LOOKING FOR MOLECULAR GAS AROUND EVOLVED MASSIVE STARS

Cristóbal Bordiú

Director
Ricardo Rizzo
CAB (INTA-CSIC)

Tutor
Jaime Zamorano
UCM

JORNADAS DE DOCTORANDOS
19 diciembre 2017
Contents

✓ Context
✓ State of the art
✓ Goals
✓ Projects
✓ Project 043-17
 ✓ Results
 ✓ Interpretation
✓ Conclusions & future work
Massive stars **alter the ISM** during their whole life

LUMINOUS BLUE VARIABLE phase:
- Very **massive** hypergiants ($M > 50\, \text{M}_{\odot}$)
- Very **hot** ($T > 15000\, \text{K}$)
- Very **luminous** ($L > 10^5\, \text{L}_{\odot}$)
- **Short-lived** ($10^4\, \text{yrs}$)
- Highly **unstable** (eruptions) + high **mass-loss** rate (stellar winds)

Only a few in the galaxy

Eta Car is the best example
There are many **open questions** regarding Evolved Massive Stars

- How much EMS affect the ISM?
- How do EMS trigger star formation?
- What mechanisms drive the evolution of massive stars?

LBVs and their **circumstellar molecular gas** can answer most of these questions

Massive stars are **dust producers**

Molecular gas can **survive** around LBV forming **shells**

Successful cases

- Eta Car
- AG Car
- G79.29+0.46
- ...

LOTS OF WORK TO BE DONE!
(and here my thesis starts!)

NH3 (1,1) and (2,2) shells in G79.29+0.46 (Rizzo et al. 2014)
Goals

Study the **interplay** between **evolved massive stars** and the **circumstellar material**

to

achieve a physical-chemical overview

Measure kinetic energy and momentum **outputs**

Derive timescales & reconstruct **mass-loss history**

Two **complementary** strategies

Continuum observations

- Warm gas and dust in the proximity of the star
- Information on the radiation
- Mechanisms and gas/dust properties

Line observations

- CO isotopologues and other high-density tracers
- Information on gas physical conditions, dynamics and chemistry
A **first detection** experiment is always a **risk** ...

Facilities
- IRAM 30m
- ALMA

Targets
- MGE042.0707+0.5084
- AG Car
- AFGL2298
- HR Car
- Wray 751
- ...

Tracers
- CO isotopologues
- CN and HCN
- ...

... but also an **opportunity** to unveil new **science**
Projects · Two accepted proposals at IRAM 30m

P043-17
Circumstellar molecular gas around LBV stars

EMIR observations of 4 LBV objects

Target lines: CO, 13CO and C18O at 1-3mm

July 2017

16h

P044-17
Continuum emission around LBV stars

1-2mm continuum observations of 5 LBV targets with the brand new KID receiver **NIKA2**

October 2017

5h
MGE042.0787+00.5804 is a newly identified LBV candidate

Features
Spherical dusty nebula
Varying spectral index

Detection of CO and 13CO at 110 and 230 GHz

24 um image + VLA contours of MGE042.0787+00.5804
(Ingallinera et al. 2016)
An isolated **circumstellar structure** in the range 13-18 km/s

Channel maps CO(2-1)

Line intensity CO(2-1)

Position-velocity CO(2-1)

Velocity field CO(2-1)
Observations are consistent with an **expanding torus**

LIME · Line Modelling Engine
(Brinch & Hogherheijde 2010)

- Geometrical parameters
 - Radius
 - Inclination
 - Position angle

- Physical parameters
 - n(H$_2$)
 - X_{co}
 - T_{kin}
 - V_{exp}

Gas to dust ratio + density profile
+ temperature profile + magnetic field
+ velocity field + Doppler broadening

=

FITS image

Convolution & regridding
to compare with data
Concluding remarks & future ongoing work

MNRAS publication (in prep.)
✓ Detection of molecular gas in M042
✓ Expanding structure consistent with an LBV event
✓ Radiative transfer model → parameters

Analysis of remaining P043-17 data
✓ MGE027 → a puzzling object!

Analysis of P044-17 data
✓ Hints of a warm dusty shell around G79.29+0.46

New proposals for summer ‘18
✓ Higher angular res. (interferometry)
✓ IRAM 30m, NOEMA, JCMT...
✓ New interesting objects (even WR stars?)
The end

Thanks for your attention!
Questions?