ECONOMETRICS EXTRAORDINARY FINAL EXAM

 27th June 2022. 18:00| Family Name: | Name: |
| :--- | :--- |
| Grade: | ID: |
| Mobile: | Email: |

Question 1	A	B	C	Blank
Question 2	A	B	C	Blank
Question 3	A	B	C	Blank
Question 4	A	B	C	Blank
Question 5	A	B	C	Blank
Question 6	A	B	C	Blank
Question 7	A	B	C	Blank
Question 8	A	B	C	Blank
Question 9	A	B	C	Blank
Question 10	A	B	C	Blank
Question 11	A	B	C	Blank
Question 12	A	B	C	Blank
Question 13	A	B	C	Blank
Question 14	A	B	C	Blank
Question 15	A	B	C	Blank
Question 16	A	B	C	Blank
Question 17	A	B	C	Blank
Question 18	A	B	C	Blank
Question 19	A	B	C	Blank
Question 20	A	B	C	Blank

Correct		Incorrect		Blank		Grade	

This exam includes 20 multiple choice questions.
Your answers must be marked on the answer sheet that you will find in the first page. If you want to leave any question unanswered, choose the "Blank" option. This answer sheet is the only part of this exam that will be graded.

A correct answer adds 2 points to the final grade while an incorrect one subtracts 1 point. A blank answer does not add or subtract. The final grade is the number of points divided by 4 .
Make sure that you checked your options, including "Blank". Do not unclip the sheets. Use the blank space in the following pages to write notes or to do arithmetic calculations.

YOU HAVE ONE HOUR AND 15 MINUTES (75') TO ANSWER THIS

REMINDER

YOU ARE NOT ALLOWED TO USE DEVICES WITH CONNECTIVITY TO THE INTERNET, INCLUDING MOBILE PHONES, TABLETS, SMARTWATCHES OR MP3/4 PLAYERS

1. You estimate the model $y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}$, using the following dataset:

y_{i}	x_{i}
3	1
7	3
8	5

If $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ are the OLS estimates for the parameters, the value of $\widehat{\beta}_{0}$ is:
A) $9 / 4$.
B) $5 / 4$.
C) $3 / 4$.
2. In a simple linear regression model the variance of the slope estimator will be lower when (ceteris paribus):
A) Total variability of the regressor is lower.
B) Variance of the error term is larger.
C) Sample size is larger.
3. You want to estimate the following model using OLS: $y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}$ and you have the following information:

$$
\bar{x}=50, \bar{y}=50, \widehat{\operatorname{var}}(x)=4, \widehat{\operatorname{var}}(y)=9, \widehat{\operatorname{corr}}(x, y)=\frac{1}{3} .
$$

Knowing that $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ are the OLS estimates for the parameters, the value of $\widehat{\beta}_{1}$ is:
A) 0.5 .
B) 0.725 .
C) 2.172 .
4. You use a sample of firms to estimate a OLS model where annual research and development expenditures ($r d$) are explained using annual sales (sales). Both variables are measured in millions of dollars. The model is the following one:

$$
r d=\beta_{0}+\beta_{1} \text { sales }+u
$$

And the results from the OLS estimation are:
Model 1: OLS, using observations 1-32
Dependent variable: rd

	coefficient	std. error	t-ratio	p-value		
const	-0.577216	20.5155	-0.02814	0.9777		
sales	0.0406263	0.00244865	16.59	<0.0001		
R^{2}	0.901727	Adjusted R^{2}				
0.898451						

Choose the RIGHT option:
A) If annual sales increase by 1%, the annual investment in research and development is expected to increase by approximately 0.0406263%.
B) If annual sales increase by 1 million dollar, the annual investment in research and development is expected to increase by approximately 40,626 dollars.
C) If annual sales increase by 1%, the annual investment in research and development is expected to increase by approximately 4.06%.

Questions 5 to 10 refer to the following statement. Consider a model (Model 2) to explain salaries of managers (salary, in miles of dollars), in terms of annual firm sales (sales, in millions of dollars), the return on equity (roe, in percentage), and the return on firm shares (ros, in percentage):

$$
\log (\text { salary })=\beta_{0}+\beta_{1} \log (\text { sales })+\beta_{2} \text { roe }+\beta_{3} \text { ros }+u .
$$

And the results from the OLS estimation are:

Model 2: OLS, using observations 1-209 Dependent variable: \log (salary) coefficient				
std. error	t-ratio	p-value		
const	4.31171	0.315433	13.67	<0.0001
\log (sales)	0.280315	0.0353200	7.936	<0.0001
roe	0.0174167	0.00409230	4.256	<0.0001
ros	0.000241656	0.000541802	0.4460	0.6561
Mean dependent var	6.950386	S.D. dependent var.	0.566374	
Sum squared resid	47.86082	S.E. of regression	0.483185	
R^{2}		0.282685	Adjusted R^{2}	0.272188
$F(3,205)$		26.92930	p-value (F)	$1.00 \mathrm{e}-14$

5. If annual firm sales increase by 5%, the estimated variation of salary is expected to be (ceteris paribus):
A) 2.8031%.
B) 1.4016%.
C) 280,315 dollars.
6. If roe increase by 1 point, the estimated variation of salary is expected to be (ceteris paribus):
A) 1.74%.
B) 0.0174%.
C) 1,741.67 dollars.
7. From Model 2, it can be known that:
A) $\operatorname{Pr}[t(205) \geq 0.4460]=0.3439$
B) $\operatorname{Pr}[-0.4460 \leq t(205) \leq 0.4460]=0.3439$
C) $\operatorname{Pr}[t(205) \geq-0.4460]=0.6561$
8. Consider the test of the null hypothesis $H 0: \beta_{2}=0$, against the alternative $H 1: \beta_{2}>$ 0 :
A) There are no enough data to know if this null hypothesis is rejected or not at 1%, 5% or 10% levels of significance.
B) The null hypothesis is rejected at the 5% and at the 10% levels of significance, but not at the 1% level of significance.
C) The null hypothesis is rejected at the 1%, at the 5% and at the 10% levels of significance
9. If the two-sided critical value from a $t(205)$ at the 1% level of significance is equal to 2.6 , then the 99% confidence interval for β_{1} is equal to:
A) $[0.092,0.314]$.
B) $[0.220,0.482]$.
C) $[0.188,0.372]$.
10. Now you estimate the following model (Model 3):

Model 3: OLS, using observations 1-209
Dependent variable: \log (salary) coefficient std. error t-ratio p -value
const $\quad 4.82200 \quad 0.288340 \quad 16.72 \quad<0.0001$
\log (sales) $\quad 0.256672 \quad 0.0345167 \quad 7.436<0.0001$
Mean dependent var 6.950386 S.D. dependent var. 0.566374
Sum squared resid $\quad 52.65600$ S.E. of regression 0.504358
$R^{2} \quad 0.210817$ Adjusted $R^{2}{ }^{2} \quad 0.207005$
$F(3,205) \quad 55.29659 \quad$ p-value (de F) $\quad 2.70 \mathrm{e}-14$
The F statistic to test that neither the roe nor the ros influence expected salaries of managers is equal to:
A) 55.29659 .
B) 10.2695 .
C) 35.4375 .

Questions 11 to 13 refer to the following statement. A researcher wants to know the effect of family income, sports activity and gender on the weight in $\mathrm{kg}(W)$ of 8 years-old kids . Family income is measured as monthy income in miles of euros (I). To include sports activity, two dummy variables are defined: S, which takes the value of 1 if the kid does less than 4 hours of sports activity per week and 0 otherwise, and D, which takes the value of 1 if the kid does 4 or more hours of sports activity per week and 0 otherwise. Finally, variable H takes the value of 1 when the kid is a male and 0 if the kid is a female. In the sample there are 1,0008 years-old kids (90% of them taking taking the value of 1 in the variable S).
The researcher specifies the following models, where $\ln (I)$ is the natural \log of family income:
i) $W_{i}=\beta_{0}+\beta_{1} \ln (I)_{i}+\beta_{2} S_{i}+u_{i}$
ii) $W_{i}=\beta_{0}+\beta_{1} \ln (I)_{i}+\beta_{2} D_{i}+u_{i}$
iii) $W_{i}=\beta_{0}+\beta_{1} \ln (I)_{i}+\beta_{2} S_{i}+\beta_{3} D_{i}+u_{i}$
iv) $W_{i}=\beta_{0}+\beta_{1} \ln (I)_{i}+\beta_{2} D_{i}+\beta_{3} H_{i}+\beta_{4} D_{i} \times H_{i}+u_{i}$
and the estimation of model iv) yields the following results:

$$
\widehat{W}_{i}=26.5+0.2 \ln (I)_{i}-0.4 D_{i}+1.2 H_{i}-0.3 D_{i} \times H_{i}
$$

11. Choose the RIGHT option:
A) Model iii) shows perfect collinearity
B) Model iii) shows non-perfect collinarity.
C) In model ii) β_{0} is interpreted as the expected weight of kids doing 4 or more hours of sports activity per week, regardless the family income.
12. From the estimation of model iv), the expected weight for a male kid doing 6 hours of sports activity per week and with monthly family income equal to 5,000 euros is equal to:
A) 26.82 kg .
B) 28.02 kg .
C) 27.32 kg .
13. From the estimation of model iv), choose the RIGHT option:
A) If we compare 2 male kids with same family income we would expect that the weight of the kid with $D=1$ is 0.4 kg lower than the weight of the kid with $S=1$.
B) If we compare a male kid against a female kid, both with $D=1$ and same family income, we would expect the male kid to weight 1.2 kg more than the female kid.
C) If we compare a male kid against a female kid, both with same family income but the male kid with $D=1$ and the female kid with $S=1$, we would expect the male kid to weight 0.5 kg more than the female kid.
14. Below you have the histogram and the summary statistics of the variable alcohol, which measures wine consumption per capita in liters per month. In addition, the Jarque-Bera statisic is equal to 6.78181 , with p-value equal to 0.0336783 .

Summary statistics	
(21 valid observations)	
Mean	2.8381
Median	1.9000
Minimum	0.60000
Maximum	9.1000
Standard deviation	2.4581
C.V.	0.86612
Skewness	1.3478
Ex. kurtosis	0.69571

Choose the RIGHT option:
A) Variable alcohol is skewed to the right.
B) The null hypothesis that the variable alcohol is normally distributed is rejected at the 1% level of significance
C) The null hypothesis that the variable alcohol is normally distributed is not rejected at the 5% level of signficance.
15. You estimate the following model: $y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i}$ and the values for the Breusch-Pagan and the White statistics are 6.19692 and 9.3612 , respectively. If $P\left(\chi^{2}(2) \geq 6.19692\right)=0.0451186$ and $P\left(\chi^{2}(5) \geq 9.3612\right)=0.0954958$, choose the RIGHT option:
A) The null hypothesis of homoscedasticity is rejected at the 5% level of significance using both Breusch-Pagan and White statistics.
B) The null hypothesis of homoscedasticity is rejected at the 10% level of significance using both Breusch-Pagan and White statistics.
C) The null hypothesis of homoscedasticity is rejected at the 5% level of significance using the White statistic but it is not rejected at 5% level of significance using the Breusch-Pagan statistic
16. Regarding the error term from the model: $y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}$ for $t=1, \cdots T$:
A) If $\operatorname{Cov}\left(u_{t}, u_{t}\right)=\sigma^{2} I$ and $\operatorname{Cov}\left(u_{t}, u_{t+s}\right) \neq 0$, with $s \neq 0$, OLS is linear, unbiased and efficient.
B) If $\operatorname{Cov}\left(u_{t}, u_{t}\right)=\sigma^{2} \times t$ for $t=1, \cdots, T$ and $\operatorname{Cov}\left(u_{t}, u_{t+s}\right)=0$, with $s \neq 0$, the t, F and $L M$ tests are no longer valid.
C) If $\operatorname{Cov}\left(u_{t}, u_{t}\right)=\sigma^{2} \times t$ for $t=1, \cdots, T$ and $\operatorname{Cov}\left(u_{t}, u_{t+s}\right)=0$, with $s \neq 0$, the OLS confidence intervals are valid.
17. In the model $C_{i}=\beta_{0}+\beta_{1} R D_{i}+u_{i}$, where C_{i} is the weekly consumption for family i, and $R D_{i}$ is its disposable income, some individuals show values much larger than the mean in the variable $R D$ and in C. Those individuals:
A) Will always show large residuals.
B) Are extreme observations that do not influence the results from the OLS estimation.
C) Are extreme observations and they can be influential.

Questions 18,19 and 20 refer to the following statement. Below you can see several time series graphs using monthly data for the log of the exchange rate between Australian dollar and US dollar ($\operatorname{lnTC1}$), relative prices between Australia and USA ($P R$) and the first regular differences of those time series ($d_{-} l n T C 1$ y $d_{-} P R$, respectively). You can also see the OLS estimation results of two regression models to analyse the relationship between exchange rate and relative prices.

Model 4: OLS, using observations 1973:01-1998:12 ($\mathrm{T}=312$) Dependent variable: $\operatorname{lnTC1}$
HAC standard errors, bandwith 5 (Bartlett Kernel) coefficient std. error t-ratio p-value
const $1.06854 \quad 0.0133347 \quad 80.13<0.0001$
$\begin{array}{llll}\mathrm{PR} & 1.27935 & 0.117070 & 10.93\end{array}$
Mean dependent var

1.150822	S.D. dependent var.	0.094907
1.582135	S.E. of regression	0.071440
0.435209	Adjusted R^{2} o	0.433387
119.4232	p-value (de F)	$9.86 \mathrm{e}-24$
381.6307	Akaike criterion	-759.2615
-751.7755	Hannan-Quinn	-756.2695
0.977960	Durbin-Watson	0.043041

Model 5: OLS, using observations 1973:02-1998:12 ($\mathrm{T}=311$)
Dependent variable: d_lnTC1
HAC standard errors, bandwith 5 (Bartlett Kernel) coefficient std. error t-ratio p-value
const $-0.00057924 \quad 0.000904466 \quad 0.6404<0.5224$
$\begin{array}{lllll}\text { d_PR } & 0.3306825 & 0.437869 & 0.7552 & 0.4507\end{array}$
$\begin{array}{lrlr}\text { Mean dependent var } & -0.000738 & \text { S.D. dependent var. } & 0.014701 \\ \text { Sum squared resid } & 0.066844 & \text { S.E. of regression } & 0.014708 \\ R^{2} & 0.002261 & \text { Adjusted } R^{2} \text { o } & -0.000968 \\ F(2,18) & 0.570340 & \text { p-value (de } F) & 0.450699 \\ \text { Log-likelihood } & 871.9358 & \text { Akaike criterion } & -1739.872 \\ \text { Schwarz criterion } & -1732.392 & \text { Hannan-Quinn } & -1736.882 \\ \text { Rho } & 0.010565 & \text { Durbin-Watson } & 1.976362\end{array}$
18. $d _\ln T C 1$ is interpreted as:
A) The absolute monthly growth rate of the exchange rate.
B) The relative annual growth rate of the exchange rate.
C) The relative monthly growth rate of the exchange rate.
19. From the above graphs:
A) Both time series $\ln T C 1$ and $P R$ are mean non-stationary.
B) Time series $\ln T C 1$ is mean non-stationary but time series $P R$ is mean stationary.
C) Both times series $\ln T C 1$ and $P R$ are mean-stationary.
20. From Models 4 and 5:
A) The times series $\ln T C 1$ and $P R$ are cointegrated.
B) The relationship between $\ln T C 1$ and $P R$ is spurious.
C) Model 5 is not useful to analyse if the variables are cointegrated because its adjusted R-squared is lower than in Model 4.

ECONOMETRICS EXTRORDINARY FINAL EXAM

 27th June 2022. 18:00| Family Name: | Name: |
| :--- | :--- |
| Grade: | ID: |
| Mobile: | Email: |

Question 1	A	B	C	Blank
Question 2	A	B	C	Blank
Question 3	A	B	C	Blank
Question 4	A	B	C	Blank
Question 5	A	B	C	Blank
Question 6	A	B	C	Blank
Question 7	A	B	C	Blank
Question 8	A	B	C	Blank
Question 9	A	B	C	Blank
Question 10	A	B	C	Blank
Question 11	A	B	C	Blank
Question 12	A	B	C	Blank
Question 13	A	B	C	Blank
Question 14	A	B	C	Blank
Question 15	A	B	C	Blank
Question 16	A	B	C	Blank
Question 17	A	B	C	Blank
Question 18	A	B	C	Blank
Question 19	A	B	C	Blank
Question 20	A	B	C	Blank

