ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

May 17, 2018 – 09:00

First family name:	Second family Name:
Name:	GECO/GADE:
DNI/ID:	Instructor:
Mobile:	E-mail:

Question 1	Α	В	С	Blank
Question 2	Α	В	С	Blank
Question 3	Α	В	С	Blank
Question 4	Α	В	С	Blank
Question 5	Α	В	С	Blank
Question 6	Α	В	С	Blank
Question 7	Α	В	С	Blank
Question 8	Α	В	С	Blank
Question 9	Α	В	С	Blank
Question 10	Α	В	С	Blank
Question 11	Α	В	С	Blank
Question 12	Α	В	С	Blank
Question 13	Α	В	С	Blank
Question 14	Α	В	С	Blank
Question 15	Α	В	С	Blank
Question 16	Α	В	С	Blank
Question 17	Α	В	С	Blank
Question 18	Α	В	С	Blank
Question 19	Α	В	С	Blank
Question 20	Α	В	С	Blank

Correct	Incorrect	Blank	Final grade

INSTRUCTIONS

This exam includes 20 multiple choice questions.

Your answers must be marked on the answer sheet that you will find in the first page. If you want to leave any question unanswered, choose the "Blank" option. This answer sheet is the only part of this exam that will be graded.

A correct answer adds 2 points to the final grade while an incorrect one subtracts 1 point. A blank answer does not add or subtract. The final grade is the number of points divided by 4.

Make sure that you checked your options, including "Blank". Do not unclip the sheets. Use the blank space in the following pages to write notes or to do arithmetic calculations.

YOU HAVE ONE HOUR AND A HALF TO ANSWER THIS TEST

REMINDER

YOU ARE NOT ALLOWED TO USE DEVICES WITH CONNECTIVITY TO THE INTERNET, INCLUDING MOBILE PHONES, TABLETS, SMARTWATCHES OR MP3/4 PLAYERS

Question 1: Consider a general linear model estimated with 48 observations. If the pvalue (or marginal significance level) associated with the residual Jarque-Bera statistic is 0.065, then:

- A) ... the null that the residuals come from a normal distribution is not rejected with a 5% of significance, but it is **rejected** with a 1% significance.
- B) ... the null that the residuals come from a normal distribution is **not rejected** with a 5% or a 1% significance.
- C) ... the null that the residuals come from a normal distribution is **rejected** with a 5% significance, but it is **not rejected** with a 1% significance.

Question 2: Given the linear regression model, $Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + U_i$, denoted by [A], and a simple regression model, $Y_i = \beta_1 + \beta_2 X_{i2} + U_i$, denoted by [B], then:

- A) The adjusted R-squared of model [B] is always larger than the adjusted Rsquared of model [A].
- B) The R-squared of model [A] is always smaller than the R-squared of model [B].
- C) A fair way to choose between models [A] and [B] consists in estimating both and then choosing the one with the smallest Akaike criterion.

Question 3: In the model $Y_t = \beta_0 + \beta_1 X_t + U_t$, if the sample mean of Y_t is zero, then:

- A) The R-squared can be calculated as $R^2 = 1 \frac{SSR}{\sum y_t^2}$, where SSR denotes the sum of the squared of the table r. of the squares of the residuals.
- B) The OLS estimator of β_0 is such that $\hat{\beta}_0 = -\hat{\beta}_1$ C) The OLS estimator of β_1 is such that $\hat{\beta}_1 = \frac{\sum Y_t X_t}{\sum X_t^2}$

Question 4: In the model $y_i = \beta_1 + \beta_2 x_i + u_i$ (i = 1, 2, ..., 40), which complies with all the standard hypotheses, we want to test $H_0: \beta_2 = 0$ against $H_1: \beta_2 \neq 0$ with the usual t statistic. If \overline{t} is the value of this statistic and $\operatorname{Prob}\left(-|\overline{t}| \leq t(38) \leq |\overline{t}|\right) = 0.95$, where t(38) denotes a Student t distribution with 38 degrees of freedom, then:

- A) ... the null should be rejected with a 1% significance, but not with a 10%significance.
- B) ... the null should be rejected with a 10% significance, but not with a 1%significance.
- C) ... the null should be rejected both, with a 10% and a 1% significance.

Question 5. In the context of a linear regression model complying with all the standard assumptions, the Gauss-Markov theorem implies that:

- A) ... the OLS (Ordinary Least Squares) estimator is the only unbiased estimator of β .
- B) ... the OLS estimator of β is linear and unbiased, but you can find other linear and unbiased estimators with a smaller variance.
- C) ...you can find a non-OLS estimator of β which, being linear and biased, has a smaller variance than OLS.

Question 6. Consider the regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{U}$ and the (2 x 2) diagonal matrix $\mathbf{X}^T\mathbf{X}$, such that the elements in the main diagonal are 4 and 4. On the other hand, the values in the (2 x 1) vector $\mathbf{X}^T\mathbf{y}$ are 0 and 24, respectively. Then, if the model parameters are denoted by $\boldsymbol{\beta}_1$ and $\boldsymbol{\beta}_2$, then the OLS estimates of the parameters are:

- A) $\hat{\beta}_1 = \frac{1}{4}$ and $\hat{\beta}_2 = 6$.
- B) $\hat{\beta}_1 = 0$ and $\hat{\beta}_2 = 96$.
- C) $\hat{\beta}_1=0$ and $\hat{\beta}_2=6$.

Question 7. If the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{U}$ complies with all the classical hypotheses, but there is a high degree of linear correlation between some columns of the matrix \mathbf{X} (i.e., there is approximate collinearity), then:

- A) The OLS estimator of β is unbiased but does not have minimum variance.
- B) There are infinite solutions to the system of normal equations $\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}$.
- C) Individual parameter significance tests lead to non-rejection more often that if there were no collinearity.

Questions 8 to 13 refer to the following statement: Using annual data from 1989 to 2000, we estimated by OLS the following regression model:

$SALES_{t} = \beta_{1} + \beta_{2}GPUB_{t} + \beta_{3}PRICE_{t} + \beta_{4}INCOME_{t} + \beta_{5}PCOMP_{t} + U_{t}$

where SALES is the sales volume of a company (million units), GPUB is the advertising investment (million euros), PRICE is the price of the product (euros/unit), INCOME

is the aggregate consumer income (billion euros) and PCOMP is the average price of a competing product (euros/unit). Table A displays some OLS results for this model.

Dependent Variable: SALES					
Sample: 1989-2000					
Observations includ	led: 12				
Variable	Coefficient	Std. error	t-statistic	p-value	
Constant				0.0151	
GPUB	1.167260			0.0002	
PRICE	-2.842482			0.0021	
INCOME	0.088978			0.0377	
PCOMP	1.995104			0.0210	
R-squared	0.993693	Mean dependent variable 52.58333			
Adj. R-squared	0.990089	Std. deviation dependent var 12.73833			
Residual std.		F-sta			
deviation					
Sum of squared					
residuals	11.25705	P- value (F-statistic)	0.00000	

Ta	b	le	Α
I U		L U	11

Question 8: The estimated error variance (use all the available decimals for calculations) is:

- A) 11.2571
- B) 1.60815
- C) 1.99009

Question 9. If the price of the competing product increases in 2 euros then, according to Table A (use all the available decimals for calculations and then round off the result to three decimal places) the annual sales will increase, *caeteris paribus*, in:

- A) 1.995 million units.
- B) 3.990 million euros
- C) 3.990 million units.

Question 10. According to the information in Table A, the null that the slopes (i.e., all parameters except the constant) in the model are zero (use all the available decimals for calculations and then round off the result to three decimal places) should be:

- A) ... rejected with a 5% significance, being 275.719 the value of the F-statistic.
- B) ...tested with a statistic distributed as a Snedecor-F with 5 degrees of freedom in the numerator and 7 degrees of freedom in the denominator.
- C) ... rejected with a 5% of significance, being 375.719 the value of the F-statistic.

Question 11. According to the information in Table A (with all the available decimals) the point forecast for sales (in million units), corresponding to an advertising investment of 2 million euros, a price of 0.25 euros per unit, an aggregate buyer income of 2000 million euros and a 0.5 average competitor price:

- A) ... is 2.7994 million units.
- B) ... there is not enough information to calculate this forecast.
- C) ... is 2.2994 million units.

Question 12. According to the information in Table A, the OLS (Ordinary Least Squares) estimate for the constant term:

- A) ... is 53.728 million euros.
- B) ... is 52.583 million units.
- C) ... cannot be computed with the information in Table A.

Question 13. According to the information in Table A, the less significant regressor is: A) ...INCOME.

- B) ... the constant term.
- C) ...PCOMP.

Question 14. The model $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + U_i$ was estimated with a sample of 63 observations. Considering that observations 1, 2 and 3 could be influential, we computed the Cook statistic values shown in the following Table:

Observation	Cook statistic (D_i)
1	1.48
2	2.27
3	1.09

If $Prob[F(3,60) \ge 2.76] = 0.05$, we can conclude that, at a 5% level of significance:

- A) ... the observation corresponding to the 2^{nd} individual is influential.
- B) ... the observation corresponding to the 1st individual is influential.
- C) ... none of the suspect observations is influential.

Questions 15 to 17 refer to the following statement. We have a sample of total contributions to Social Security (CSS_i) and contributions paid by workers $(CSST_i)$ in 15 countries in 1982. Table 1 displays some results from an OLS regression of $CSST_i$ on CSS_i , denoted as Model 1, and Figure 1.1 displays the corresponding residuals:

Regressor	Coefficient	t-statistic
Constant (β_0)	3.882	1.690
$CSS_i(\beta_1)$	0.211	3.100
Sum of squared residuals	132.77	

Table 1: OLS results for Model 1

Question 15: Given the profile of the residuals in Figure 1.1, we conclude that the model in Table 1 may be affected by:

- A) ...error autocorrelation.
- B) ...error heteroscedasticity.
- C) ... none of the above.

Question 16: Given the information in Figure 1.1 and Figure 1.2 below, which shows the fit of the model in Table 1, we decide to estimate a new model (Model 2):

$$\begin{pmatrix} CSST_{i} \\ CSS_{i} \end{pmatrix} = \beta_{0} \begin{pmatrix} 1 \\ CSS_{i} \end{pmatrix} + \beta_{1} + \begin{pmatrix} U_{i} \\ CSS_{i} \end{pmatrix}$$

...where the new error term has a zero mean, constant variance and no autocorrelation.

If the OLS estimates for the parameters in Model 2 are efficient, then the functional form of the heteroscedasticity detected in Model 1 is:

- A) $\operatorname{var}(U_i) = \sigma^2 CSST_i^2$
- B) $\operatorname{var}(U_i) = \sigma^2 CSST_i$
- C) $\operatorname{var}(U_i) = \sigma^2 CSS_i^2$

Question 17. To determine if the cost of an increase in Social Security contributions is assumed entirely by the workers, we should test:

- A) ... the null $H_0: \beta_1 = 1$ against $H_1: \beta_1 \neq 1$ using model 2.
- B) ... the null $H_{\scriptscriptstyle 0}\,{:}\,\beta_{\scriptscriptstyle 1}\,{=}\,1$ against $H_{\scriptscriptstyle 1}\,{:}\,\beta_{\scriptscriptstyle 1}\,{\neq}\,1$ using model 1.
- C) ... the null $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$ using model 2.

Question 18. In the linear regression model $y_t = \beta_0 + \beta_1 x_t + u_t$, fitted to a quarterly sample, we detect serial autocorrelation in the errors according to the model $u_t = \rho u_{t-4} + a_t$, where ρ is a known constant parameter and a_t is an uncorrelated error

term. Under these conditions, which of the following transformed models would have non-autocorrelated errors?

A)
$$y_t - \rho y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (x_t - \rho x_{t-1}) + a_t$$

B) $y_t - \rho y_{t-4} = \beta_0 (1 - \rho) + \beta_1 (x_t - \rho x_{t-4}) + a_t$

C)
$$y_t - \rho y_{t-2} = \beta_0 (1+\rho) + \beta_1 (x_t - \rho x_{t-2}) + a_t$$

Questions 19 and 20 refer to the following statement. We want to relate *per capita* consumption (denoted by C) with *per capita* income (denoted by Y) using an annual US sample from 1950 to 1985, both years included. Figure B represents both time series and model B provides some OLS results:

Model B

Model B: OLS, using the observations 1950-1985 (T = 36) Dependent variable: C

C	oefficient	std. e	rror	t-statistic	p-value	
const	11.3737	9.629	46	1.1811	0.2457	
Y	0.898329	0.00584	4839	153.6029	<0.0001	* * *
Mean of dep. var	1409.	.806	S.D.	of dep. var	489.	0210
Sum squared resid	12044	4.20	S.E.	of regression	n 18.8	82130
R-squared	0.998	3561	Adju	sted R-square	d 0.99	8519
F(1, 34)	23593	3.84	p-va	lue(F)	6.61	e-50

Question 19: Given the results in Figure B and Model B:

- A) ...both variables have a trend and, therefore, the high R-squared value may be misleading because of a problem of spurious correlation.
- B) ... the R-squared of model B is very satisfactory, since more than 99% of the variability of consumption is explained by the income.
- C) ...although the R-squared of model B is very high, the adjustment is not good since the residual standard deviation is large.

Question 20. We decided to run a regression between the log variation rates of Consumption and Income, denoted by $ld_C = \nabla \log(C_t)$ and $ld_Y = \nabla \log(Y_t)$ respectively, where ∇ denotes a regular difference. The OLS results of this new model and the corresponding residuals are shown in Table C and Figure C, respectively.

Table C

Model C: OLS, using the observations 1951-1985 (T = 35) Dependent variable: ld_C

	Coefficient	std. ei	rror t	-statistic	p-value	
const	0.00882854	0.00365	5019	2.4186	0.0213	
ld_Y	0.728074	0.0979	606	7.4323	<0.0001	* * *
Mean of dep. var	0.032	2820	S.D.	of dep. var	0.01	6241
Sum squared resid	d 0.003	3354	S.E.	of regression	n 0.01	0081
R-squared	0.620	5017	Adjus	ted R-squared	a 0.61	4684
F(1, 33)	55.23	3929	P-val	ue (F)	1.53	8e-08

Figure C

Then, given the results in Table C and Figure C:

- A) ...model B should be preferred to Model C because its R-squared is larger.
- B) ...model C should be preferred to Model B, because the trends in C and Y have been treated properly.
- C) ...figure C shows that the residuals present clear second-order autocorrelations.

Calculations

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

May 17, 2017 – 09:00

First family name:	Second family Name:
Name:	GECO/GADE:
DNI/ID:	Instructor:
Mobile:	E-mail:

Question 2	Α	В	С	Blank
Question 3	Α	В	С	Blank
Question 4	Α	В	С	Blank
Question 5	Α	В	С	Blank
Question 6	Α	В	С	Blank
Question 7	Α	В	С	Blank
Question 8	Α	В	С	Blank
Question 9	Α	В	С	Blank
Question 10	Α	В	С	Blank
Question 11	Α	В	С	Blank
Question 12	Α	В	С	Blank
Question 13	Α	В	С	Blank
Question 14	Α	В	С	Blank
Question 15	Α	В	С	Blank
Question 16	Α	В	С	Blank
Question 17	Α	В	С	Blank
Question 18	Α	В	С	Blank
Question 19	Α	В	С	Blank
Question 20	Α	В	С	Blank

Correct	Incorrect	Blank	Final grade