Katabatic, anabatic winds and their impacts in CO₂

C. Román-Cascón, I. Turki, P. Camparguez, M. Lothon, F. Lohou, C. Yagüe, J. A. Arrillaga and E. Pardyjak

BLLAST workshop Palma de Mallorca 15 May 2018

Outline

- ATMOUNT project context
- **Objective 1.** Mountain breezes comparison in 3 sites
- **Objective 2.** Mountain breezes and their effects in CO₂
- Testing period: BLLAST (master students work)
 CO₂ analyses over different surfaces

Project context

ATMOUNT

Land-atmosphere interactions in mountains analysis and impacts on global change

- ATMOUNT I *Surface/atmosphere interactions in mountains and soil-vegetation-atmosphere transfer processes (obs+mod).* Univ. Islas Baleares
- ATMOUNT II Micro-mesometeorological flows around Sierra de Guadarrama: Influences on fluxes of greenhouse gases and energy. Univ. Complutense Madrid

MOUNT III – Gravity waves, orographic rainfall. Univ. Barcelona

ATMOUNT II

- OBJECTIVE 1: To compare mountain breezes in other sites.
- OBJECTIVE 2: To analyse the impacts of mountain breezes in CO_2 and water vapour concentration and fluxes

(among other objectives)

Mountain breezes comparison

1. La Herrería (Guadarrama Mountains)

2. CRA (Pyrenees)

3. Salt Lake Valley (Rocky Mountains)

* Based on criteria in

Arrillaga et al. 2016

Breezes detection \Box Algorithm* prepared to work in 3 sites

- Synoptic conditions (NCEP: u, v, T, RH)
 - Wind at 700 hPa (< 10-11 m/s)
 - Fronts passage ($\Delta \theta_{e}$)
 - Rainfall
- Local conditions
 - Range (kata/ana) of wind direction at specific timing
 - Wind direction persistence (80% of time)
 - Minimum duration of events (2 hours min)

Breezes analysis Statistics

- Formation and end times (related to sunrise/sunset)
- Duration
- Wind speed intensity and variability
- Wind direction variability
- Events relation with other variables (synoptic conditions, temperature, season, soil humidity...)
- IMPACTS: on fluxes, turbulence, stability, PBL behavior, transitions? +CO₂ and (H₂O)_v

Objective 1. Breezes detection and statistics

- La Herrería (almost 2 available years) □ Analysis for all 2017
- CRA (several available years)
- Salt Lake Valley

Analysis for all 2017
Jan-July 2015 (MATERHORN)

LA HERRERIA (El Escorial) - 2017

LARGE SCALE CRITERIA KATABATICS

201 days from a total of 365 have passed filter 1 (synoptic wind speed)
193 days have passed ALSO filter 2 (fronts passage)
183 days have passed ALSO filter 3 (in situ rainfall (stormy days))

SMALL SCALE CRITERIA KATABATICS

290 possible katabatic events 276 katabatics events have been detected with minumum persistence of 2 hour(s) 132 events also passed the criteria of 80 percentage of time with the same wd

----- LARGE SCALE AND IN SITU KATABATIC DETECTION -----Number of kat. events according to small scale & large scale = 10

+ TESTING PERIOD... BLLAST!

CONFIGURATION				
Synoptical height	700			
Synoptic wind speed threshold (m/s)	9			
Synoptic theta threshold (K/6h)	-1,45			
Rainfall threshold (mm/day)	0,5			
Katabatic range min	250			
Katabatic range max	340			
Anabatic range min				
Anabatic range max	230			
Data time resolution				
Katabatic ini time regarding sunrise	-5			
Katabatic end time regarding sunrise	+18			
Anabatic ini time regarding sunset	-2			
Anabatic end time regarding sunset	+18			
Katabatic minimum time persistence (h)	2			
Anabatic minimum time persistence (h)	2			
% of kat/anab continuity	80			

Objective 1. Breezes detection and statistics

La Herrería (San Lorenzo de El Escorial)

E (90)

Katabatics

Mean wind speed = 1.2 m/s(range 1 to 1.5 m/s)

Katabatic formation

Katabatic end

+1.5 h

Site

(900 m)

Anabatics

Wind Speeds in m/s

Guadarrama

AP-6

Alpedrete

CRA (Lannemezan)

Katabatics

Mean wind speed = 2.6 m/s(range 0.5 to 4.5 m/s)

Katabatic formation

Katabatic end

Mean wind speed = 1.7 m/s(range 1 – 3.2 m/s)

-0.5 h

Salt Lake Valley (SLC)

Katabatics

Mean wind speed = 2.7 m/s (range 1.5 to 3.5 m/s)

Katabatic formation

Katabatic end

Mountain breezes comparison

- **OBJ. 2** - Analysis of impacts in CO₂/water vapour concentrations and fluxes:

- CO₂ diurnal cycle. What is the influence of the mountain breezes?

- H₂O not analysed yet! (and more complicated)

ASPECTS TO BE STUDIED

1. CO₂ jump

- Is it related to the katabatic onset?
- Which variables are controlling the strength of the CO₂ jump?
- How does it change along the year?

2. CO₂ night evolution (slope)

- Positive during summer?
- Negative during winter?
- Annual evolution?
- CO₂ pic always at the beginning of the SBL related to very low turbulence

3. CO_2 decrease

Speed of morning transition?

CO₂ dynamics more related to PBL dynamics (degree of turbulence) and biological activity

THERE IS NO EFFECT OF LOCAL ADVECTIONS DUE TO KATABATIC/ANABATIC?

Mean CO₂ concentration during katabatics events

LA Herrería

Mean CO₂ concentration during katabatics events

LA Herrería

CRA

CO₂ jump distribution

17

ONLY KATABATIC, ONLY DURING NIGHTTIME,

HOW THE WIND DIRECTION IS INFLUENCING THE CO₂ CONCENTRATION?

LA Herrería

18

ONLY KATABATIC, ONLY DURING NIGHTTIME,

HOW THE WIND DIRECTION IS INFLUENCING THE CO₂ CONCENTRATION?

CRA

ONLY KATABATIC, ONLY DURING NIGHTTIME,

HOW THE WIND DIRECTION IS INFLUENCING THE CO₂ CONCENTRATION?

SLC

BLLAST. Testing the detection algorithm (Pablo and Imen)...

Comparison with Jimenez et al. work on *Vallée d'Aure*.

IOP	Up/Down slope in Lannemezan	Up/Down slope exit Aure valley	Interaction Aure-Lann (Day/Night)	REASONS
3 20-21 june	NO / YES	YES / YES	NO / NO	LS wind
5 25-26 june	NO / YES (late)	YES /YES	NO / YES	When LS wind weakens, the exit valley jet reaches Lannemezan
6 26-27 june	NO / YES	YES / YES	NO / YES	Aure valley and Lannemezan linked during the whole night
9 1-2 july	YES / YES	YES / YES	YES / YES	LS winds are weak. Local winds present
11 5-6 july	YES / NO	YES / NO	YES / YES	LS winds from S and W. No local slope winds present. Foehn?

Dates	s IOPs	Événements ana. algo.	Modèles (M. Jimenez)	Évaluation qualitative ana.	Événements cata. algo.	Modèles (M. Jimenez)	Évaluation qualitative cata.	
14/06	3 x	x		x				
15/06	3 x	x		x				
16/06	э.							
17/06	3.	x		x				
18/06	δ.							
19/06	3 x	x		x	x		x	
20/06	3 x	x		x	x	x	?	
21/06	э.				x		x	
22/06	3.						•	
23/06	э.							
24/06	3 x	x		x	x		x	
25/06	3 x				x	x	x	
26/06	6 x				x	x	x	
27/06	3 x	x		x				
28/06								
29/06	3.							
30/06	3 x							
01/07	7 x	x	x	x	x	x	x	
02/07		x		x	x		x	préc
03/07	7.			2				soi soi
04/07	7.							
05/07	7 x	x	x	x				próci
06/07	7.						? 🜤	préci
07/07	7.						? ⇐	préci
08/07	7 .						1. A.	

Does the mountain-breezes detection algorithm work during BLLAST? Day YES!

BLLAST. CO2 over different surfaces

ANABATICS KATABATICS Wind Speeds in mis $W_{g} \ge 4.5$ Wind Speeds is m/r Wind Rose $W_n \ge 7$ $4 \le W_{0} \le 4.5$ Wind Rose 3.5 < W_a < 6 5 < W. < 6 $3 \le W_g < 3.5$ Wa = 5 $2.5 \le W_0 \le 3$ 3 < We < 4 $2 \le W_{\rm B} = 2.5$ $2 \le W_{\pi} < 3$ $1.5 \le W_{\odot} = 2$ $1 \le W_{g} \le 2$ $1 \le W_{0} \le 1.5$ $0.5 \le W_g \le 1$ $0 \le W_g \le 0.5$ **BLLAST**

22

BLLAST campaign statistics

	Ana.	Phase transition post-cata.	Cata.	Phase transition post-ana.
Nombre d'événements	11	5	8	3
Horaire début (UTC)	9h13	19h41	20h02	8h28
Horaire fin (UTC)	18h41	20h53	09h01	8h51
Durée (h)	9h29	1h10	9,78	0h23
Persistance (%)	87,21	-	87,76	-
VV moyenne (m/s)	1,84	0,75	2,74	0,95
DV moyenne (°N)	2,34	-	157,24	-

BLLAST. CO2 over different surfaces

BLLAST. Katabatic and anabatic wind distributions

Wind distributions

Interesting and particular period of transition, near-calm period, low turbulence... and high concentrations!

BLLAST. CO₂ over different surfaces

 Δ CO2 Vs TKE during katabatics

BLLAST. CO₂ over different surfaces

 Δ CO2 Vs TKE during katabatics

TKE (m^2/s^2)

BUT THIS DOES NOT HAPPEN AT 30 M!!

BLLAST. CO₂ over different surfaces

TKE (m²/s²) (ranges)

Conclusions

- A lot of statistics can be performed -> Many variables available in the same prepared matrix

- Deep analysis of results still pending

More in BLT-AMS?

- CO₂ seems more linked to diurnal cycle of PBL height, turbulence and... biological activity?

- Difficult to study similar cases without mountain breezes (modelling?) CLASS?

Pending to analyse effect of changes in fluxes (through changes in wind speed?)

- Pending to analyse q, LH

Picture taken close to La Herrería site, looking North.

andidationates

Courtesy of J. A. Arrillaga and Carlos Yagüe

Thanks!