

Project context and objectives

ATMOUNT II project

• **Obj. 1:** Characterization of mountain breezes

- Guadarrama Mountains (Herrería) (Spain)

- Pyrenees (France)

- Salt Lake Valley (US)

• **Obj. 2:** Impacts of mountain breezes in CO₂ (micro-mesoscale interactions)

Mountain breezes detection

DETECTION ALGORITHM*

* Based on criteria in Arrillaga et al. 2018 (QJRMS)

CENTRE DE RECHERCHES ATMOSPHÉRIQUES (CRA, Pyrenees)

(2017 Example)

- **LARGE SCALE: Synoptic conditions** - NCEP: u, v, T, RH

- Filter 1: Wind at 700 hPa < 9-10 m/s

- Filter 2: Fronts passage; $\Delta\theta_e$ 700 hPa \Rightarrow -1.45 K/6 hours

- Filter 3: Rainfall < 0.2 mm/day

 \rightarrow 365 days analysed

→ 179 days pass Filter 1

 \rightarrow 168 days pass Filter 1 and 2

 \rightarrow 135 days pass Filter 1, 2 and 3

Mountain breezes detection

DETECTION ALGORITHM*

* Based on criteria in Arrillaga et al. 2018 (QJRMS)

CENTRE DE RECHERCHES ATMOSPHÉRIQUES (CRA, Pyrenees)

(2017 Example)

- **LARGE SCALE: Synoptic conditions** - NCEP: u, v, T, RH

- Filter 1: Wind at 700 hPa < 9-10 m/s

- Filter 2: Fronts passage; $\Delta\theta_e$ 700 hPa > -1.45 K/6 hours

- Filter 3: Rainfall < 0.2 mm/day

 \rightarrow 365 days analysed

→ 179 days pass Filter 1

 \rightarrow 168 days pass Filter 1 and 2

 \rightarrow 135 days pass Filter 1, 2 and 3

- **SMALL SCALE: Local conditions** - Wind Direction (WD) from tower

- Ranges of WD for down (nighttime) / up (daytime) events
- WD persistence (80% of event) in the appropriate range
- Minimum duration of events (3 hours min)

→ 112 nighttime & 56 daytime events

CRA (Pyrenees)

CRA (Pyrenees)

From Google

Mountain breezes events (examples)

Nighttime event

Daytime event

Mountain breezes events (examples)

Nighttime event

<u>Daytime event</u>

Nighttime event example

Daytime event example

Nighttime events mean + sd

Daytime events mean + sd

SH sign change (+ to -) (- to +)

Mountain breezes statistics

Timing / duration of events.

With all the events...

Wind speed & Wind direction (mean and variability).

Impacts on → greenhouse gases concentration

CRA (Pyrenees)

EVENTS NUMBERS:

365 days analysed 112 nighttime 56 daytime

La Herrería (Guadarrama) - HER

La Herrería (Guadarrama) - HER

La Herrería (Guadarrama) - HER

EVENTS NUMBERS:

365 days analysed 177 nighttime 136 daytime

Salt Lake Valley (Rocky Mountains) - SLV

Salt Lake Valley (Rocky Mountains) - SLV

Salt Lake Valley (Rocky Mountains) - SLV

EVENTS NUMBERS:

201 days analysed 30 nighttime 31 daytime

Mean WIND SPEED

Mean wind speed 4.5 + Outliers 3.5 WS (m/s) * Mean Median 2.5 1.5 0.5 HER CRA SLV SLC valley Guadarrama Pyrenees

Daytime events

Mountain breezes arrival time (regarding sunset)

Nighttime events

Daytime events

Mountain breezes arrival time (regarding sunset)

Objective 2. CO₂ & mountain breezes

CO₂ diurnal cycle. What is the influence of the mountain breezes?

```
CO<sub>2</sub> evolution  \begin{cases} Plant \ activity \\ "Soil" \ respiration \end{cases} \xrightarrow{\text{DAYTIME}} Less \ CO_2 \ (photosynthesis) \\ NIGHTTIME \xrightarrow{\text{More CO}_2} \ (respiration) \end{cases} 
 PBL \ dynamics \ (height)^* 
 Degree \ of \ turbulence^* 
 Advection^* 
 Mixing \ from "above"^*
```

^{*} Potentially influenced by mountain breezes

Objective 2. CO_2 & mountain breezes

CO₂ jump

Katabatic onset?

CO₂ night evolution (slope)

TKE?

CO₂ decrease

Anabatic onset?

Mean CO2 concentration* during events

MEAN CO₂ during the events??

Mean CO2 concentration* during events

* Minus daily mean (anomaly)

Daytime events

Mean CO2 concentration* during events

* Minus daily mean (anomaly)

Daytime events

CO₂* vs TKE during nighttime events

* Minus daily mean (anomaly)

CO₂* vs TKE during nighttime events

* Minus daily mean (anomaly)

Different dataset (BLLAST 2011)

Work of
P. Campargue-Rodriguez
and
I. Turki
(M1 students)

Nighttime events CO₂* concentration for different WD

Conclusions

- Different features of MOUNTAIN BREEZES due to:
 - Type of phenomena (katabatic, mountain-plain, valley-channelled flows)
 - Distance to the mountains, tower location...
- CO₂ modulated by:
 - PBL transitions: stable ←→ convective
 - Turbulence (especially during nighttime)
 - Wind direction (advection) in very heterogeneous sites (SLC)

Mountain breezes influence CO₂ concentrations

and...

- Mixing from "above" in SBL (Gravity waves? Residual eddies?)
- Soil respiration??
- Plants activity??

