

COLLOQUIUM DE ANÁLISIS MATEMÁTICO

Luis Rodríguez Piazza

Universidad de Sevilla

Abscisa de convergencia para algunos espacios de series de Dirichlet

Los espacios de Hardy de series de Dirichlet Hp ($1 \le p \le \infty$) fueron introducidos por Hedenmalm, Lindqvist y Seip para p=1 y $p=\infty$, y por Bayart para el resto de valores de p. Se probó que, para p finito, toda serie de Dirichlet en Hp converge en el semiplano $C1/2=\{z\in C:1/2\}$, y que 1/2 no puede ser mejorado (esto es, no existe $0 \le 1/2$ tal que toda serie de Dirichlet de Hp converja en $C\theta$). Podemos decir entonces que, para todo p finito, la abscisa de convergencia de Hp es 1/2. En cambio, se sabe que la abscisa de convergencia de H ∞ es 0. En nuestra charla, tras recordar las propiedades de convergencia de las series de Dirichlet, introduciremos los espacios de Hardy-Orlicz H ψ de series de Dirichlet. Nos centraremos en el caso en el que $\psi(t)=\psi q(t)=\exp(t|q)-1$, y probaremos que la abscisa de convergencia de H ψ q es min $\{1/2,1/q\}$. Esto llena el hueco entre la abscisa de Hp, para p finito, y la de H ∞ , respondiendo una cuestión de Hedenmalm.

Organizado por el Departamento de Análisis Matemático y Matemática Aplicada y el Instituto de Matemática Interdisciplinar (IMI)

Fecha: Jueves 4 de julio de 2019 a las 12:00 horas Lugar: Aula 222 Facultad de CC Matemáticas, UCM