities

Example - ARMA as SS

@ Let the observed time series Yt solve
Ye =, Ye1+ur+0uq1, u~iid N (o,aﬁ) .

@ We can rewrite this model as:

{ Yt = St + ut
st = ¢pySt—1+ (¢ + ) ur1

e Which is in SS form with ® =1, F = ¢, &+ = us, 17, = (¢; + O)ur_1 with
Qe =02, Oy = (¢; + 9)%02.
@ Indeed:

— st =¢y(se—1+up—1) +0ur_1 = ¢ Yeo1 + urq
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Modelling drifting coefficients and volatilities

Example - ARMA as SS

@ There are more ways to write a SS from the same model:
Ye =y Vi1 +up +Oupq, up~iid N (o,ai) .

@ We can write:
Y: = s1t + Usot
Sit = P1S1¢-1 + Ut
2t = S1t-1

@ Which is in SS form with s; = (s1¢, 52¢),
0 Ut
@:[1 ﬂ},FI[(ql O:|,€t20,7’]t:|:0:|,

2
Qg—O,QW—{a“ 8]

1
@ Indeed:
Yi = (¢pys1e-1+ur) +0(Pys1e—2+ up_1)
= ¢(s1t—1+Os1¢—2) + ur + Qur_1
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Modelling drifting coefficients and volatilities

Example - ARMA as SS

o ARMA(2,1):
Yi= ¢y Ye1+ Yoo+ + 01, e ~iid N (o,aﬁ) .

@ Can be written as:

_ Sit | _
Y, = [1 19]{52t}_51t+1952t
S1t _ o1 P Sle-1 | 4 | Ut
2t 1 0 21 0]
@ Indeed:
Yi = ¢151e—1 F Posoe—1 + ur + O(FPS1:—2 + Posrt—2 + up_1)

$1(s16—1 +0s1:-2) + Pp(s2t—1 + Ospp_2) + ur + Bur_1
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Modelling drifting coefficients and volatilities

Example - VARMA as SS

@ Let the observed time series Y; solve
Yt = AYi—1 +ur + Bup—1, & ~iid. N(0,Qy).
@ We can rewrite this model as

Yi = st+oue,
st = Asi1+ (A+B)u—1.
@ Indeed:
Y = A(st—1 +ut_1) + ur + Bus_1,
o In particular, & = us and 77, = (A+ B) us—1 are uncorrelated.

@ More generally, any VARMA(p, g) model with parameters 6 can be
formulated as a SS with {®, F, Q., Q,} = f(6)
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Modelling drifting coefficients and volatilities The Kalman Filter

The Kalman Filter - Learning about states from data

The Kalman filter is designed to produce and update linear projections of the
latent variable s; given observations of Y;.

Useful in its own right, and is also employed in estimation.

@ The Kalman filter is a recursive algorithm that at each time point computes
the current best estimate (in MSE terms) of the latent process given
observations of Y%.

@ Define:
Stjs = E [st|Y1:s],  Pyjs := Var[se| V1]
@ We then wish to do:
Filtering : syyand Py, t=1,..,T.
Smoothing: St|T and Pt‘T, t=1,...,T.
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Ul (el Gisr
Derivation of Kalman Filter
@ Assume you start by knowing s;_1 ~ N(st_l‘t_l, Pt—l\t—l)- The filter is a

rule to update to s¢ ~ N(sy|;, Pt‘t) once we observe data Y;.
@ The first step is to find the joint distribution of states and data in t,

conditional on past observations (1,...,t — 1):
!
St St|t—1 } Pt\t—l Ct|t_1
li_1~N . 1
[ Vi } o <{ Ytlt—l Ct\t—l Zt|t—1 @)

@ The moments above can be calculated easily using the equations of the
system, Yy = ®sy +¢&, st = Fsp_1+1, =

Stje—1 = El[se|Yeo1] = FE [st—1|Ye1] + E [ Ye-1] = Fs¢_ype—1,
Yie—1r = E[Ye|Yioa] = ®E[st|Yea] + E [er] Yeo1] = Psypp_y-
Pueer = Varls|Ye1] = FP_yj1F + 0,

Seem1 = Var[YeYe1] = OPye_ 1@ + O,

Giie-1 = Cov (Y st|Ye-1) = PPy_y.
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Modelling drifting coefficients and volatilities The Kalman Filter

Conditional and joint normals

@ We have now specified the distribution (s¢, Y¢|Y:_1) we now look for the
distribution (St| Yt, thl) = (stlyt)-

@ This is easy to do using basic results regarding Normal distributions: Let
(a, b) be normally distributed,

a U Qaa Qup :|)
~ N 2, . 2
{b] ([Vb]{ﬂba Qpp @)
Then the conditional distribution of a conditional on b is given as
alb~ N (.ua|b'Qa\b> , (3)
where
]/‘a|b =H, + QabQ[:[;l (b - ,ub) ' Qa|b = Qaa - QabQ[:leba-

@ So all is needed is to apply the result (3) when (2) is the joint distribution in
(1)
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el kalmaolFite;
Updating a linear projection

@ By doing so we obtain:

!
a= 5: Y, N Ha = St|t—1 Qaa =Prer - Qap = Cr\t,l
[ ] ’ =1 ([ Fo =Yoot |1 L Qoo =Cer Qb =By

and by applying the result (3)

st|Yeo1, Ye~ N (ﬂa\b =St Qapp = 'Dt|t) (4)
with
-1
St = Stj-1t Ct,\t_12t\t 1 (Yt - Yt\t—l) (5)
Pt\t = Pt\t—l t|t 1Zt|t 1 t\t—l (6)

@ So we have moved from (s;_1]Y;_1) to (st, Yt|Y¢_1) (prediction) and then
from (st, Yi|Y:_1) to (st]|Y:) (update).

@ We can now repeat and use (s;|Y) to move forward to (s;y1|Yri1)
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Modelling drifting coefficients and volatilities The Kalman Filter

Kalman gain and updating equations

@ The Kalman Filter updating equations are therefore:
_ / -1
St = Stjt-1t Ct\t—12t|t 1 (Yt - Yf\f—l)
Pie = Peeo1— t|t 12t|t 1 Ceje1

o Using Cyj;—1 = PPyj;_1 (see (1)) these can be re-written as:

Stlt = 5t|t—1+Kt|t—1Vt|t—1 (7)
'Dt\t = Pt\t—l - Kt\t—1q>Pt|t—1 (8)

Wlth Kt|t—1
t\t 1= t\t 1(1) Zt|t 1 (9)

denoting the Kalman Gain and Vije-1 = (Yt - Yt\t—l) denoting the 1-step
ahead prediction error.
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The Kalman Filter
The Kalman Filter recursions

@ The inputs needed in the updating equations are the moments of (1):

Stjt-1 = Fsi_1)¢—1 (state prediction)

Vee—1 = Y — Psyp_y (prediction error on y)

Pe—1 FPt—l\t—lF/ + Q) (variance of state prediction)
yeo1 = PPy P + Qe (variance of prediction error)

these are called the prediction equations.
@ The algorithm works as follows:
1) Start with an initial condition sy—1 ~ N(s¢_1j¢—1, Pr_1)¢—1)
2) Use the 4 prediction equations above to find Stje—1 Vee—1 Peje—1. )t -1,
3) Compute the Kalman gain (9)
4) Use the updating equations (7)-(8) to find s¢ ~ N(sy;, Py|¢)
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Modelling drifting coefficients and volatilities The Kalman Filter

o As a by product, the algorithm will provide the rime series of v;; 1 and
Yyjpog fort=1,...T.

@ So at each t =1, ...T we can compute and store:
I(Yt|Y1:t-1:0) o< —In |Zt|t—1 0 — Vé\t71 (6) Z{ﬁ_l (6) Vilt—1 (0)}

where
0=rF1Y®, F, Q Q)

@ The sum of the likelihoods of the forecast errors ¥ I+ (6) provides the
likelihood of the whole system

@ Therefore the KF offers a fast way to evaluate the likelihood of a SS model.
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

The Carter-Kohn algorithm

@ A recursive algorithm to draw from the states posterior distribution

@ Define the history of states and data up to time T

Sy ST =57, Y1, YT = JT,

we desire to draw from p(37|y7).

@ This posterior can be factorized as follows

p(3rlyT) = p(stlyT) X pGr_1lsT. ¥7)
= p(stlyT) x {p(sT_1lsT.y7) x p37—2|sT-1.5T.77)}
= p(stlyT) x {p(sT_1lsT.y7) x {p(sT_2|5T7-1.77)

Xp(37_3|sT_2,57-1,5T.y7)}}
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Factorizing the posterior of states

@ Because of the Markov property:
= p(stlyr) x {p(sT_1lsT.y7) x {p(sT2lsT-1.77)

xp(37-3lsT—2,5T—1,5T. ¥7)}}

= p(stlyT) x p(sT_1lsT. y7-1) X p(sT_2lsT-1.¥T-2)
xp(sT_3|sT_2,97-3)

; ) X )
= p(stlyr) Ht:T—l p(stlst+1, t)
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Updating the posterior of states

o We have: )
p(3TIyT) = P(sT|yT) ¥ Ht:T—l p(st|st+1. ¥t)
@ The last iteration of the KF gives st|y7. We want to generate the terms
H%:T% p(st|st+1, ) and eventually obtain p(37|y7)
o The KF gives us s¢[yr ~ N(s¢|¢, Pyj¢). So the problem reduces to making the

move:
st|ye ~ N(5t|tv Pt\t) — St|str1, 9t ~ N(St\t,smv Pt\t,stﬂ)
with
Stit.se1 — Elst|ye, se4+1] = E[5t|5t\t,5t+1]
Piitse, = Varlse|yt ser1] = Varse|sye, se41]
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Drawing from the posterior of states

@ Again this can be done using the formula for updating a linear projection

@ We start with writing down the distribution of s¢, sp1 1|7 :

[ a=st Hf/tNN [ Ha = St|t } Qaa = Py Qup = Py F
b=sty1 Hp = Stv1e | Qba:F'Dé\t OQpp = Peia)e

where we have used:

COV/(sty1,st|yt) = COV(Fst +1, 1, 5t|yt) = FP;H
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Drawing from the posterior of states

@ Then we use the formula for updating a linear projection:

alb,yr ~ N (Va\b'Qa|b) ,

where
a = st b=sp41
Hap = Mot QapQpp (b py)
= Syt Pt\tF'P;lm (5t+l - 5t+1|t) = St|t,se41
Qupy = Qoo — Qap Ot Uy
= Puje— PeeF Prl PP = Prjts,.s
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Drawing from the posterior of states

o Finally, we use the fact that s, 1 = Fsyjs and Ppyq)p = FPyF + Qy to

get:
st|str1, ¥t ~ N (St\t,stﬂv 'Dt\t,sHl) ' (10)
with
St|t,sesr = St|t T Pt\tF/(FPﬂtF/ +Qn)_1 (5t+1 - F5t|t)
-1
Piitses = Prje = PeeF (FPyeF +Qy) FP;“

o Starting from the initial draw st |y and the moments Stlt,seer @Nd Piirys, o

can be used to recursively draw from s¢|sei1, 7 ~ N(syj¢,s..,0 Py|t,s.,,) for
t=T-1,T7T-2,..,1
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CorgerKonlalgorithiy
Predetermined and exogenous variables

@ The model we considered:

Yy = ®s; +et, e ~ i.i.d.N(0, ), 1)
st = Fst_1+ 1, 17 ~ i.i.d.N(0,Q),

with &; and 7, independent, is more general than it seems.
@ Say e.g. you want to add exogenous variables in the observation equation

and an intercept in the transition equation:

Yt = Cth +®St + &, & ~ IIdN(O,Qg)
st = Cs+ Fsg_1 + 11, 11, ~ i.i.d.N(0, Q)

defining Y = Yy — cy Xe, st = (1,s¢), F* = [cl, F']', and
i = (0',17})" would lead to a representation like (11)

@ Watch out for identification problems!
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Predetermined and exogenous variables

@ Or, it might be convenient to leave the SS model with explicit intercepts and
exogenous variables and just modify the Kalman Filter equations accordingly.

Yt- = Cth +q)5t + &, & ~ IIdN(O,Qg)
st = cs + Fsi_1+1,, 1, ~ i.i.d.N(O, Q’i)

@ The predictions equations involving the means will change:

Stjt-1 = s+ Fs;_1j;_1 (state prediction) (12)
Vig—1 = Yr—cyXe — sy (y prediction error) (13)

o Note that in the example above, setting X; = (1, Y¢_1, ..., Yt—p) we have a
FAVAR
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Carter-Kohn algorithm
Example - ARMA(2,1) again

o Consider the ARMA again:

Y=y Yeo1 +up+0up_q, up~iid N (o,a,%) .

v = P+ 1 lﬂ[;i}

sie | _ |00 Sie-1 | | U
St 10 2t-1 o |’
@ Note that in this case one needs to modify the filtering equations as the
measurement equation contains exogenous (predetermined) variables ¢;y1+—1
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CorgerKonlalgorithiy
Time varying coefficient matrices

@ Since the filter is applied for each time t it is straightforward to allow for the
matrices of coefficients to be time-varying. For example:

Yt = thSt + €¢, € ~ IIdN(O, Qg,t)
st = Fse_1 41, 11, ~ i.i.d.N(0,Qy)

allows for time variation in ®; and ()¢ ;.
@ The prediction equations that need to be modified are:
Vie-1 = Ye — Pesy—1 (y prediction error) (14)
ieo1 = PPy Py + Qer, (prediction error variance)  (15)

t|t—

o Setting d; = X; with X; containing lags of Y;: gives a TVP VAR.
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Applications - Time varying coefficients model

Ye = PBor TPy FBove2t ot Bpyept e e ~iid(0,0%)
Bir = @iBi_1+viee ve ~iid(0,Qy), Eler, vjs] =0Vis,t
State space is:
B1
Yo = [ Ye o Yt—p + et

Xt :E’pt

Bot $o - 0 Bor-1 Yot

ﬁpt o .- ?p :Bpt—l Vpt

See Cogley and Sargent (2005) and Primiceri (2005).
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Applications - Time varying coefficients model

We choose ¢ = 1 and specify the priors:

Qy ~ IW(Qo, w); 0% ~ 1G(sg/2,n/2)

the state equation is:
Bit = Bit—1 + Vies
the posterior is obtained by:

@ Draw the posterior of the states using the CK algorithm:

p(Bir. 71y, Qv, 0% Big)
@ Draw
QulBiy.7. 0%y ~ IW(Qo + (Big. — Bi.r 1) (Bio.T — BinT 1) vo + T);
@ Draw ?[B;1.7. Qv,y ~ IG((so + Y (vt — xtB)?) /2, (no + T)/2)
Example: ARTVP.m

Note some of the conditioning can be suppressed (in particular 0, and o2 are
mutually redundant, and ¢ is redundant in drawing the states).
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Applications - Time varying coefficients model

Time-Varying Coefficient, intercept

Time-Varying Coefficient, 1-th lag

Error variance

Qy = 0.012 x Ty \770 where VTO is the OLS variance on a pre-sample of size Tj.
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Modelling drifting coefficients and volatilities Carter-Kohn algorithm

Applications - Time varying coefficients model

Time-Varying Coefficient, intercept Time-Varying Coefficient, 1-th lag
15

Time-Varying Coefficient, 2-th lag Error variance

0 200 400 600 800

QY =100 x 0.012 x Ty V7,
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Modelling drifting coefficients and volatilitie Carter-Kohn algorithm

Applications - Time varying coefficients model

Time-Varying Coefficient, intercept Time-Varying Coefficient, 1-th lag
38

0.02 1.28
200 400 600 800 0 200 400 600 800
Time-Varying Coefficient, 2-th lag Error variance

0.3

0.32

0.34

o

0.36
-0.38

0 200 400 600 800

QY = 155 x 0.012 x ToVr,

C
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

Applications - Stochastic Volatility models

e Model
Yy = mzt,

loghy = w+aloghi_1+1,,

where z; ~ (0,1).
o In particular, hy = E;_1 [Y?] is the conditional variance of the process.

@ Harvey et al. (1994) proposed to square and then take log's in the
measurement equation to obtain

log Y2 = k + log ht + &, € :=logz? —«, k = E[log z?].

o Treating ¢; as an approximately normally distributed variable, (log YZ, log h¢)
solves a linear state space model.
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

The Kim, Shepard and Chib (1998, KSC) algorithm

o Consider changing the error term e; ~ iid(0, 0®) of the AR-TVP estimated

above to:
e = \/;%St, Et v ud(O, 1),

with In (T% =In ‘7%—1 + 1,, that is, the error term is conditionally
heteroschedastic.

2 2

o Now take the squares e? = ¢2¢? and transform in logs:

{ Ine? =Ino? 4 Ine? (16)

2 _ 2
Inos =Ino;_; +1,

which is a linear but not Gaussian state space.

o However ¢ is a Gaussian process with unit variance and hence In¢? is the log
of a chi-square.
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

The KSC algorithm

Kim, Shepard and Chib (1998) propose to approximate the distribution of In 8% by

using a mixture of normals:

f(ne?) ~ 2K qifg (Ine2|m; — 1.2704, v?),

which can be written also as:

p(st =1i) =gq;

{ Ine?|sy = i ~ N(m; — 1.2704, v?)

KSC choose K and the triplet g;, m;, vl-2 that provides a good approximation:

St—= 1 St— 2
gi 0.0073 0.10556
m; -10.12999 -3.97281
vZ 579506  2.61369

Andrea Carriero (QMUL)

St—= 3 St= 4

0.00002  0.04395
-8.56686 2.77786
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bimzShepard [ondlGhiblolgortfng
The KSC algorithm

@ Under such approximation, the state space in (16) becomes tractable,
conditionally on a draw of s;
@ In particular, conditionally on a draw of s;, t =1, ..., T the observation
equation becomes
Ine?|st = Ino?|s; + Ine2|s; (17)
with
(In€?|sy = i) ~ N(m; — 1.2704, v?) (18)
and therefore -conditionally on s;- the state In (7% can be simulated using the
standard Carter-Kohn algorithm
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

The KSC algorithm

@ Note that this means

(Ine? —Ino?|s; = i) ~ N(m; — 1.2704, v?)
or equivalently

(Inef|s; = i) ~ N(Ino? + m; — 1.2704, v?)
with Gaussian p.d.f. fg(Ine?|s; = i).

o It follows that, to draw the states we can use:

p(st = ilInef)
o« p(se =i)x p(Ined|s; = i)
= g x fg(Ine?|Ina? + m; — 1.2704, v?)
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

Applications - AR with time varying variance and
coefficients

We are now able to produce draws from the posterior of this -more general- model:

Yt = ,BOt + [31th—1 + ﬁztyt_g + ...+ ﬁptyt—P + \/;%Et
Bir = %it—l + Vit,2i =1,..,N
|n(7t = q)ilno—tfl +77t1

with:

e~ iid(0,1), 5, ~ iid(0,Qy), v ~ iid(0,0,),
Eler,n] = 0Vs, t; Eln, vis] =0Vis, t; Eler,vis] =0Vis,t
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

Applications - AR with time varying variance and
coefficients

This model has the following parameter blocks, for which one needs to specify a
prior:
Oy ~ IW(Q§. ). Qy ~ 1G(QY. )
and the states
In 0’%, B i=1,...N

To these states, we have to add the mixture states s; necessary to be able to use
the approximation:
Ine2|s; = i ~ N(m; — 1.2704, v?)
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

Applications - AR with time varying variance and
coefficients

The algorithm draws in turn from the following distributions:
Q Draw Q,, Qy, Bj1.7. s1.7|Ino?,y
a Draw B,1.7.Q, QW\ In (T%,y
i Draw ﬁil:T|y'QV"72v5i0 using the CK algorithm
i QB Quilnot,y ~I1G(Q] +X(Ino? —Ino?_ )2 v+ T)
iii Qv|ﬁi1zrv0f/'|"‘7%v)’ ~IW(QG + (Bio:r = Bivr—1) (Bior — Binor—1).v6 + T);
b Draw si.7|Bj1.7. Qv, Qy, In0?, y
@ Draw In U%|Q,7,Qv,ﬁ,-1:7—,y, s1.7 using the CK algorithm

Note that step la and 1b are not intercheangeable since they constitute a draw
from the joint of p(Q),, Qy, s1.7|Bjp. 7 In U%,y)
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bimzShepard [ondlGhiblolgortfng
AR with time varying variance and coefficients

Time-Varying Coefficient, intercept Time-Varying Coefficient, 1-th lag
8 1.34

Time-Varying Coefficient, 2-th lag Stochastic Volatility

200 400 600 800 0 200 400 600 800
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

AR with time varying variance and coefficients

Qg
7

Vo —

= 0.005, v]

Time-Varying Coefficient, intercept

Time-Varying Coefficient, 1-th lag

R,

fam s

200 400 600 800

Time-Varying Coefficient, 2-th lag

=3, Q] =0.01
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

AR with time varying variance and coefficients

Time-Varying Coefficient, intercept Time-Varying Coefficient, 1-th lag
34
0.07
0.06
0.05
0.04
0.03
0.02
0.01 12
0 200 400 600 800 0 200 400 600 800
Time-Varying Coefficient, 2-th lag Stochastic Volatility
022 2
0.24
15
0.26
028 [ Nt B
0.3 I
05 |y I
032 | i ) A
IR AN | At
0.34 0 -
0 200 400 600 800 0 200 400 600 800

7
=50, v =3, Q) = 100.
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Modelling drifting coefficients and volatilities Kim-Shepard and Chib algorithm

AR with time varying variance and coefficients

Time-Varying Coefficient, intercept

Time-Varying Coefficient, 1-th lag

Time-Varying Coefficient, 2-th lag

Stochastic Volatility

0 200 400 600

Q _ _ n_
7 = 5000, v =3, QF = 10000.
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