

Curso Académico 2013-14

FÍSICA: MECÁNICA Y ONDAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): FÍSICA: MECÁNICA Y ONDAS (800576)

Créditos: 6

Créditos presenciales: 2.6 Créditos no presenciales: 3.4

Semestre: 4

PLAN/ES DONDE SE IMPARTE

Titulación: GRADO EN MATEMÁTICAS Plan: GRADO EN MATEMÁTICAS Curso: 2

Ciclo: 1

Carácter: BASICA

Duración/es: Segundo cuatrimestre (actas en Jun. y Sep.), Por determinar (no genera actas)

Idioma/s en que se imparte:

Módulo/Materia: FORMACIÓN BÁSICA/FÍSICA

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
--------	--------------	--------	--------------------	----------

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
SMIRNOV RUEDA, ROMAN	Matemática Aplicada	Facultad de Ciencias Matemáticas	rsmirnov@ucm.es	
TORO Y LLACA, MARIA DEL	Física de la Tierra,	Facultad de Ciencias	tllaca@ucm.es	
CARMEN	Astronomía y Astrofísica I	Matemáticas		
BARDERAS MANCHADO,	Física de la Tierra,	Facultad de Ciencias	gbardera@ucm.es	
GONZALO	Astronomía y Astrofísica I	Matemáticas		
DIAZ DIAZ, JESUS ILDEFONSO	Matemática Aplicada	Facultad de Ciencias	jidiaz@ucm.es	
		Matemáticas		
GONZALEZ MONTESINOS,	Física de la Tierra,	Facultad de Ciencias	fuensant@ucm.es	
FUENSANTA	Astronomía y Astrofísica I	Matemáticas		
CAMPOAMOR STURSBERG,	Geometría y Topología	Facultad de Ciencias	rutwig@ucm.es	
OTTO-RUDWIG		Matemáticas		
IVORRA , BENJAMIN PIERRE	Matemática Aplicada	Facultad de Ciencias	ivorra@ucm.es	
PAUL		Matemáticas		
LOPEZ MONTES, ANTONIO	Matemática Aplicada	Facultad de Ciencias	anlopez@ucm.es	
		Matemáticas		
RODRÍGUEZ CADEROT, MARÍA	Física de la Tierra,	Facultad de Ciencias	grc@ucm.es	
DE GRACIA	Astronomía y Astrofísica I	Matemáticas	_	

SINOPSIS

BREVE DESCRIPTOR:

Se establecen los fundamentos básicos de un campo muy extenso como es la Física a través de la Mecánica Clásica de una o varias partículas, así como del sólido rígido y una breve introducción a la teoría de ondas.

Grupo C: Establecer los fundamentos teóricos de la Mecánica Clásica y su formulación mediante el formalismo lagrangiano para la descripción de sistemas mecánicos.

Es aconsejable tener una mínima formación en Álgebra Lineal y en Análisis de una y varias variables y es aconsejable también algún conocimiento de Ecuaciones Diferenciales pero en ambos casos no es estrictamente imprescindible.

OBJETIVOS:

Curso Académico 2013-14

FÍSICA: MECÁNICA Y ONDAS Ficha Docente

- 1. Se pretende introducir a la modelización en Matemáticas a través de problemas concretos de la Mecánica Clásica con una breve introducción a la teoría de ondas.
- 2. Presentar las partes de la Mecánica que han sido el punto de origen de numerosas parcelas de la matemática

Grupo C:

- 1. Introducción a la modelización de sistemas mecánicos sencillos mediante ecuaciones diferenciales.
- 2. Ilustración de la estrecha relación entre los aspectos geométricos y dinámicos de los sistemas en Mecánica Clásica.

COMPETENCIAS:

Generales

Conocer los conceptos fundamentales de la Física en Mecánica clásica y ondas que permiten formular en términos de ecuaciones diferenciales los fenómenos físicos asociados.

Familiarizarse con una visión elemental de algunos temas actuales de la Física.

Grupo C:

Conocimiento de los métodos y técnicas fundamentales de la Mecánica Clásica para el estudio e interpretación de las leyes del movimiento. Introducción a la formulación lagrangiana de la Mecánica.

Transversales:

Específicas:

Resolución de modelos sencillos con técnicas matemáticas de fenómenos de la Mecánica y de las Ondas. Demostración de resultados centrales de la Mecánica y Ondas.

Grupo C

Establecer las ecuaciones del movimiento para sistemas mecánicos sencillos. Estudio e interpretación del movimiento a partir de un potencial dado. Reconocimiento de las características fundamentales de un sistema mecánico.

Otras:

CONTENIDOS TEMÁTICOS:

Parte 1 Técnicas elementales de Modelización: Sistemas de medida. Análisis Dimensional.

Parte 2 Mecánica newtoniana: cinemática y sistema de referencia. Dinámica: Leyes de Newton, Trabajo y energía, Sistemas de partículas.

Parte 3 Mecánica analítica. Ligaduras.

Parte 4 Campos centrales: Ley de gravitación de Newton. Leyes de Kepler.

Parte 5 El sólido rígido.

Parte 6 Introducción a la teoría de ondas

Grupo C:

Parte 1 Cinemática y sistemas de referencia. Leyes de Newton.

T L L L

Curso Académico 2013-14

FÍSICA: MECÁNICA Y ONDAS Ficha Docente

Parte 2 Osciladores armónicos, amortiguados y forzados.

Parte 3 Potenciales centrales: Leyes de gravitación y de Kepler.

Parte 2 Sistemas de partículas. Ligaduras.

Parte 5 Introducción al formalismo lagrangiano.

Parte 6 El sólido rígido. Ecuaciones de Euler.

Parte 7 La ecuación de Hamilton-Jacobi.

ACTIVIDADES DOCENTES:

Clases teóricas:

Sesiones académicas teóricas

Seminarios:

En el seminario, se realizará, más o menos a partes iguales:

Trabajo individual o en grupos tutorizado por el profesor

Resolución individual o grupal de dudas

Resolución de problemas por parte del profesor

Exposición por parte de los alumnos y profesor de prácticas, trabajos, o temas complementarios a la materia de la asignatura

Grupo C:

Actividades del seminario:

Temas complementarios al temario.

Resolución de problemas.

Trabajo individual o en grupos.

Clases prácticas:

Resolución en clase de problemas y prácticas.

Presenciales: 5% Trabajo autónomo: 5%

Trabajos de campo:

No

Prácticas clínicas:

Laboratorios:

No

Exposiciones:

No

Presentaciones:

No

Otras actividades:

TOTAL:

EVALUACIÓN:

Examen final: 80%

Entrega de problemas por escrito: 10%

Entrega de prácticas por escrito: 4%

Exposición oral en tutorías de ejercicios resueltos 3%

Asistencia y participación en clase: 3%

Grupo C:

Examen final: 90%

Entrega de problemas por escrito: 5% Participación activa en clase: 5%

Curso Académico 2013-14

FÍSICA: MECÁNICA Y ONDAS Ficha Docente

BIBLIOGRAFÍA BÁSICA:

Bibliografía básica

A. Rañada: Dinámica Clásica, Alianza Universal Textos, 1994.

J. B. Marion. Dinámica de las partículas y sistemas. Reverté, Barcelona, 1981.

J. Taylor. Classical Mechanics, University Science Books, Saulsalito, CA., 2005

P. A. Tipler, G. Mosca: Física para la ciencia y la tecnología. Vol.1, Mecánica, oscilaciones y ondas, termodinámica¿, Reverté, D.L. 2007, 5ª ed., reimp.

M. Alonso y E. J. Finn. Física (2 volúmenes). Addison-Wesley Iberoamericana. Argentina. 1986

Bibliografía complementaria

R. P. Feynman, R. B. Leighton y M. Sands: ¿Física. Vol.I, Mecánica, radiación y calor¿, Addison-Wesley Iberoamericana 1987. Berkeley physics course: Vol.1. Mecánica. Vol.2. Ondas. Reverté. Barcelona. 1988.

R. A.Serway, J. W. Jewett, Jr.: ¿Física para ciencias e ingenierías¿, Thomson, imp. 2005, 6a ed

A.P. French: ¿Vibraciones y ondas¿, Ed. Reverté, 1993

F. Scheck. Mechanics. Springer-Verlag, Berlin 1994.

G. Gallavoti: The elements of Mechanics, Springer, 1983.

V. I. Arnold: Mecánica Clásica, Ed. Paraninfo, 1984.

H. Goldstein: Mecánica Clásica, Ed. Reverté (20 ed.). 1992.

V. M. Pérez, L. Vázquez y A. Fernández Rañada: 100 Problemas de Mecánica. Ed. Alianza 1997.

L. D. Landau y E. M. Lifshitz: Mecánica, Ed. Reverté, 1988

C. Fernández, F. J. Vázquez y J. M. Vegas: Ecuaciones diferenciales y en diferencias. Sistemas dinámicos, Thomson, Madrid, 2003

W. E. Boyce and R. C. DiPrima: Ecuaciones Diferenciales y problemas con valores en la frontera, Limusa, México, 1981. P. Puig Adam, Ecuaciones Diferenciales, Nuevas gráficas. Madrid, 1958.

OTRA INFORMACIÓN RELEVANTE

R.L.Green. Classical Mechanics with Maple.V, Springer,1994.

R. H. Enns, G. C. McGuire, Computer Algebra Recipes for Classical Mechanics, 2003, Birkhäuser. Boston. Kammerer, Classical Mechanics with Maple,: http://www.mapleapps.com/powertools/mechanics/mechanics.shtml

Bellomo, L. Preziosi and A. Romano. Mechanics and Dynamical Systems with Mathematica, Birkhäuser, Bosto, 2000.

M. Abell y J. P. Braselton: Differential Equations with MAPLE V. Academic Press. 1994.