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Identifying Optimal Contingent Fiscal Policies

in a Business Cycle Model

Abstract 

Optimal fiscal policy is indeterminate in a dynamic and stochastic environment. The complete

characterization of the fiscal policy requires the use of identification constraints. In the literature either capital

taxes or debt have been restricted to be not contingent on the state of nature. We propose a different type of

identification constraints to have both policy variables state-contingent. Three alternative identification conditions

are considered: (i) restrictions on the dynamic and stochastic behavior of the debt path; (ii) an exogenous debt path,

and (iii) an exogenous belief function. The main result indicates that the optimal capital tax is zero and constant

over the business cycle for any of the identification conditions used, suggesting that is optimal for the government

to use debt return as a shock absorber, keeping capital taxes constant. The result is quite different from the previous

literature, which obtains very volatile capital taxes.
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1. Introduction

Optimal fiscal policy deals with the combination of taxes and debt return that maximizes welfare

and is consistent with the government spending path. The work of Chamley (1986) allowed

discussing the problem in a dynamic framework and the development of simulation techniques

extended it to the stochastic setting. A survey of the most recent development in this field can be

found in Manzano and Ruiz (2004).

The stochastic framework is interesting because it addresses the question of the optimal

contingent fiscal policy, that is, how should fiscal policy be set over the business cycle? An

important feature is that introducing uncertainty yields the indeterminacy of the optimal fiscal

policy. As Zhu (1992) shows, the indeterminacy issue arises from the Euler conditions for capital

and bonds implying that expected after-tax returns on capital and bonds must be equal. There are

infinite paths of contingent capital income taxes and contingent bonds that can be implemented

by the government, decentralizing optimal allocations and satisfying this ex-ante arbitrage

condition, that is, different capital income tax rates induce the same expected after-tax return on

capital. It is remarkable that the indeterminacy does not affect the optimal allocations, the

expected capital income tax rate or the labor income tax rate, but it does affect the state-

contingent capital income taxes and bonds.

Given the indeterminacy issue, the complete characterization of the fiscal policy, requires

the use of identification constraints. Chari, Christiano and Kehoe (1994) analyze those properties

by restricting either capital taxes or debt to be not contingent on the state of nature. When the

government issue uncontingent debt, the path of state-contingent capital income tax rates can be

obtained. Alternatively, under uncontingent capital income taxation, the state-contingent path of

debt supporting optimal allocations can be computed.

The properties of the capital income tax rate depend crucially on the identification

constraint used. Chari, Christiano and Kehoe (1994) report the properties of the capital tax rate

under the two decentralizations of the optimal allocations. In the first case, when capital taxes are

uncontingent, optimal capital tax rates are simply the expected tax rates, which are zero in the

models with log utility, and close to zero on average, with low volatility and high persistence

when the risk aversion is large. In the second case, when the debt return is assumed to be not

state-contingent, optimal capital taxes are very volatile and serially uncorrelated. Therefore

optimal capital taxes would have a wide range of variation, from constant to very volatile tax
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 The debt/GDP ratio is one of the important indices of an economy’s stability in the eyes of foreign investors, and

every decline in the ratio is viewed by them as indicating greater economic stability. In addition, one of the central

conditions stipulated in the Maastricht criteria for the access of new members to the European Monetary Union

is a maximum debt of 60% of their GDP or a distinctly downward trend converging to that figure.
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rates, and from i.i.d. to close to random walk stochastic processes, depending on the identification

assumption.

In this paper we propose a different type of identification constraints in order to pin down

one of the infinite state-contingent policies, each one supporting the same optimal allocations.

Under each identification constraint we characterize the cyclical properties of the policy variables.

Then, we will be able to study the differences with the Ramsey policies of Chari, Christiano and

Kehoe (1994), who use the assumption of uncontingent policies as identification constraints.

Under our identification constraints, both capital taxes and debt return are state-contingent.

Optimal allocations, expected capital income taxes and labor income taxes are not affected

by indeterminacy; hence our main interest is to compute the cyclical properties of the optimal

capital income taxes, showing that these properties are very different from those under state-

uncontingent policies of previous papers.

Since optimal allocations are implementable with the Chari, Christiano and Kehoe (1994)

policies, why  would it be worth to care about fully state-contingent optimal fiscal policy? The

interest is twofold. On the one hand, when the government issue public debt, the nominal return

of public debt is announced, but the real return is uncertain because it depends on the inflation

rate; so the assumption of state-contingent debt return would be more appropriate, either in

nominal or real models. Something similar can be argued about capital income taxes; the

complexity of tax credits, exemptions and deductions in most countries affects the effective tax

rate, in contrast to the expected tax rate, so it would be realistic to consider state-contingent

taxes. On the other hand, the identification constraints that we assume are theoretically and

empirically relevant. Two kinds of alternative constraints are assumed in this paper: i) restrictions

on the stability of the debt path, and ii) restrictions on the expectations mechanism. The first

identification assumption prevents debt from exploding by imposing an endogenous stability

condition that limits the debt path to not grow faster than output in the long-run. This condition

summarizes the common concern of governments  about the control of the debt/GDP ratio1. Such

a rule resembles the one used by Sims (1994), who proposed a theoretical relation between taxes

and debt to guarantee the debt path stability. In order to evaluate how restrictive this constraint
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is, in terms of the properties of the optimal policies, we compare the results with those obtained

under different exogenous rules for the debt path. In particular, we assume that the level of debt

follows a first order autoregressive stochastic process under different degrees of persistence.

The second kind of identification is in line with Zhu (1992), who proposes a way for

obtaining alternative feasible state-contingent policies that implement the same competitive

allocation: there is a variety of alternative capital taxes, together with an appropriate debt

restructuring, consistent with the same competitive allocation. This alternative policy does not

change the household's intertemporal consumption choice, although such fiscal policy does

generate different expectation errors. Therefore, a way to generate state-contingent policies, in

the spirit of Zhu (1992), is to impose expectation errors compatible with the competitive

allocations.These errors then enable us to identify the feasible optimal fiscal policy, which is

consistent with the competitive equilibrium. Thus, our identification constraint imposes a belief

function for the representative agent, being consistent with the hypothesis of rational expectations.

In particular, we assume that one of the expectation errors associated with the Euler conditions

of the household is exogenous, following a white noise process uncorrelated with the information

set. Imposing such a belief function is enough to obtain a unique stochastic path of the optimal

fiscal policy. The economic interpretation behind this identification assumption is as follows: if

agents endogenously change their beliefs about the future fiscal policy, it is sufficient that the

government issue debt such that it absorbs that shock or belief. This can be done by the

government because optimal fiscal policy is indeterminate; thus, for every sequence of optimal

capital income tax rates there is an associated sequence for issued debt and debt return.

The results obtained in this paper are robust to the alternative identification schemes

proposed, and different from Chari, Christiano and Kehoe’s (1994) findings. We obtain that

contingent tax rates on capital should be set to zero and display no volatility, since it is optimal

for the government to use the debt return as a shock absorber instead of capital income taxes. The

result would be explained by the greater effectiveness of using the debt return instead of capital

taxes to stabilize the stock of debt.

The paper is organized as follows: section 2 describes the model.  Section 3  presents the

Ramsey problem and the simulation results under the different identification constraints. Finally,

section 4 concludes by summarizing the main findings.
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2. The model

The economy consists of households, firms, and the government, represented by the

neoclassical stochastic growth model. We assume a representative household and a representative

firm that produces a single good.

2.1. Households

The household makes decisions by maximizing an expected flow of utility, subject to the

budget constraint and taking wages and interest rates as given. Preferences at each period are

represented by a utility function that includes consumption ( ) and leisure ( ), where the#c
t

1&n
t

household is endowed with one unit of time. We assume a standard utility function2:

where >0 is the relative risk aversion, and is the preference for leisure. Future utility isF 20(0,1)

discounted at a rate .$0(0,1)

Household income arises from renting capital and labor to the firm and from the bond

returns. Labor and capital income are taxed. After-tax income is spent on consumption,

investment and government bonds ( ). The household budget constraint is:#b
t

where  is the depreciation rate of the capital stock, and  and  are tax rates on labor and* J
w

t

J
k
t

capital income.  is the return on government bonds. In equation (2), the term in brackets on theR
t

right hand side represents the gross return of capital after taxes and depreciation, where taxation

on capital income has a depreciation tax credit.

2.2. Firms

The production function of the firm exhibits constant returns to scale, using labor and

capital as inputs. This function incorporates a stochastic productivity shock ( ):z
t
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where  is a Cobb-Douglas production function with labor augmenting technological change:F(@)

where  represents the exogenous growth rate. The productivity shock follows a stochasticD

process:

The competitive behavior of the firm ensures that input prices equal marginal

productivities:

2.3. Government

The government finances an exogenous flow of government consumption by taxing labor

and capital income and by issuing debt. The government budget constraint is:

Government consumption is given by:

where G is a constant and g
t
 is a shock that affects government consumption and follows a

stochastic process:

2.4. Competitive equilibrium

In order to analyze the competitive equilibrium of the economy, the optimization problem

of the household can be easily converted into stationary by dividing variables by the gross rate of

growth: , and  modifying the discount rate appropriately3:x
t
'( #x

t
/ e D t) , x' 6 c , k , w , y , G , b >



6

Max E
0j
4

t'0

$$
t

 U c
t
, 1&n

t

6 c
t
, n

t
, k

t
, b

t
>
4

t'0

(11)

c
t
% e

D
k

t
% e

D
b

t
'(1&J

w
t

)w
t
n
t
%R

t
b
t&1
% 1%(r

t
&*)(1&J

k
t

) k
t&1

,

k
&1

, b
&1

given ,

c
t
, n

t
, k

t
$ 0 .

(12)

c
t
%e Dk

t
& (1&*)k

t&1
%G

t
' F (n

t
, k

t&1
; z

t
) . (13)

subject to:

The competitive equilibrium of this economy is the set of paths , prices6c
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(iii) The government budget constraint is fulfilled at each period.

(iv) Goods, labor, capital and bond markets clear at each period. So, the aggregate resources

constraint is satisfied:

This expression indicates that output in the economy is spent on private consumption, investment

and public consumption.

3. The Ramsey problem

3.1. Ramsey allocations

The government solves the Ramsey problem in order to select optimally the fiscal policy

tools. We adopt the primal approach, characterizing the optimal allocations that can be

implemented as a competitive equilibrium with distorting taxation, subject to the feasibility

constraint (13) and the so-called implementability constraint:



4
 F

k
0

'MF(n
0
, k

&1
; z

0
)/Mk

&1

7

E
0 j

4

t'0

$t
U

c
t

c
t
% U

n
t

n
t
' U

c
0

R
0
b
&1
% 1%(r

0
&*)(1&J

k
0

) k
&1

. (14)

Max
6c

t
,n

t
,k

t
>

E
0 j

4

t'0

$$
t

W(c
t
, 1&n

t
, 8) & 8 U

c
0

R
0
b
&1
% 1%(r

0
&*)(1&J

k
0

) k
&1

, (15)

c
t
% e Dk

t
& (1&*)k

t&1
% G

t
'F (n

t
, k

t&1
; z

t
) , (16)

c
t
, n

t
, k

t
$ 0, b

&1
, k

&1
given,

Such a constraint represents the present value of the budget constraint of the household,

eliminating prices and policy variables by using the Euler conditions of the competitive

equilibrium. Then it is possible to calculate the optimal allocations separately from the fiscal policy

variables. 

Allocations of consumption, hours and capital, initial tax rate on capital income and initial

debt return arise from: 

subject to:

given the path of public consumption, 4 and where r
0
'F

k
0

W(c
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t
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t
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, with  representing the Lagrange multiplier that discounts the8 (U
c
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c
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n
t

n
t
), œt$0 8

implementability constraint.

The objective function is an increasing function of  and decreasing in . The reasonJ
k
0

R
0

is that  taxes capital returns and  rewards the debt stock, both at , so the individualJ
k
0

R
0

t'&1

cannot react to the tax and debt return by varying investment and debt stock decisions. Therefore

the government has incentives to set an initial capital income tax rate as high as possible and an

initial debt return as low as possible. In order to have an interesting problem, we follow Chari,

Christiano and Kehoe (1994) in assuming that the initial tax rate on capital income and debt

return,  and , are fixed.J
k
0

R
0
b
&1

The optimal allocations  that satisfy optimal conditions of the problem given6c
t
, n

t
, k

t
>
4

t'0

by (15)-(16), depend on the multiplier 8, which discounts the implementability constraint (13).

Those paths are the Ramsey allocations, for such a 8, so that the paths of consumption, hours and

capital stock satisfy the optimal conditions of the Ramsey problem and the implementability

constraint.

In order to solve the Ramsey allocations numerically, the solution method proposed by
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 See Novales et al. (1999) for detailed applications of this solution method to standard models of real business

cycles. Appendix A describes the application of this methodology to the Ramsey problem and shows how to

compute .8
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Sims (2002) is implemented, extending it to the case of non-linear rational expectations systems5.

3.2. Ramsey policies

Since the Ramsey allocations are computed, we obtain the set of policies (Ramsey

policies) that support optimal allocations from the conditions of competitive equilibrium.

Throughout the analysis we assume that the government can commit itself to follow the fiscal

policy plan.

Given the Ramsey allocations, the optimal labor income tax rate is pinned down from the

competitive equilibrium condition that equals the consumption-leisure marginal substitution rate

to the inverse of labor marginal productivity after taxes:

Nevertheless, in a stochastic framework an indeterminacy arises that makes it impossible

to obtain the tax rate on capital income and the debt return simultaneously, both contingent on

the state of nature. Competitive equilibrium first order conditions for capital and debt are:

where  and  are the expectation errors associated with Euler conditions (18) and (19).<
1,t

<
2,t

The expectation operator in (18) and (19) imply that the after-tax returns on capital and

bonds (weighted by marginal utility) must be equal on average. The government can implement

many paths of capital income tax rates and debt return to decentralize the Ramsey allocations

satisfying this ex-ante arbitrage condition. Thus, from conditions (18) and (19), the state-

contingent paths of capital income tax rate and debt return cannot be computed. From a

computational point of view, the indeterminacy of fiscal policy implies that equations (8), (12),
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The indeterminacy is the same showed by Zhu (1992) and Chari, Christiano and Kehoe

(1994) in a similar model. A more rigorous way to show this policy indeterminacy is the followed

by Zhu (1992). Let  be an i.i.d. stochastic process with  ande
t

E
t
(e

t%1
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. Given a path for the capital tax rate  and the process for , anCov
t
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alternative fiscal policy for the tax rate and the debt stock both contingent to the state of nature

can be implemented, compatible with the optimal allocations and hence fulfilling (8), (12) (18) and

(19). Let the new policy be:

The new policy does not change expression (19) or expression (18):

The government budget constraint is fulfilled, given the debt restructuring proposed:

It can be argued likewise for the household budget constraint. 

It is clear that there is a continuum of different sequences of  satisfying  6e
t%1

> E
t
(e

t%1
)'0

and . For example, a stochastic process such  can be selected, suchCov
t
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that either the new capital income tax rate  is known in period t, or the new debt payment $J
k
t%1

$b
t

is known in period t. This second possibility is the one used by Chari, Christiano and Kehoe

(1994), who identify optimal fiscal policy by restricting the debt return to be not contingent on

the state of nature (that is,  is selected such that  the new debt payment  is known in periode
t

$b
t

t), then equation (19) can be transformed into:
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allowing them to obtain the debt return. Therefore, these authors compute optimal fiscal policy

under the assumption of uncontigent debt return. In other words, they assume that private agents

know the real return of debt for the next period with certainty.

However, the expected tax rate on capital income can always be computed. Following

Chari, Christiano and Kehoe (1994), the ex-ante tax rate is defined as the ratio of the expected

value of revenues from capital income taxation to the expected value of the net return of capital,

both terms weighted by the marginal substitution rate between consumption today and tomorrow:

So long as the ex-ante tax rate is a ratio of expected values, if we have continual support

shocks, having approximations of these expectation terms is not trivial. However the solution

method proposed allows us to evaluate this tax rate, as we describe in appendix A. In this

appendix, we also show, from the solution method, that the ex-ante tax rate on capital income is

zero for all t$1 under logarithmic preferences, and fluctuates around zero for a risk aversion

coefficient different than one.

In contrast to the work of Chari, Christiano and Kehoe (1994), we consider a set of

alternative identification restrictions yielding optimal fiscal policies contingent on the state of

nature. Three kinds of restrictions are considered: (i) restrictions on the dynamic and stochastic

behavior of debt path; (ii) an exogenous debt path and (iii) an exogenous belief function. The

model is simulated under the different identification constraints in order to analyze the stochastic

properties of the optimal contingent fiscal policies obtained.

3.2.1. Restrictions on the dynamic and stochastic behavior of debt path.

Since the optimal tax rate on labor income is computed, the linear system consisting of (8),

(12), (18) and (19) represents an approximation to the dynamic evolution of the remainder of the

policy variables, given the Ramsey allocations. Because of the inherent indeterminacy of the fiscal
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policy, there is a continuum of paths for variables  that solves such a6J
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explosive path6, being optimal and compatible with a stable and stationary equilibrium for the

remaining variables.

There are examples in the literature that limit the dynamic evolution of debt, to guarantee

a stable time path for debt and a viable equilibrium. In Sims (1994) the government budget

constraint is: , where  are government lump-sum transfer payments (if positive)B
t
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t
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t&1
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T
t

or taxes (if negative). This constraint is an unstable linear difference equation in the debt. With

the tax policy set as: , the government budget constraint becomes:T
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. This expression is a stable linear difference equation for ; thus,B
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with  chosen in this range, any initial value for debt generates a stable time path for debt and a0

viable equilibrium. Leeper (1991) also argues in this sense, considering a class of rules suggested

by actual policies, whose objective could be to smooth distorting direct taxes over time. Barro

(1979) showed that tax smoothing creates a role for public debt, perhaps as a shock absorber.

We use a condition for the dynamic evolution of debt similar to the ones used by Sims and

Leeper. However, our condition is not ad-hoc but arises from the elimination of the unstable

subspace associated to the eigenvalue  from the system consisting of equations (8), (12), (18)R>1

and (19), that determines the Ramsey policies. Thus, we obtain a condition that relates the tax

rates, the debt return and the bonds, and guarantees a stable time path for the debt, and that can

be interpreted as a policy rule. By avoiding the unstable behavior of the debt, we enforce the debt

path to not grow faster than the other variables in the economy in the long-run.7

As we mentioned above, it will be sufficient to introduce the condition of eliminating the

unstable subspace as an identification constraint for the policy variables. In order to do this, the

government budget constraint: 
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is linearized around the deterministic steady state8, taking into account that optimal allocations

are known at any period:

The linear approximation given by (23) implies that the debt path is not stable because

. The debt path is not explosive if we eliminate the unstable path. In order to find the(R
ss

>e D>1)

unstable path we linearize the dynamic system consisting of (8), (12), (18) and (19). We then take

the eigenvector of the transition matrix associated with the unstable eigenvalue as the direction

to eliminate. For the selected parameterization, given by table 1, the stability condition is9:

which guarantees that  is not explosive and is compatible with both the budget constraints ofb
t

the household and the government, and satisfies the transversality condition of private and public

assets10.

It must be noticed that condition (24) enforces not only stability of the debt path, but it

also imposes stationarity. Since debt return and tax rates are stationary (do not grow in the steady

state), then  fluctuates around . b
t

b
ss

Condition (24) establishes that the debt return will be stable whenever deviations of debt

between the value at period t and the steady state are due to variations either in debt return or in

the tax rates, according to the parameters in (24). Thus, if , the debt stock increasesR
t
>R

ss
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because more debt needs to be issued to repay the outstanding debt. Moreover when ,b
t
>b

ss

higher tax rates are needed in order to repay outstanding debt.

Given the use of the stability condition as an identification constraint, we are able to

undertake the stochastic simulation of the model. The model has been simulated 100 times with

a length of 1200 periods. Table 1 shows the calibrated parameters, that are those discussed by

Chari, Christiano and Kehoe (1994) when calibrating the model with U.S. economy data. The

baseline model considers logarithmic preferences (F=1). Other versions of the model are also

simulated: a high risk aversion model (F=9), a model with i.i.d. shocks, and finally a model with

only technology shocks.

To compute the properties of the stochastic simulation, the first 200 periods are dropped.

That ensures the stationarity of the statistics of the optimal policies. Table 2 reports the simulation

statistics.

By analyzing taxation statistics, we can see that the average ex-post capital income tax

rate is zero and constant over the business cycle (standard deviation of simulated tax rate is zero).

Moreover, the optimal capital tax rate is uncorrelated with both the productivity shock and

government consumption, and it exhibits no persistence. The different stochastic processes

implemented for shocks and risk aversion do not change the properties described above. Notice

that the standard deviations of the statistics are very low, suggesting high precision when

estimating those moments.

The results are quite different from those of Chari, Christiano and Kehoe (1994) which

report a non-zero average and a very volatile ex-post capital income tax rate, correlated with both

the technology shock and government consumption. From an empirical point of view, there is not

a regularity about the volatility of capital taxes relative to labor taxes. For example, from the

updated11 effective tax rate data reported by Mendoza, Razin and Tesar (1994), it follows that

countries like Italy, Japan and the U.K. exhibit more volatility on capital taxes, whilst in other

countries such as Canada, France, Germany and the U.S. labor taxes are more volatile.

From a theoretical point of view, the difference in results comes from the available state-

contingent fiscal tools. Chari, Christiano and Kehoe (1994) restrict the debt return to be

uncontingent, therefore it is known with certainty in the previous period. Thus, the optimal capital

income tax rate becomes very volatile because the government cannot use debt return as a shock
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 Notice that the labor income tax rate cannot play the role of debt stabilizer, because is uniquely determined by

the optimal allocations, according to (17).
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absorber, and capital income taxation contingent on the state of nature must be used. However,

the identification condition we use allows the government to set both the debt return and the

capital income tax rate as state-contingent, that is, the government could use both policy variables

as shock absorbers.12 The government finds it optimal to keep this tax rate constant over the

business cycle at the expense of the debt return becoming more volatile. The explanation comes

from expression (24): using the debt return is roughly 4 times more effective than using the capital

tax rate in order to stabilize the debt stock (.15 versus .04). In the end, the stability condition

could be interpreted as a policy rule whose objective is to smooth capital taxes over time.

According to Barro (1979), smoothing the capital tax rate creates a shock absorber role for public

debt.

With regard to the stochastic properties of labor income taxation, there are not differences

with Chari, Christiano and Kehoe (1994) results. The reason for this is that we also use the

relationship of the marginal substitution rate of consumption-leisure with after tax wages given

in (17) to compute the labor income tax rate, and the differences with our paper do not affect the

computation of the Ramsey allocations.

 3.2.2. Exogenous debt path

An interesting issue to address is whether alternative identification conditions change the

properties of contingent capital income taxation. In order to assess to what extent imposing a

stationary path for the debt can restrict the properties of the Ramsey policies, we use an

alternative identification condition: we evaluate exogenous stationarity stochastic processes for

the debt path so that the processes do not violate the transversality condition for the debt path.

We assume first order autoregressive stochastic processes: 

for several degrees of persistence ( )13. Unconditional mean ( ) is selected to mimic the steadyN b
ss

state value of debt when it is decided endogenously. Ludvigson (1996) settled exogenous first
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order autoregressive processes for the debt paths in order to analyze how the degree of

persistence affects the competitive decisions of private agents. An ad-hoc hypothesis such as this

one also generates stable time series for the debt. This kind of constraint provides a large set of

debt processes to study its implications on the properties of the Ramsey policies.

Table 3 summarizes simulation results under several stochastic processes for the debt path.

The results point out that, independently of persistence, ex-post capital income tax rate properties

do not differ from those reported when the stability condition is used to identify optimal fiscal

policy. This result indicates that imposing a stability condition does not constrain the optimal

properties shown by contingent capital income taxation.

3.2.3. Exogenous belief function

Alternatively, the last set of constraints we impose is an exogenous belief function for

private agents, fulfilling the government budget constraint and computing the debt path residually

from such a constraint. 

The set of optimal policies consistent with the competitive allocations, proposed by Zhu

(1992), are such that:

where  and  is an i.i.d. stochastic process with  and$J
k
t

'J
k

t

%e
t

e
t

E
t
(e

t%1
)'0

. Expression (26) implies that the expected terms in brackets are equal,Cov
t
e
t%1

,U
c
t%1

(r
t%1
&*) '0

but not the realized values. So the expectation errors associated to each term are different,

although both errors follow a white noise process uncorrelated with the information set.

Therefore, one way to have determinate optimal state-contingent policies is to compute one of

the expectation error exogenously, obtaining a correspondence between that expectation error

and stochastic process  used to build the optimal feasible fiscal policy. e
t

The prophecies of agents, which do not depend on the fundamentals of the model, can be

useful to determine the Ramsey policies. Along these lines it is interesting to characterize the

optimal policies compatible with the optimal allocations under this kind of identification

assumption. Thus, we can analyze two issues of interest: (i) how the perceptions of private agents

about fiscal policy lead the government to change optimal fiscal policy so that, in effect, the beliefs
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of agents are self-fulfilling. We can then identify the fiscal instrument (capital income taxes or debt

return) acting as a shock absorber; and (ii) whether expectation errors of both Euler conditions

are similar or not in the sense that they both have a significant correlation or similar volatilities.

We show that private agents interpret that the expectation errors associated with the Euler

equations of each asset (with and without risk) have a different nature.

The Ramsey policies are simulated again, assuming that expectation error  associated<
2t

with the Euler condition of bonds (19), follows a white noise stochastic process with different

standard deviation sizes. The results reported in table 4 confirm the stochastic properties of

optimal capital income taxation obtained under the previous identification conditions, as well as

the role of the debt return as a shock absorber.

As we mentioned above, there is a correspondence between  and , implying that the<
2t

e
t

variance of  is a function of the variance of . Since , then, the variance of   ise
t

<
2t

$J
k
t

'J
k

t

%e
t

$J
k
t

bounded, explaining the shock absorber role of  the debt return. 

An interesting simulation result is that the endogenous expectation error is uncorrelated

with the exogenous expectation error, and its size, measured by the standard deviation, does not

depend on the standard deviation assumed for the exogenous error. Then, in spite of both Euler

conditions implying the same expected after-tax returns for capital and bonds, the way in which

agents forecast both returns is quite different (expectation errors are orthogonal), denoting the

different character of these two assets.

4. Conclusions

In the public finance literature it has been established that optimal fiscal policy is

indeterminate in a dynamic and stochastic environment, allowing the existence of a capital market

along with the government bond market. As a consequence, there are infinite combinations of

capital income tax rates and debt return, both contingent on the state of nature, supporting the

optimal allocations.

Given the indeterminacy issue, the complete characterization of the fiscal policy, requires

the use of identification constraints. Chari, Christiano and Kehoe (1994) analyze those properties

by restricting either capital taxes or debt to be not contingent on the state of nature.

In this paper we propose a different type of identification constraints in order to pin down

one of the infinite state-contingent policies, each one supporting the same optimal allocations.
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Under each identification constraint we characterize the cyclical properties of the policy variables.

Under our identification constraints, both capital taxes and the debt return are state-contingent.

Three alternative kinds of identification conditions are considered: (i) restrictions on the

dynamic and stochastic behavior of the debt path; (ii) an exogenous debt path, and (iii) an

exogenous belief function.

The main result of this paper indicates that ex-post capital income taxation is zero and

constant over the business cycle for any of the identification conditions used. Our analysis suggest

that in the optimum, the government uses debt return as a shock absorber, keeping the capital

income tax rate constant. The result is quite different from that of Chari, Christiano and Kehoe

(1994) who, assuming uncontingent debt return, obtain a very volatile capital income tax rate.

Therefore, for a wide class of identification constraints making both capital income taxes

and the debt return state-contingent, the optimal properties of those policy variables are robust,

but they radically differ from the properties reported in previous papers with not fully state-

contingent policies.
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Appendix . Solution method for Ramsey allocations.

For , the equations described below, (A.1)-(A.5), along with expressions (5), (9), (10)t$1

and (15) represent the set of conditions that allocations  must fulfill, with the6c
t
, n

t
, k

t
>
4

t'0

exogenous , given realizations for the innovations of structural shocks ( ):6z
t
, g

t
>
4

t'0
g
z
t

, g
g

t

where  in expressions (A.2) to (A.5) represent expectations that arise when theX
1,t

, X
2,t

, X
3,t

global conditional expectation in the Euler condition of the problem defined by (14)-(15) is

partitioned. The expectation term decomposition will be very useful when computing the ex-ante

capital income tax rate later.  represent the forecasting errors associated with the0
1,t

, 0
2,t

, 0
3,t

expectations. Summing up, we have twelve variables 6c
t
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t
, k

t
, G

t
, g

t
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t
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3,t
, 0
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2,t
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3,t
>

to be solved and nine equations (A.1)-(A.5) , (5), (9), (10) and (15) in each period. To compute

all the system variables at each period, we need three additional conditions which will eliminate

the non-converging subspace to the steady state. 

An approximation to those conditions that eliminate such subspaces emerges from the first

order approximation of the previously mentioned system of nine equations around the steady

state:

where matrices ( )  contain the partial derivatives of each equation (A.1)-(A.5), (5), (9),��� '
0
, '

1
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 Notice that if the expectation were not partitioned, there would not be any problem of singularity for '0 to

compute the stability conditions. However, as we see later, this partition will be extremely useful to evaluate the

ex-ante capital income tax rate.
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Equations that describe the dynamic stochastic path of allocations can be simplified with

logarithmic preferences, in particular it can be shown that if risk aversion is 1, then ,X
3,t&1

'0 œt

and therefore .0
3,t
'0 œt

The system consisting of (A.1)-(A.5), (5), (9), (10) and (15) can be simplified under this

kind of preferences, eliminating equation (A.5) and rewriting equation (A.2) as:

In such a case, we have two expectation errors, and to identify all the variables in the

dynamic system two stability conditions are required to eliminate the non-converging subspace

to the stochastic stationary equilibrium.

For a risk aversion strictly larger than one, the system linearization comes from (A.6).

Given the partition of the Euler condition in the Ramsey problem, it is obvious that  '
0
 is non

invertible14.

It can be shown that '
0
 is of order , and it has a maximum range of 7 when ,(9×9) F…1

while with the matrix is of order , with a range of 7 as maximum. Since matrix '
0
 isF'1 (8×8)

singular, it is necessary to compute a QZ decomposition to obtain generalized eigenvalues and

eigenvectors.

For any pair of square matrices ('
0
,'

1
) there exist orthonormal matrices Q, Z ,

(QQ'=ZZ'=I) and upper triangular matrices 7, S such that '
0
=Q'7Z' '

1
=Q' SZ'.

Premultiplying the system (A.6) by  and replacing  with , we obtain:Q Z )y
t

u
t
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We can rearrange matrices , in order to partition (A.8) in such a way that the lower7 , S

block corresponds to the equations associated with the unstable eigenvalues (those larger

than ):$$
&1/2

A zero element in the diagonal of matrix  implies some identification lack in the system;7

we have two zero elements in the diagonal of , with . Since the elements in the diagonal7 F…1

of  in the same position are not zero, we have two infinite eigenvalues (so larger than ) thatS $$
&1/2

solve the system identification, that is, two stability conditions emerge, along with the remaining

finite eigenvalue larger than  (typical of saddle point solutions). This analysis allows us to$$
&1/2

identify the three expectation errors15. Therefore, constraining the space of solutions implies

canceling the unstable paths associated with the unstable eigenvalues, that is:

that provides an approximated structure of relationships between the expectation errors and the

innovations of the structural shocks:

Since we have two infinite eigenvalues and another finite but unstable eigenvalue,

expression (A.10) is a set of three equations that eliminates the unstable subspaces. As was

pointed out, the optimal allocations follow different rules at  than from then onwards, so thet'0

computational algorithm is different from what we describe above.

Algorithm:

1. Given a value for :λ
i) At period , given  and ,  and the realization of the innovationst'0 J
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conditions and the Euler conditions of the Ramsey problem at  and:t'0

we can compute . Equation (A.13)c
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corresponds with (A.2) at period . Finally, the capital stock at  is computed from thet'0 t'0

aggregate resources constraint (15).
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Capital stock at period 1 emerges from (15). The solution is computed recursively for the periods

from here on.

iii) Once the allocation paths are computed, the expectation error paths associated with

the expectational terms are obtained from (A.3)-(A.5)16.

2. From the described solution method, we obtain allocations of  as a function of6c
t
, n

t
, k

t
>
T

t'0

8. We then check whether the implementability constraint is satisfied. If so then we stop there,

otherwise we iterate in 8 and go back to 1, until finding those allocations that fulfill the

implementability constraint, given the following convergence criterion:

Following Aiyagari, Marcet, Sargent and Seppälä (2002), we iterate in the value of 8,

by using the Gauss-Newton algorithm. We evaluate the implementability constraint (I.C.)

numerically across 100 simulations as:

where the conditional expectation has been approximated at t=0 as the average of the 100
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simulations for a large enough T ( ).T'1000

The convergence criterion used to find the multiplier 8 is reached when the numerical

value of (18) is put into the interval:  ( - dt(I.C.) , d.t.(I.C.) ), where dt(I.C.) is the standard

deviation of (A.14), obtained from the 100 simulations.

As a by-product of the solution method, we can demonstrate that the ex-ante capital

income tax rate is zero for all  when risk aversion is one, and it fluctuates around zero whent$1

risk aversion is different than one.

Proof: In the definition of the ex-ante capital income tax rate, given by (20), we can see

that the denominator corresponds with expectation , defined by (A.3).X
1,t

The numerator of (20) can be obtained from the competitive equilibrium conditions (that

must be fulfilled by the previously computed Ramsey allocations). In particular, partitioning the

expectation term of the Euler condition of capital of the problem defined by (11)-(12) and

comparing it with (A.3) and (A.4), we have:

Therefore:

identifying terms with (A.2):

With  it can be shown that . Moreover, it is clear that under logarithmicF'1 X
3,t
'0 œt

preferences, the term inside brackets is zero. Therefore, the ex-ante capital income tax rate is

zero for all .t$1

When , the ex-ante capital income tax rate is zero on average because, in theF…1

deterministic steady state, we get from the Euler condition of the Ramsey problem:
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and the Euler condition for capital stock in the competitive equilibrium:

then, . OJ
k
ss

'0
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Table 1. Baseline parameters.

Preferences:

Discount rate ($)

Risk aversion (F)

Preference for leisure (2) 

Technology:

Output elasticity of labor (")

Growth rate (D)

Capital depreciation rate (*)

Stochastic process of public consumption:

Steady state public consumption (G)

Autocorrelation of public consumption shock (Ng)

Standard deviation of innovation of public consumption shock ( )F
g
g

Stochastic process of productivity shock:

Autocorrelation of productivity shock (Nz)

Standard deviation of innovation of productivity shock ( )F
g
z

Initial conditions:

Outstanding debt ( )R
0
b
&1

Capital stock ( )k
&1

Capital income tax rate ( )J
k
0

.98

1

.75

.66

.016

.08

.07

.89

.07

.81

.04

.20

1.05

27.1%
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Table 2. Stochastic simulation under stable behavior of the debt path. Properties of optimal tax rates.

Statistics computed are means of 100 simulations of 1200 periods, where the first 200 periods are dropped.

Standard deviation of statistics is in parentheses. NA indicates that the corresponding statistic is not well

defined. Means and standard deviations are in percentage terms.

Alternative stochastic processes for shocks

Baseline model High risk

aversion

Only technology

shock I.I.D.

Labor income tax rate

Mean 25.198

(.019)

22.588

(.012)

25.191

(.004)

25.198

(.002)

Standard deviation .190

(.010)

.096

(.005)

.128

(.006)

.149

(.004)

Autocorrelation .800

(.021)

.860

(.015)

.688

(.025)

-.069

(.025)

Correlation with

public consumption

.731

(.033)

-.813

(.030)

NA NA

Correlation with

technology shock

.433

(.064)

-.468

(.067)

.541

(.038)

.929

(.007)

Ex-post capital income tax rate

Mean .000

(.001)

.000

(.000)

.000

(.000)

.000

(.000)

Standard deviation .002

(.022)

.000

(.001)

.000

(.000)

.000

(.001)

Autocorrelation -.003

(.029)

-.002

(.015)

-.005

(.038)

-.002

(.014)

Correlation with

public consumption

.000

(.047)

.008

(.037)

NA -.005

(.035)

Correlation with

technology shock

-.003

(.029)

.001

(.033)

.002

(.042)

-.001

(.021)
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Table 3. Stochastic simulation under exogenous processes for the debt path. Properties of optimal

capital income tax rate. Statistics computed are means of 100 simulations of 1200 periods, where the first

200 periods are dropped. Standard deviation of statistics is in parentheses. Means and standard deviations

are in percentage terms. The exogenous stochastic path of the debt is:  

b
t
'b

ss
(1&N)%N b

t&1
% g

b

t
g
b

t
-N (0 ,F

b
)

F
b
'.05 F

b
'.5

φ=1 φ=.95 φ=0 φ=1 φ=.95 φ=0

Mean .000

(.000)

.000

(.002)

.000

(.000)

.000

(.000)

.000

(.001)

.000

(.002)

Standard deviation .001

(.005)

.009

(.062)

.002

(.005)

.003

(.009)

.007

(.017)

.021

(.055)

Autocorrelation -.003

(.050)

.000

(.013)

.002

(.025)

.003

(.055)

-.004

(.059)

.014

(.067)

Correlation with

public consumption

-.001

(.029)

.002

(.032)

-.001

(.032)

.001

(.033)

.003

(.032)

.000

(.034)

Correlation with

technology shock

.001

(.031)

-.002

(.035)

-.001

(.030)

-.005

(.032)

.006

(.027)

.001

(.029)
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Table 4. Exogenous expectation error in the Euler condition of debt. Stochastic simulation

under different sizes of standard deviation of expectation error. Properties of optimal capital

income tax rate and endogenous expectation error. Statistics computed are means of 100

simulations of 1200 periods, where the first 200 periods are dropped. Standard deviation of statistics

is in parentheses. Means and standard deviations are in percentage terms.

Ex-post capital income tax rate

F error=.5 F error=.005 F error=.00005

Mean .000

(.000)

.000

(.000)

.000

(.000)

Standard deviation .000

(.000)

.000

(.000)

.000

(.000)

Autocorrelation -.003

(.013)

.002

(.025)

-.002

(.030)

Correlation with

public consumption

.000

(.034)

.001

(.033)

-.002

(.029)

Correlation with

technology shock

-.001

(.029)

.001

(.030)

-.003

(.030)

Endogenous expectation error(optimality condition of capital)

F error=.5 F error=.005 F error=.000005

Standard deviation .014

(.000)

.015

(.000)

.014

(.000)

Correlation with

exogenous

expectation error

.004

(.034)

.002

(.029)

-.002

(.033)


