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A B S T R A C T

Global warming and land use changes, contributing to landscape level fuel increments, could threaten
Mediterranean pine forest resilience to wildfire disturbances. Reconstructions of historical fire regimes allow for
the disentanglement of these two drivers by comparing the influence of climatic and anthropogenic variables on
fire. Here we combine three sources of historical data: charcoal accumulation rates from a peat bog, detailed
historical records of fire incidence and tree-ring width data from five relict black pine (Pinus nigra) forests with
fire-scarred trees located in Sierra de Gredos (central Spain). We found growth suppression in 1893 and 1894 in
all the sites which coincided with a peak of fire incidence in historical records and an increase in charcoal
accumulation rates. The occurrence of these three synchronous events suggests increased wildfire incidence in
the area which shaped the current stand structure of relict black pine forests. These late 19th century devel-
opments, we argue, can be mainly attributed to anthropogenic factors and contributing climatic drivers. We
argue that the dissolution of the “Mesta”, the biggest transhumance livestock organization in Europe lasting from
the 13th to the 19th centuries, led to more extensive grazing and uncontrolled use of forests and grasslands
which likely contributed to increased wildfire incidence. Additionally, 1893 was characterized by anomalously
warm spring temperatures which may have facilitated vegetation flammability. Our approach couples human
and climate systems as drivers of historical fire incidence in Mediterranean pine forests.

1. Introduction

Mediterranean pine forest ecosystems are known to be resilient to
disturbances such as wildfire and drought (Naveh, 1974, Trabaud,
1987, Alfaro-Sánchez et al., 2015). However, two major global en-
vironmental changes may disrupt this resilience. First, climate warming
is expected to increase the severity and frequency of heat waves and
droughts which have been linked to increased wildfire risk (Piñol et al.,
1998, Pausas, 2004, Cardil et al., 2014). Second, land-use changes
driven by rural depopulation during the second half of the 20th century
have increased the amount and homogeneity of landscape fuel beds
leading to a greater frequency and size of fires in many Mediterranean
countries since historical studies indicate that most fires were small and
limited by fuel availability (Gil-Romera et al., 2010b, Pausas and
Fernández-Muñoz, 2012, Molina-Terrén et al., 2016, Chergui et al.,
2017). However, to understand if warming-amplified aridification, fuel
build-up and human activities may be converging synergistically to

trigger fire regime changes in Mediterranean pine forests we need long-
term reconstructions of fire activity (Keeley et al., 2012). Applied his-
torical fire ecology approaches are therefore needed for periods with
abrupt land-use changes to discern the role played by humans on the
fire regime (Swetnam et al., 1999; Abel-Schaad and López-Sáez, 2013,
Sarris et al., 2014).

At millennial time scales, changing fire regimes have shaped
Mediterranean pine forests throughout history as a function of climate-
human feedbacks (Marlon et al., 2008, Gil-Romera et al., 2010a,
Blanco-González et al., 2015, López-Sáez et al., 2017). Indeed, fire
seems to have led to rapid structural and compositional changes in
Mediterranean pine forests for at least the past 3000 years (Pyne, 2009,
Carrión et al., 2010, Abel-Schaad et al., 2014, Leys et al., 2014). For
instance, black pine (Pinus nigra) showed a long-term resilience to fire
regimes characterized by frequent small fires and rare high-intensity
fires, but recurrent anthropogenic crown fires linked to intensive land-
use may have triggered their decline in the northern Iberian Plateau
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1400 years ago (Morales-Molino et al., 2017). Nowadays, this species
forms relict populations in northern and central Spain, representing the
south-western distribution limit of the species in Europe (Fig. 1),
whereas it is abundantly distributed throughout eastern Spain (Barbéro
et al., 1998).

Macrofossil evidence confirms that in central Spain, black pine was
present from the mid-Holocene up to the present (Rubiales and Génova,
2015). The palynologic record has revealed that pine forests were more
widespread in this area before the Middle Ages, when human pressure
(fire, grazing) intensified leading to extensive deforestation from the
13th to the 15th centuries (López-Sáez et al., 2009, 2014, 2017; Robles-
López et al., 2017). The beginning of this period coincides with the
establishment of the “Mesta” transhumance grazing system, which was
created in 1273 and was the major livestock organization in the Iberian
peninsula until its dissolution in 1836 (Klein, 1920; Pascua-Echegaray,

2007). The end of “Mesta” activities in the 19th century represented a
socio-economic shift with clearly negative impacts on forests because
this organization regulated the controlled use and management of
forests and pastures where sheep herds grazed (López-Sáez et al., 2017).
It is therefore plausible that after the “Mesta’s” dissolution unrestrained
exploitation of mountain forests may have facilitated increased wildfire
frequency (López-Merino et al., 2009, 2016a, 2016b).

Here we analyze the possible effects of the end of the “Mesta” on
relict black pine forests in the Sierra de Gredos (central Spain) using
dendrochronology to reconstruct growth patterns and past fire in-
cidence. Previous dendroecological studies have provided long-term
information on tree growth which is useful to preserve Mediterranean
relict pine populations experiencing high human pressure (Todaro
et al., 2007, Génova and Moya, 2012). For instance, it is necessary to
characterize the climate-growth relationships in these relict stands so as

Fig. 1. Geographical situation (a) of the five black pine forests investigated in Sierra de Gredos (see Table 1; symbols show the locations of sampled trees and stands) and historical fire
locations and estimated density of fire foci (color scale) during the 1890–1894 period when there was a peak in the number of forest fires recorded in the study area (Sierra de Gredos)
based on documentary sources (three georeferenced historical fire levels are used: triangles, municipality; stars, sites without specified boundaries; and squares, forests or plots with
precise limits of the property); views of an isolated relict stand (b), a sampled tree (c) and a living, fire-scarred tree (d) showing a cat face (triangular scar located at the base of the stem
caused by fire damage). In the map the upper inset shows the distribution of black pine (Pinus nigra) in Europe and the location of the study area in central Spain (box). In the map of the
study area (a), the shading represents the elevation gradient which ranges between low (700–900m, down-right part) to high elevations areas (2000–2200m, upper left part).
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to identify the major climatic constraints of tree growth and to differ-
entiate growth reductions due to climate stress (e.g., droughts) from
those caused by disturbances such as fires. However, information on
historical fire regimes is limited for relict populations of Mediterranean
pines though this type of retrospective data could inform their man-
agement (Fulé et al., 2008). For example, surface fire regimes are be-
lieved to have predominated historically in black pine forests because
this species shows a poor post-fire regeneration (Tapias et al., 2004). A
switch to frequent crown fires could then have led to the local extinc-
tion of some black pine populations (Pausas et al., 2004), and this fire
regime change could explain the current relict status of black pine in
the Sierra de Gredos. To explore these ideas, in this study we: (1)
quantified the radial growth of relict black pine forests across an alti-
tudinal gradient; (2) characterized the climate-growth relationship in
these forests; and (3) reconstructed fire incidence by combining tree-
ring width analyses, historical fire records (archival sources) and pa-
laeoecological data (charcoal). We hypothesize that growth in these
trees is highly sensitive to drought during the growing season leading to
the formation of narrow rings, but that the formation of atypical mul-
tiple narrow rings is a consequence of intense fires damaging the crown.
To test this hypothesis we compare the reconstructed growth data (five
forests, 80 trees) with a database of fire records obtained from historical
documents covering the last 200 years (Montiel-Molina, 2013), as well
as with charcoal data (López-Sáez et al., 2017).

2. Materials and methods

2.1. Study area and tree species

The study area is located in the Sierra de Gredos, central Spain (5°
07′ 50″ W, 40° 14′ 41″ N, 1045m a.s.l.; see Table 1). The climate of this
mountain range is Mediterranean and continental, characterized by
cold-wet winters and warm-dry summers. At the “Arenas de San Pedro”
meteorological station (5° 5′ 28″ W, 40° 12’ 31″ N, 510m a.s.l.) mean
annual temperature is 14.5 °C, (December and July are the coldest and
warmest months with mean temperatures of 5.1 °C and 25.1 °C, re-
spectively), and total annual precipitation is 1483mm (February and
July are the wettest and driest months with precipitations of 226mm
and 6mm, respectively). Drought may last from May to September, i.e.
the period with negative climatic water balance.

The vegetation of the area includes oaks (Quercus ilex subsp. ballota
(Desf.) Samp., Quercus pyrenaica Willd.) between 600 and 1600m, and
shrublands (Cytisus oromediterraneus Rivas Mart.) above 1600m. The
resin tapping industry has favored extensive pine (Pinus pinaster Ait.)
woodlands at low to mid elevations, but scattered Pinus sylvestris L.

appear at high elevations forming the tree line at ca. 1800m (López-
Sáez et al., 2013). The lithological substrate is dominated by granites,
and soils are moderately deep (Gallardo et al., 1980).

In the Sierra de Gredos, pine woodlands, which produce a very
flammable litter, have burnt disproportionately more than other vege-
tation types since the 1970s (Moreno et al., 2011). This pattern is
consistent with what has been reported for other locations in the
Mediterranean Basin where pine forests situated near densely popu-
lated areas are more susceptible to wildfire (Syphard et al., 2009).
However, before the 1970s fire occurrence was closely associated with
grazing practices which favored small controlled fires (Viedma et al.,
2006).

Black pine (Pinus nigra subsp. salzmannii (Dunal) Franco) forms
isolated and fragmented relict populations at mid to high elevation
across the Sierra de Gredos (López-Sáez et al., 2016c), often located in
rocky outcrops near creeks and surrounded by stands dominated by
younger P. pinaster individuals. Black pine is a long-living, thick-barked,
non-serotinous species which can survive low-severity surface fires
forming fire scars (Keeley and Zedler, 1998, Tapias et al., 2004).

2.2. Climate and land-use data

To calculate climate-growth relationships we obtained a long-term
(period 1901–2016) and homogeneous monthly mean temperature and
precipitation record from the CRU climate dataset (Harris et al., 2014)
accounting for the following climate variables: mean annual tempera-
ture (Luterbacher et al., 2004), annual precipitation (Pauling et al.,
2006), and the Palmer Drought Severity Index (PDSI) from the Old
World Drought Atlas (Cook et al., 2015). Additionally, we also obtained
the reconstructed fraction of pasture land from the global land cover
database (Ramankutty and Foley, 1999). This is a historical re-
construction of cropland extension based on national inventories and a
land-cover model so it may be inaccurate for some regions and periods
experiencing rapid changes in land use. All the aforementioned data
were downloaded at a 0.5° spatial resolution (coordinates 5.0–5.5° W
and 40.0–40.5° N) using the Climate Explorer webpage (https://
climexp.knmi.nl/).

2.3. Field sampling and forest structure data

Due to strict conservation measures of relict Mediterranean pine
forests, we discarded obtaining partial or complete cross-sections from
living trees showing cat faces, i.e. triangular scars located at the base of
the stem caused by fire and posterior axe incisions made by humans to
obtain resinous tinders (Fig. 1d), and the quantitative reconstructions of

Table 1
Characteristics of the study sites. Values are means ± SE. Different letters indicate significant (P < .05) differences in tree size (DBH, diameter at breast height; height) between trees
without or with fire scars within each site based on Mann-Whitney U tests. The last column shows the wildfires recorded in historical sources and located less than 2 km away from each
sampled forests.

Site Code Longitude W Latitude N Elevation
(m a.s.l.)

Slope (°) DBHa (cm) Heighta (m) No.
trees
(No.
radii)

No.
trees
with
fire
scars

Fires
recorded in
historical
sources

Trees without
fire scars

Fire-scarred trees Trees
without fire
scars

Fire-scarred
trees

Charco
Verde

CV 5° 07′ 13″ 40° 12′ 19′’ 550 130 48.8 ± 2.4a 66.6 ± 4.9b 29.4 ± 1.0 30.8 ± 1.3 20 (38) 10 1893, 1921

La Bardera BA 5° 09′ 41″ 40° 13′ 36″ 1027 65 63.1 ± 6.2a 107.2 ± 10.9b 20.0 ± 2.1 22.8 ± 1.2 10 (24) 5 1886, 1889,
1894, 1980

El Hornillo
Alto

H1 5° 07′ 46″ 40° 15′ 21″ 1120 30 52.5 ± 10.2 8.6 ± 0.9 10 (20) 0 1894, 1895

El Hornillo
Bajo

H2 5° 07′ 46″ 40° 15′ 22″ 1180 30 53.8 ± 10.2 8.7 ± 0.9 20 (49) 0 1882, 1886,
1894, 1974

Arroyo de los
Torneros

TO 5° 06′ 46″ 40° 16′ 49″ 1350 148 76.1 ± 3.6a 100.1 ± 7.1b 21.1 ± 2.0 23.2 ± 1.5 20 (40) 4 1882, 1893,
1897, 1980

a Tree DBH and height are separately presented for trees with or without fire scars in sites with fire-scarred stems (cat faces).
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the fire regime by cross-dating fire scars using dendrochronology is not
feasible (e.g., Baisan and Swetnam, 1990). In low-severity fire regimes,
fire scar analysis is an adequate technique to reconstruct fire history
(Agee, 1993), while for high or mixed-severity fire regimes age-class
analyses can be also applied (Johnson and Van Wagner, 1985). Taking
cross-sections from the cat-face edge increases the susceptibility to stem
breakage and the likelihood of mortality in sampled trees (Rist et al.,
2011; but see Heyerdahl and McKay, 2017). In addition, a fire may not
leave a record (scar) in every burned site, so random or stratified
sampling of trees may be more robust to accurately estimate fire fre-
quency than the biased sampling of trees showing fire scars (Johnson
and Gutsell, 1994, but see Swetnam and Baisan, 2003). Finally, in in-
tensively used anthropogenic cultural landscapes, such as Mediterra-
nean pine forests, some scars may correspond to axe incisions caused by
shepherds to remove resinous wood for kindling campfires (Fulé et al.,
2008).

In the field, we selected dominant and living trees and sampled
them in a ca. 0.5 ha large area. All dominant trees showing fire scars in
the main stem, particularly those presenting cat faces, were sampled
(Fig. 1d). Cat faces can be defined as deep, triangular scars located at
the base of the stem (Agee, 1993). Dendrochronology was applied to
cross-date the tree-ring width series (Fritts, 1976). For each tree, 2 cores
were taken at 1.3 m above the base perpendicular to the maximum
slope and also to the main scar face using a Pressler increment borer
(Barrett and Arno, 1988). Their diameter at breast height (DBH) and
tree height were measured with tapes or clinometers, respectively. In
the field, bark thickness was measured at 1.3m in each side of the stem
where cores were taken using a Swedish bark gauge. Then, a mean bark
thickness of the tree was calculated and related to DBH using linear
regressions. Size variables were compared with trees not showing
conspicuous fire scars in the stem (cat faces) using the Mann-Whitney U
test.

2.4. Tree-ring data: processing and analyses

The cores were air-dried, glued onto wooden supports and polished
with a series of successively finer sand-paper grits. The wood samples
were then visually cross-dated using marker years based on consistently
narrow rings (Yamaguchi, 1991). Tree-ring widths were measured to
the nearest 0.001mm using a binocular scope and a LINTAB measuring
device (Rinntech, Heidelberg, Germany). Tree-ring cross-dating was
checked using the COFECHA program (Holmes, 1983).

The tree-ring width series were individually detrended to remove
non-climatic biological growth trends (Cook and Kairiukstis, 1990). A
power transformation was applied and then a cubic smoothing spline
with 50% frequency-response cut-off was fitted to the individual re-
cords to calculate ring-width indices. These indexed series were sub-
jected to autoregressive modelling to remove most first-order auto-
correlation so as to obtain residual ring-width indices. Finally, site
chronologies were obtained by averaging the residual ring-width in-
dices on a yearly basis using a bi-weight robust mean. A regional
chronology was obtained by averaging all site chronologies. These
procedures were performed using the ARSTAN software (Cook and
Holmes, 1984).

The percentage growth change filter of Nowacki and Abrams (1997)
was applied to identify abrupt decreases in radial growth. First, we
calculated the ring-width medians of subsequent 5-year periods along
all the growth series. Second, we defined M1 and M2 as the preceding
and subsequent 5-year ring-width medians, respectively. The percen-
tage of positive negative growth changes (NGC) was calculated as:

= −NGC [(M1 M2)/M2·100]

Therefore, NGC quantifies the relative difference in growth between
preceding and subsequent 5-year periods for each annual tree ring.
Suppressions were defined as those years with NGC > 75%. To assess
changes in relative growth reduction we calculated mean curves of

NGCs for each site.
We were particularly interested in detecting abrupt growth reduc-

tions or negative pointer years (Schweingruber et al., 1990) which
could be potential markers of fire occurrence. First, ring-width data
were normalized in a moving window of 4 years to obtain the number
of standard deviations in tree growth in individual years deviating from
the window average. Second, a negative pointer year was considered
when the 75% of series showed a negative growth change higher than
40%. Prior to the calculation of event years, a 13-year weighted low-
pass filter was applied (Fritts, 1976). To detect negative pointer years
we used the package pointRes (van der Maaten-Theunissen et al., 2015)
from the R Software (R Core Team, 2017).

To quantify the climate-growth relationships we calculated Pearson
correlations between the five site residual chronologies and monthly
climate data (mean temperature, total precipitation). The window of
analysis spanned from October to September of the year of tree-ring
formation. To quantify potential instabilities in the climate-growth re-
lationships, we related the chronologies to the reconstructed summer
precipitations (1850–2015 period; Pauling et al., 2006) considering
moving 20-year long intervals.

2.5. Historical fire records from archival sources

We gathered historical fire records from a systematic and intensive
research in national (National Historical Archive, General Archives of
the Administration, Archives of the former Ministry of Agriculture,
Spanish Military Police Archive, Spanish National Library), regional or
provincial (Province Historical Archives, Forestry Administration
Archives, private archives) and municipal archives, to reconstruct the
complete fire history for the Spanish Central System (n=3515 records)
since the year 1497 until 2013. Going beyond the data provided by
forest administration sources just for public woodlands and for the
limited period 1830–1868 (Valdés, 1999), we have considered three
different types of historical archival sources: administrative documents
(coming from all the administrations with fire uses regulation and land
management power since the 16th century); judicial and police sources
(court registers and police reports since the 17th century) and printed
press (official journals, newspapers, books) (Montiel-Molina, 2013).
This research effort allowed us building up a reliable historical fire
database with comprehensive information including 62 data fields
(date, location, land ownership, land cover/use, burnt area, fire dura-
tion, fire cause, suppression resources, losses, etc.) Furthermore, the
historical fire records were georeferenced with three different spatial
levels of increasing accuracy (municipality, site or area without speci-
fied boundaries, and forest or plot with precise limits of the property),
depending on the historical source precision.

Based on this historical fire georeferenced database, we estimated
the density of historical fire foci in the study area (n=1499 records)
for the period 1890–1894 by transforming the point fire-foci data into
fire-foci density data considering a 2-km search radius and using a
kernel density function in Spatial Analysts, ArcGis (ESRI, 2012). We
focused on the 1890s, when fire activity peaked (López-Sáez et al.,
2017).

2.6. Palaeorecord of fire history

To reconstruct fire history we obtained charcoal accumulation rates
(hereafter CHAR) obtained from a site (Serranillos), situated at ca.
12 km from the study sites, where a peat sediment core was obtained,
analyzed and dated (dating uncertainty was± 38 yrs. for the period
1800–2000) (see López-Sáez et al., 2017). This is a mountain peat bog
(1700m), where in the last two millennia there was a P. sylvestris forest
that disappeared ca. 500 cal. yr BP (López-Merino et al., 2009; López-
Sáez et al., 2009).
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3. Results

3.1. Long-term changes in climate, land use and fire history

According to climate reconstructions, the transition from the 19th to
the 20th centuries was characterized by cold and humid conditions
(Fig. 2a–c). In the 1860s, pasture surface peaked, briefly decreased then
resumed its growth during the late 19th century until it reached its
maximum value in the 1930s (Fig. 2d). From the 1870s to the 1890s,
the CHARs peaked (Fig. 2e).

3.2. Structure, growth variability and negative pointer years

We detected trees with fire scars in three sites (CV, BA and TO). Half
of the sampled trees presented scars in the low-elevation CV site (Fig. 1,
Table 1). The thickest stems were sampled in BA, H2 and TO sites,
whereas the tallest trees were found in the CV site (Table 1). In sites CV,
BA and TO fire-scarred trees had significantly (P < .001) thicker stems
(larger DBHs) than trees without fire scars, but tree height was similar
between the two classes of trees. The DBH and bark thickness were
positively and significantly (P < .01) related at all sites with the ex-
ception of CV (Appendix, Fig. S1).

The oldest dated non-scarred and fire-scarred trees were found in
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H1 and BA sites, they were 400 and 274 years old, respectively. Several
trees became established during the 1960s to the 1970s in the CV and
H2 sites explaining the increase in growth at those sites (Fig. 3), and the
highest mean ring-width and first-order autocorrelation at site CV
where young trees were abundant (Table 2). The recent growth increase
peaked during wet-cool decades, such as in the 1970s, but the trend was
interrupted due to sharp growth declines related to severe drought
episodes, such as the one that took place in 1996 (a negative pointer

year) at site TO (Fig. 2c and 3). In the BA site, another drought-related
negative pointer year was detected in 1942, while three sites presented
negative pointer years from the 1820s to the early 1870s (1871, 1873)
though only the 1840s and 1850s were dry decades (Fig. 2c). This de-
coupling between drought and abrupt growth reduction in the 19th
century suggests that other factors probably caused negative pointer
years.

Drought-induced growth reductions cannot explain why two

CV

Tr
ee

-r
in

g 
w

id
th

 (m
m

)

0

2

4

6

8

10

N
o.

 c
or

es

0
501893

BA

0

1

2

3

0
50

H1

0

1

2

0
50

H2

0

1

2

3

4

0
501894

1894

1894

TO

Year

1800181018201830184018501860187018801890190019101920193019401950196019701980199020002010

0

2

4

0
501894

Fig. 3. Growth variability of black pine in the five study sites. The downward triangles indicate negative pointer years considering less (grey-filled triangles) or more (black-filled
triangles) than 50% of sampled trees in each site, respectively. Gray lines show measured radii (sample depth is shown as bars and indicated in the right y axes) and black lines and
symbols show the mean values (error bars are standard errors). The 1893–1894 years were detected as negative pointer years in all sites.

J.J. Camarero et al. Forest Ecology and Management 413 (2018) 9–20

14



marked negative pointer years were observed in 1893 and 1894 at all
sites since that period was not as dry and warm as the 1940s and 1990s
decades (Figs. 2 and 3). In the CV site, 1893 was identified as a negative
pointer year, whereas 1894 was detected in the remaining sites. For
instance, at site CV this represented a 44% reduction of radial growth
passing from a mean tree-ring width of 1.8mm in 1892 to 1.0mm in
1893. The narrow rings formed in 1893 and 1894 did not show any
conspicuous anatomical anomaly (more resin ducts, collapsed trac-
heids) which could be ascribed to fire damage to the cambium. Fur-
thermore, these findings are robust because all site chronologies were
well replicated from 1825 until 2015 showing a high mean correlation
between the growth series of trees (rbt=0.58; see Table 2).

The abrupt growth reduction in 1893–1894 was also reflected in the
highest values of mean negative growth changes (Fig. 4a) and the
lowest mean ring-width indices of the site residual chronologies and the
regional chronology which was below the −1.96 SD threshold
(Fig. 4b). Those negative pointer years coincided with a peak in the
historical fire records which reached high frequency in 1886, 1881,
1887, 1895, 1980, 1893 and 1974 (Fig. 4c). The estimated historical
fire-foci density showed low-elevation hotspots of fire initiation near
CV, TO and BA sites (Fig. 1).

3.3. Climate-growth relationships

Black pine growth was enhanced in response to warm February and
warm-dry March conditions and by colder weather in the previous and
current October (Fig. 5a). Wet June and July conditions improved
growth at all sites except in CV where warm and wet prior-winter
(December, January) conditions were associated with wider rings. Re-
garding the moving correlations between ring-width indices and
summer precipitation, they peaked from the 1960s to the 2000s in all
sites but showed negative associations in the early 1890s, 1920s and
1940s, particularly at the BA and CV sites (Fig. 5b).

4. Discussion

We found a higher frequency of negative growth changes (narrow
rings) in the late 1890s at all study sites, and particularly at sites with
more fire-scarred trees and a higher density of historical fire record foci.
This coincided with an increase in CHARs in a nearby peat bog, and a
peak in the historical record of wildfires in the study area. These
changes preceded an increase in pasture lands during the first half of
the 20th century (Ramankutty and Foley, 1999). The observed 1890s
growth suppression was not a response to drier weather conditions
usually associated with growth reduction in Iberian black pine forests
(Génova et al., 1993, Génova, 2000, Camarero et al., 2015, Touchan
et al., 2017). Therefore, these parallel datasets seem to support our
hypothesis that the severe growth reduction in the studied trees was a
consequence of widespread fires, possibly damaging part of the pine
crowns, which, in turn, likely shaped the current structure of these
relict Mediterranean black pine forests.

The fires of the 1890s decade constituted a coupled regime shift in
the ecology and management of the studied forests since it coincided
with the end of the “Mesta”, and the transition from a regulated
transhumance-based use of forests and grasslands to a more intensive

and unrestrained exploitation of natural resources (Ruiz and Ruiz,
1986). For instance, during the period when the “Mesta” rules were
applied, transhumant cattle was shepherded through specific mountain
passes, while after the “Mesta” dissolution sheep herds used multiple
passes, some of them located near the study sites (López-Sáez et al.,
2017, 2018). The cessation of “Mesta” transhumance allowed local
populations to exploit formerly protected or not intensively used
mountain forests and woodlands, which in all likelihood were cleared
using fire (Ruiz and Ruiz, 1986; Blanco-González et al., 2015; Silva-
Sánchez et al., 2016). According to historical fire records, in the late
19th century fire frequency and extent increased reaching a maximum
value of burnt surface area in 1893 (Montiel-Molina, 2007, 2013). Our
reconstructions of tree growth and fire occurrence illustrate the tight
connections between changes in socio-economic and ecological systems
(Seijo et al., 2017).

This shift from transhumant sheep herds to increasingly local
grazing activities by cattle in the mid to late 19th century is also re-
flected in several palaeoecological records from the Sierra de Gredos
which showed peaks in CHARs and coprophilous fungi suggesting more
intensive land use by shepherds and widespread wildfires (López-
Merino et al., 2009, López-Sáez et al., 2009, 2016a, 2016b, 2017;
Robles-López et al., 2017). Our data suggests that the transition from
the 19th to the 20th centuries indicates a peak in livestock activities in
the Sierra de Gredos, which would be corroborated by the rise in pas-
ture fraction (López-Sáez et al., 2009). The end of the 19th century also
coincides with the final stages of the Little Ice Age (LIA) which lasted
until 1850 when a more humid, cold and climatically unstable phase
started (Manrique and Fernández-Cancio, 2000). In fact, the 1890s
were among the warmest decades of the 19th century coinciding with
the end of the LIA (Luterbacher et al., 2004). In 1893 the warmest
spring for the 1500–1960 period was recorded in the study area. These
warm conditions further support the fire-related growth suppression we
argue took place in the 1890s since warm spring seasons are not sig-
nificantly related to a reduced growth in black pine, though they in-
crease the wildfire hazard in Mediterranean forests (Piñol et al., 1998).
In fact, spring is the season when most anthropogenic burning of
grasslands occurs in the Sierra de Gredos (Viedma et al., 2006).
Moreover, no circularity conflict can be attributed to these conclusions
arguing that the climate reconstructions used here were based on tree-
ring data (e.g., Pauling et al., 2006), since the presented chronologies
have been developed later and in sites or species not considered in those
reconstructions. Lastly, the fires of the 1890s caused a decoupling be-
tween growth and summer precipitations, particularly in fire-prone
stands, which casts doubt on the value of those tree-ring proxies for
deducing long-term climate reconstructions. Overall, our den-
drochronological approach, combined with a multiproxy dataset (his-
torical records, charcoal analysis), confirms that the fires of the 1890s
were probably triggered by very warm spring conditions and facilitated
by increased anthropogenic pressure on forests.

Fire-surviving trees forming relict stands usually had a large size
(DBH) and occupied rocky outcrops, often near humid enclaves such as
creeks or small rivers (e.g., CV site), where fire intensity could be lower
than on steep and drier slopes (Moreno et al., 2011). The larger DBH of
scarred fire survivors, as compared with neighboring trees, was also
observed in a Rocky Mountain forest (Margolis et al., 2007). In that

Table 2
Descriptive growth statistics calculated based on raw chronologies. AC= first-order autocorrelation, MS=mean sensitivity, rbt =mean correlation between trees, EPS= expressed
population signal.

Site Time-span (years) Tree-ring width ± SD (mm) MS AC rbt Period EPS> 0.85

CV 1816–2015 2.05 ± 1.51 0.34 0.79 0.54 1826–2015
BA 1742–2015 1.11 ± 0.64 0.35 0.67 0.55 1757–2015
H1 1617–2015 0.90 ± 0.66 0.37 0.72 0.61 1676–2015
H2 1703–2015 1.16 ± 0.61 0.30 0.71 0.57 1706–2015
TO 1766–2015 1.54 ± 1.07 0.33 0.74 0.62 1776–2015
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study it was shown that bigger trees tend to produce a thicker and more
fire-resistant bark, and their high crowns allowed them surviving sur-
face fires. We observed a tight relationship between DBH and bark
thickness thus seemingly confirming this hypothesis which conse-
quently suggests that currently dominant trees had a bark thick enough
in the 1890s to survive the extensive fires that took place during that
period.

Fire damage to crowns leads to canopy disturbances which may
create specific tree-ring width signatures that can be used as proxies for
fire histories (e.g., Veblen et al., 1991). The observed pattern in black

pine (growth suppression in 1893 and 1894) agrees with the marked
reduction of growth caused by fire damage described by Barrett and
Arno (1988) in their report on scar-boring cores, though in our study
missing rings were not detected. Post-fire survivor trees show either
growth releases or suppressions as a function of the degree of damage to
the crown and the cambium. However, mixed responses can also be
found (Peterson et al., 1994). In the first class of studies, growth in-
creases on the surviving trees in the early years following wildfires have
been explained by the release from competition for water, especially in
semi-arid and arid forests, as well as the increased availability of
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nutrients (Mutch and Swetnam, 1995, Lageard et al., 2000, Py et al.,
2006, Margolis et al., 2007). Such abrupt growth increases are very
pronounced and cannot be related to improved climatic conditions.
However, our study seems to confirm the findings of the second class of
studies which reported growth reductions either related to the amount
of forest litter consumed by surface fires (Elliott et al., 2002) or to
crown fires which reduced growth proportionally to the amount of
crown scorched (McInnis et al., 2004, Rozas et al., 2011). In the fire-
adapted Pinus canariensis species, surface fires did not negatively impact
growth because they barely burned the crown, while crown fires
leading to almost completely scorched crowns did cause short-term and
abrupt growth reduction (Rozas et al., 2011). In south-eastern USA
pine-oak mixed forests high-severity fire events also led to marked
growth reduction in surviving pines (Guiterman et al., 2015). These
findings suggest that the 1890s growth suppressions were probably
responses to widespread surface wildfires affecting the relict black pine
forests in our study area.

Some of our studied relict forests (CV, BA and TO sites) presented
attributes consistent with a fire-resistant evolutionary strategy (Keeley
et al., 2012) such as an open, multi-aged structure with large, thick-
barked trees forming high crown bases and growing in relatively humid

microsites prone to low severity fire behavior. However, the observed
1890s’ growth suppression would be consistent with fires partially af-
fecting the crown, a disturbance regime change which in all likelihood
contributed to the decline of black pine in the northern Iberian Plateau
(Morales-Molino et al., 2017). This development contrasts with the
regime of repeated surface fires which was shown to affect a relict black
pine forest studied in eastern Spain (Fulé et al., 2008). That forest was
located in a drier site (almost half the precipitation than in the Sierra de
Gredos), and therefore its long-term dynamics may differ from the relic
stands here described whose fire regime may depend on human effects
as well as climatic conditions.

At the local scale, this study offers a robust replication of negative
pointer years in relict black pine stands which are potentially linked to
fires in the late 19th century and to other causes (droughts in the 1940s
and 1990s) more recently. Since black pine can be fully defoliated after
pine processionary moth outbreaks this insect could also cause a severe
growth reduction but that signal should be more local or, in any case,
would have led to the formation of two consecutive narrow rings
(Sangüesa-Barreda et al., 2014). Sharp growth reductions were also
observed in other black pine populations from the Sierra de Gredos
during the late 19th century but the variability in growth between
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coexisting trees was too high, challenging their cross-dating and sug-
gesting the influence of other local level disturbances such as resin
tapping, logging or fires (Génova et al., 1993).

Other reconstructed fire histories using dated fire scars also found a
high incidence of fires during the mid to late 19th century in several
Mediterranean countries including Greece (Touchan et al., 2012,
Christopoulou et al., 2013, Sarris et al., 2014), Spain (Vega, 2000, Fulé
et al., 2008) and Algeria (Slimani et al., 2014). After those dominant
pre-19th century anthropogenic fire regimes - often characterized by
high frequency and low intensity surfaces wildfires - subsided; land-use
changes and new conservation laws regarding forest resources may
have led to a sharp reduction in fire frequency. In Greece, most fires
occurring in the late 19th century and 20th century seem to be asso-
ciated with either anomalously dry or warm conditions. More recent
fires, however, occurring between the late 20th and early 21st centuries
were characterized by both dry (below normal precipitation) and warm
(above normal maximum temperatures) conditions (Sarris et al., 2014).
It would be therefore interesting to reconstruct and compare different
fire regimes in the 19th and 20th centuries using multiples proxies (fire
scars, growth suppressions, historical records, palaeoecological data) to
disentangle the role played by humans and climate on those historical
fire regime transitions.

Regarding forest management, the increase in fire frequency and
size observed during the late 20th century in Spain as a consequence of
more fuel availability occurred despite improved fire extinction tech-
nologies and budgets (Seijo, 2009). From the point of view of con-
servation and restoration, low-intensity burns could be tested in the
field so as to ascertain whether a more frequent, low-severity fire re-
gime improves the dynamics of relict black pine populations currently
forming patches within other vegetation types which are very flam-
mable as Pinus pinaster forests. These dense stands, formerly used for
resin tapping, surround relict black pine forest groves in Gredos and can
experience medium to high severity crown fires which may cause black
pine forest decline (Génova and Moya, 2012, Robles-López et al., 2017).
Ancient, monumental black pines should be preserved and used to
improve the reconstruction of fire history by studying their fire scars
once they die or are felled.

To conclude, three coherent lines of evidence support the existence
of widespread fires in the western Sierra de Gredos during the late 19th
century affecting relict black pine stands: severe growth reductions in
1893 and 1894, an increase in fire frequency as shown by historical
documents, and a peak in charcoal accumulation rates. The late 19th
century increase of fire incidence was mainly explained by the dis-
solution of the “Mesta” system, the major transhumant livestock orga-
nization in European history, which was followed by a more intensive
and widespread use of forests and grasslands aided by extensive an-
thropogenic wildfires. The late 19th century’s complex fire history
contributed to shape the current structure of relict black pine forests
and may inform future management strategies based on prescribed
burning to recreate pre-19th century disturbance regimes associated
with a greater abundance of those forests.
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