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Espasa and Mayo provide consistent forecasts for an aggregate economic indicator and
its basic components as well as for useful sub-aggregates. To do so, they develop a
procedure based on single-equation models that includes the restrictions arisen from the
fact that some components share common features. The classification by common features
provides a disaggregation map useful in several applications. We discuss their classification

procedure and suggest some issues that should be taken into account when designing an
algorithm to identify subsets of series that share one common trend.
© 2012 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Espasa and Mayo (2013), hereafter EM, aim to provide
coherent forecasts of both an aggregate economic indica-
tor, such as a Consumer Price Index (CPI), and its basic com-
ponents, as well as for useful sub-aggregates. To do this,
they develop a procedure based on single-equation mod-
els that includes the restrictions which arise from the fact
that some components share common features, typically
common trends (Engle & Granger, 1987) and/or common
serial correlations (Engle & Kozicki, 1993). This idea com-
bines the feasibility and computational stability of single-
equation models with the use of some of the additional
information available as a result of the disaggregation.

The classification by common features provides a
disaggregation map which will prove useful in several
applications. For example, once the components with
common features have been grouped, the authors build
sub-aggregates from these components and use them
to forecast the inflation in the Euro area, UK and USA.
EM’s procedure provides more precise forecasts than
some other forecasts, whether indirect, based on basic
components, or direct, based on the aggregate.
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In their paper, Espasa and Mayo contribute to applied
forecasting in several ways. From our point of view, their
main contribution lies in the classification of the differ-
ent components by common features. The authors demon-
strate their procedure in Sections 4.1 and 4.2, and Figs. 1
and 2. Of particular interest is Fig. 2, which summarizes the
classification algorithm.

2. Comments on EM’s classification procedure

This section focuses on the procedure for identifying a
subset of basic components with one common trend. EM
propose four steps and a large number of cointegration
tests using the methodology of Engle and Granger (1987).
All of the aggregates are built using the official weights. The
steps are as follows:

STEP 1 Identification of N1, the largest subset in which
every element is cointegrated with all others; and
the construction of its aggregate AN1.

STEP 2 All elements in N1 that are not cointegrated with
AN1 over a rolling window are removed from
the subset. The resulting set is called N2 and its
aggregate AN2.

STEP 3 Any components outside N1 that are cointegrated
with AN2 are incorporated into N2. The resulting
subset and its aggregate are called N3 and AN3,
respectively.
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STEP 4 All elements in N3 that are not cointegrated with
AN3 over a rolling window are removed from the
subset. The final set is called N, and its aggregate ;.

Below, we discuss the main questions that arose when
we analyzed this procedure.

1. Should the significance level of the tests be adjusted
because of the large number of tests? As an example,
the number of tests run for the USA is 25440 (only in
Step 1), as a result of testing 160 series for pairwise
cointegration in both directions. Many of these tests
are redundant, since N1 is the largest subset in which
every element is cointegrated with all others and
pairwise cointegration is a transitive property (see
the Appendix).? Quoting Shaffer (1995): “When many
hypotheses are tested, and each test has a specified Type
I error probability, the probability that at least some
Type 1 errors are committed increases, often sharply,
with the number of hypotheses. This may have serious
consequences if the set of conclusions are evaluated
as a whole”. Hence, EM’s procedure is included in a
large body of literature that is usually referred to as
“multiple comparison procedures” or “simultaneous
inference” (see, Rao & Swarupchand, 2009, for a
detailed revision of the literature). A major part of
this literature suggests methods for controlling the
Type I error rate for any combination of true and false
hypotheses. The most common method used in practice
is the Bonferroni correction (see, e.g., Shaffer, 1986).
An interesting question is whether the Bonferroni
correction helps to improve EM’s procedure. In what
follows, we will explain why we do not think it
does.

In EM’s procedure, the Bonferroni correction will re-
duce the significance level « for each individual test to
af = a/(k(k — 1)), where the denominator, k(k — 1),
is the number of tests conducted. In EM’s application,
the numbers of series are k = 79, 70, 160 for the Euro
area, the UK and the USA, respectively, and therefore
ay will be really small. Consequently, the tests will
reject a smaller number of true cointegration relation-
ships when using o than when using «, but will not re-
jectalarger number of false cointegration relationships.
This is the classical trade-off between Type [ and Type
Il errors, which is aggravated here by the well-known
low statistical power of the cointegration tests. How-
ever, EM’s procedure requires a considerable level of
statistical power, as the non-rejected series will be used
to make up an aggregate for a comparison in the follow-
ing steps. Therefore, it is extremely important that the
series forming the aggregate are truly cointegrated, oth-
erwise this aggregate will be a mixture of different com-
mon trends and the procedure will not work properly.
Statistically speaking, in EM’s procedure, Type II errors
are much more harmful than Type L. The Bonferroni cor-
rection is therefore likely to lead to a wrong initial ag-
gregate, which will spoil the results.

2 If x; and y; are cointegrated CI(1, 1), and z; and x; are CI(1, 1), then y;
and z; are also CI(1, 1).

2. Do we really need all of these steps and tests to get the
final set N and the corresponding aggregate, 71,? The an-
swer to this question is uncertain, due to the low power
of the cointegration tests. For example, Step 2 attempts
to clear N1 of possible non-cointegrated series, i.e., to
reduce the Type Il error committed in Step 1. However,
the user should be careful here, since Step 2 uses the ag-
gregate computed in Step 1. As was mentioned above, it
is crucial that the aggregate based on components of N1
be made up of truly cointegrated series. The user should
probably be more loose with the individual significance
level throughout the whole procedure in order not to
expand the Type Il errors. Accordingly, Steps 3 and 4 can
be interpreted using the same statistical approach. Step
3 attempts to reduce the Type I error, which is certainly
higher than the 5% level individually assumed by the au-
thors, as they do not take the large number of tests into
account (recall, again, the idea of the Bonferroni correc-
tion); while Step 4 is another attempt to reduce Type II
errors. Hence, EM propose an iterative procedure that
adds and removes series from a new set in each step,
as a way of improving the low statistical power of the
cointegration tests.

3. Areall of these steps and tests enough to get the final set N?
That is, does EM'’s procedure converge? Convergence is a
suitable property that ensures that the algorithm stops
at some point. Unfortunately, we do not know whether
EM’s algorithm converges. The authors stop their pro-
cedure in Step 4, but they do not prove that this choice
is optimal. As a matter of fact, it cannot be generalized
that stopping in Step 4 is always going to produce better
(or worse) results, as doing additional steps could lead
to a different final set N (recall that some basic compo-
nents enter and others exit at each step).

4. Is the largest subset of basic components the best choice?
Two different issues arise in relation to this question.
First, as the final aim is to forecast the aggregate, it
would be more helpful to choose the subset that adds
the most predictability to the aggregate (using some in-
formation criterion, load factors, etc.). To do this would
mean that the classification procedure required all the
groups to be identified and one (or several) to be chosen
from among them. For that reason, an algorithm that
finds several groups simultaneously would be prefer-
able. Second, bearing in mind that Type II errors are
much more harmful than Type I errors in the classifica-
tion process, it should be noticed that the largest subset
may also be heterogenous as a consequence of the low
power of the cointegration tests.

3. Some considerations for improving EM’s classifica-
tion procedure

Based on the previous section and the procedure
proposed by EM, we suggest some guidelines that could
be helpful when designing an algorithm for identifying
subsets of series with one common trend. (a) Although the
method belongs to the literature on “multiple comparison
procedures” or “simultaneous inference”, the framework
is fairly different. In this case, Type Il errors are much more
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harmful than Type I errors, and therefore, unusually high
significance levels should be applied. (b) Since pairwise
cointegration is transitive, this property could be used
to decide when the results of the cointegration tests are
ambiguous. Nevertheless, practitioners should be aware
of the risk of propagating false pairwise cointegration
relationships. (c) The aggregates should be built using
weights that ensure that they are pairwise cointegrated
with all their components. The official weights of the CPIs
do not assure this property. (d) The convergence of the
procedure would be a suitable property, although probably
one which would be hard to demand. In any case, both the
stopping criterion of the algorithm and its consequences
for the final subset deserve special attention. (e) If the final
goal is forecasting, the subsets should be chosen using a
predictive accuracy criterion, instead of a criterion related
to the size. (f) Hence, the procedure should be able to
provide several subsets simultaneously, allowing the level
of predictability that each group adds to the aggregate to
be determined.

4. Concluding remarks

Espasa and Mayo (2013) make a significant contri-
bution to the literature on forecasting aggregates and
disaggregates by taking the stable common features in
the basic components into account. Especially appeal-
ing is the classification of basic components that share a
common trend. Although the authors show that their clas-
sification procedure leads to better forecasts than other al-
ternatives, this comment aims to provide some guidelines
that could improve the classification procedure, and, as a
consequence, increase the forecast accuracy. Espasa and
Mayo’s methodology for classifying series with common
features is very useful for practitioners and can be applied
in many different situations. This topic, which is open to
future research, appears very promising.
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Appendix

Lemma 1. Let yq¢, yo; and x; be integrated of order one, 1(1).
If y1c and x; are cointegrated CI(1, 1), and y,; and x, are
CI(1, 1), then y1¢ and y,. are also CI(1, 1).

Proof of Lemma 1. Let y, Yy, and x; be integrated of
order one, I(1). Also, let y;, and x, be CI(1, 1), and y,, and x;
be CI(1, 1), as:

Yie = Qo + a1Xe + €13 ¢1(B)e1r = 01(B)ay;,

with a;; ~ Li.d.N(0, o), (1)
Yoo = Bo + Bixe + €x; $2(B)exr = B2(B)ay,
with ay ~ i.i.d.N(0, 05), (2)

where all of the roots of ¢;(B) = 0, fori = 1, 2, are outside
the unit circle.
Solving for x;, Eqs. (1) and (2) can be written as:

1

X = —(y1 — ao — Y1 (B)ay) (3)
(041
1

X = E(yﬂ — Bo — V2(B)ax), (4)

where /;(B) = 6;(B)/¢;(B). Finally, solving Egs. (3) and (4)
for yq, we get:

Yie = Yo + viVar + e (5)

where vy = ap — a180/B1, y1 = a1/B1and n; = Y1(B)ay,
— y1¥ay. If all of the roots of ¢;(B) are outside the unit
circle, then #; is stationary and yq; and y, are CI(1,1). O

References

Engle, R.F., & Granger, C. W. ]. (1987). Co-integration and error correction:
representation, estimation and testing. Econometrica, 55, 251-276.
Engle, R. F., & Kozicki, S. (1993). Testing for common features. Journal of

Business and Economic Statistics, 11(4), 369-395.

Espasa, A., & Mayo, 1. (2013). Forecasting aggregates and disaggregates
with common features. International Journal of Forecasting, 29(4),
718-732.

Rao, C. V., & Swarupchand, U. (2009). Multiple comparison procedures: a
note and a bibliography. Journal of Statistics, 16, 66-109.

Shaffer, J. P. (1986). Modified sequentially rejective multiple procedures.
Journal of the American Statistical Association, 81(395), 826-831.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of
Psychology, 46, 561-584.

Marcos Bujosa is Associate Professor at Universidad Complutense de
Madrid. He obtained his Ph.D. in Economics at Universidad Autonéma de
Madrid in 2001. His research interests include modelling in the frequency
domain and forecasting seasonal economic time series. On these topics,
he has published in the International Journal of Forecasting, Computational
Statistics and Data Analysis, and Journal of Forecasting.

Alfredo Garcia-Hiernaux is Associate Professor at Universidad Com-
plutense de Madrid. From 2006 to 2008 he was Assistant Professor at the
Universidad Carlos IIl de Madrid. He obtained his Ph.D. in Economics at
Universidad Complutense de Madrid in 2005. His research interests in-
clude state space models, subspace methods and forecasting economic
time series. He has published in various journals, including the Journal of
Time Series Analysis, Computational Statistics, the Journal of Statistical Com-
putation and Simulation, and Mathematics and Computers in Simulation.



