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THE NEWTONIAN LIMIT OF RELATIVITY THEORY AND THE
RATIONALITY OF THEORY CHANGE

ABSTRACT. The aim of this paper is to elucidate the question of whether Newtonian
mechanics can be derived from relativity theory. Physicists agree that classical mechanics
constitutes a limiting case of relativity theory. By contrast, philosophers of science like
Kuhn and Feyerabend affirm that classical mechanics cannot be deduced from relativity
theory because of the incommensurability between both theories; thus what we obtain
when we take the limit c → ∞ in relativistic mechanics cannot be Newtonian mechanics
sensu stricto. In this paper I focus on the alleged change of reference of the term mass in
the transition from one theory to the other. Contradicting Kuhn and Feyerabend, special
relativity theory supports the view that the mass of an object is a characteristic property
of the object, that it has the same value in whatever frame of reference it is measured,
and that it does not depend on whether the object is in motion or at rest. Thus mass
preserves the reference through the change of theory, and the existence of a Newtonian
limit of relativity theory provides a good example of the rationality of theory change in
mathematical physics.

– Does mass really depend on velocity, Dad?
– No! Well, yes. Actually, no, but don’t tell your teacher.

Carl Adler, Am. J. Phys. 55, 1987

1. THE NEWTONIAN LIMIT OF RELATIVITY THEORY AND THE

RATIONALITY OF THEORY CHOICE

According to Albert Einstein (1917, §§22, 29), the most important aim of a
scientific theory is to point to the establishment of a more comprehensive
one, in which it survives as a limiting case. For instance, Newton’s gra-
vitational theory obtains as a first approximation by specializing general
relativity theory’s equations for the case of weak gravitation fields and low
velocities.

Einstein’s suggestion of the existence of a Newtonian limit is nowadays
a universally assumed idea in theoretical physics. Nobel prize winner Lev
Landau (1951, §1-1) claims for instance: “The limiting transition from re-
lativistic to classical mechanics can be produced formally by the transition
to the limit c → ∞ in the formulas of relativistic mechanics.” Steven
Weinberg (1972, Ch.7) talks about the Newtonian limit of Einstein’s field
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equations too, and in (1989, pp. 14–15) he repeats that “Einstein’s theory
of general relativity . . . reduces to Newton’s theory at large distances and
small velocities.” Also Misner, Thorne and Wheeler (1973, § 17.4) explore
the mathematical reduction of general relativity to Newton’s theory of
gravity “in the ‘correspondence limit’ of weak gravity and low velocities”.

The existence of the Newtonian limit of special relativity theory shows
that Newton’s laws of mechanics can be compared to those of special
relativistic mechanics by mathematically deriving the former as a limit-
ing case of the latter. Actually, when objects move with velocities v that
are small compared with the value of c in empty space, special relativ-
istic phenomena like length contraction and time dilatation disappear, the
relativistic expression of momentum agrees with the classical formula,
Newton’s second law can be restored, the classical expression of kinetic
energy reappears, etc.

If we are given two theories, and one of them constitutes a limiting case
of the other one, then we are in a privileged situation in order to make
a rational choice between them. Indeed the existence of limiting cases
in mathematical physics allows one to account for theory change as an
intrinsically rational process.

2. INCOMMENSURABILITY AND THE NEWTONIAN LIMIT OF

RELATIVITY THEORY

Among philosophers of science, the Popperian view on intertheoretic ap-
proximation is very close to that of physicists. Already in the early thirties
Karl Popper (1979, pp. 51–52) claimed that old physical theories are coarse
approximations of new ones, and in (1935, §79) he asserted that “The old
theory, even when it is superseded, often retains its validity as a kind of
limiting case of the new theory”. Years later Popper (1994, p. 12) affirmed
that “the predecessor theory must appear as a good approximation to the
new theory”. This fact facilitates the comparison of theories; in particular,
“Einstein’s theory can be compared point by point with Newton’s and (. . . )
it preserves Newton’s theory as an approximation.” In an astonishingly
similar way, the structuralist Joseph Sneed (1971, pp. 304–305) claims:

The new theory must be such that the old theory reduces to (a special case) of the new
theory.1

Finally Stegmüller (1980, p. 48) claims that the explanation of scientific
progress by means of a suitable concept of theory reduction is not logically
incompatible with Kuhn’s incommensurability thesis.2
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But can Newtonian mechanics really be derived from special relativity
theory? This is precisely the question Kuhn (1970, pp.101–102) is con-
cerned with. Kuhn’s answer is that the derivation is spurious: the laws
derived are not Newton’s laws, because “the physical referents of the Ein-
steinian concepts are by no means identical with those of the Newtonian
concepts that bear the same name (Newtonian mass is conserved; Einstein-
ian is convertible with energy. Only at low relative velocities may the two
be measured in the same way and even then they must not be conceived
to be the same)”. The alleged incomparability of Newtonian mass and
Einsteinian mass with respect to their referential properties makes both
terms incommensurable in Kuhn’s view.

Feyerabend (1978, p.185 and 1981b, p.154) also affirms that even when
v/c → 0 (or c → ∞), the concepts do not coincide, the ‘rest mass’
is not the classical mass; according to him ‘relativistic’ mass gives the
measure of the mass of a body relative to a frame of reference, whereas
’classical’ mass is an intrinsic property of the object under consideration.3

Since what is measured is not the same in both cases, the derivation of
classical mechanics from relativity theory becomes impossible.

Finally Max Jammer (2000, p. 57) who refers to both types of mass,
‘classical’ and ‘relativistic’, as “The two most frequently quoted incom-
mensurable terms”, still maintains,4 agreeing with Kuhn and Feyerabend,
that in classical physics inertial mass “is an inherent characteristic of a
particle and, in particular, is independent of the particle’s motion. In con-
trast, the relativistic mass, . . . , is well known to depend on the particle’s
motion”. Moreover he claims that ‘rest’ or ‘proper’ mass “is just a parti-
cular case of the relativistic mass and there is not yet any cogent reason to
identify it with the Newtonian mass of classical physics”.

At this point in our discussion it seems perfectly legitimate to pose
the question: Who are right, the physicists who affirm the existence of a
derivation, as a limiting case, of classical mechanics from relativity theory,
or the philosophers who claim that, because of incommensurability, this
cannot be the case?

3. THE ANTI-RELATIVISTIC MASS POINT OF VIEW

One of Kuhn’s favourite reasons for the existence of incommensurability
between relativistic and classical mechanics is that Newtonian mass is in-
variant, whereas Einsteinian mass is not. Feyerabend claims on his side
that classical mass is an intrinsic property of bodies, whereas Einsteinian
mass is not. Now, they are not right, because an object has the same mass
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as observed in any inertial frame of reference. Below I show how special
relativity accounts for the invariance of mass.

In special relativity theory events occur in four-dimensional
Minkowski’s spacetime. In this framework the norm or magnitude of
the four-vector position xµ, with time component x0 = ct , and x1 = x,
x2 = y, x3 = z space components, is given by

|xµ|2 = (x0)2 − [(x1)2 + (x2)2 + (x3)2].

This difference measures also the interval ds, or distance in spacetime,
between events. When events are infinitely close to each other, then

ds2 = c2dt2 − [dx2 + dy2 + dz2].

Intervals and norms are invariant in relativity theory, i.e., they have the
same value in any inertial frame of reference. From invariance of intervals,
it follows that

ds = γ −1cdt,

where γ = [1 − (v/c)2]−1/2.
In spacetime the four-vector velocity uµ = dxµ/dx has time compo-

nent u0 = cdt/ds = γ , and the four-vector energy-momentum5 pµ =
mcuµ, has time component p0 = mcu0 = E/c, i.e., energy, whereas its
space components are momentum:

p1 = mcu1 = γ mvx, p
2 = γ mvy, p

3 = γ mvz.

E = γ mc2 is the total energy of an object with mass m freely moving with
velocity v.

Both energy and momentum are relative to inertial frames of reference.
In fact, from the Lorentz transformations of energy and momentum it fol-
lows that the momentum p′

x of the object, measured in an inertial frame
of reference S ′, which moves away from another frame S with constant
velocity v along the X axis, is given by

p′
x = γ −1px − vxE

′c−2.

If the object is at rest in relation to S ′, then p′
x = 0, and γ = 1. Thus from

E = γ mc2, it follows that E′ = mc2, and we obtain again

px = γ mvx.
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On the other hand, the difference

(p0)2 − [(p1)2 + (p2)2 + (p3)2] = m2c2

gives the magnitude of the energy-momentum four-vector. Because of the
invariance of norms in Minkowski’s spacetime, the mass of the object is
the invariant magnitude of the energy-momentum vector (divided by c2).
This amounts to claiming that any object has the same mass as observed
in every inertial frame of reference. Goldstein (1950, p. 204) affirms that
mass m is “a scalar invariant property of the particle unaffected by Lorentz
transformation”.6 Lev Okun (1989, pp. 31–32) asserts that “There is only
one mass in physics, m, which does not depend on the reference frame”,
i.e. “mass is a relativistic invariant and is the same in different reference
systems”. Taylor and Wheeler (1992, p. 246; and “Dialog”, pp. 246–251)
claim that “mass is the same in whatever free-float frame it is figured”. And
Steven Weinberg (1998, p. 49) in his review of Thomas Kuhn’s Structure
of Scientific Revolutions maintains that “the term ‘mass’ today is most
frequently understood as ‘rest mass’, an intrinsic property of a body that is
not changed by motion”.

The invariance of mass, a mathematical result of relativity theory, is
devastating to both Kuhn’s and Feyerabend’s thesis of incommensurabil-
ity. Contradicting Feyerabend, I claim that in the framework of relativity
theory mass is a characteristic feature of the object considered. The
assumption that, both in classical and relativistic mechanics, mass is a
characteristic property of objects, make senseless affirmations like Fey-
erabend’s: ‘rest mass’ is not the same as ‘classical mass’.7 Contradicting
Kuhn I disagree with the view that Newtonian mass is constant, whereas
Einsteinian mass is not.

4. MASS TERMS AND OCKHAM’S RAZOR

Because of the invariance of mass, terms like ‘relative’ mass, ‘variable’
mass, ‘proper’ mass, ‘rest’ mass, ‘relativistic’ mass, etc. should be avoided.
They are misleading and redundant.8 Other uses of mass like ‘longitudinal’
mass and ‘transverse’ mass are superfluous as well.9

Geometrically energy-momentum is a four-vector of the pseudoeuc-
lidean spacetime. Since the geometry of spacetime is not Euclidean, the
mass of a body, given by

m = (E2/c2 − p2)1/2/c,
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remains invariant, even if an increasing body’s velocity causes its quantity
of motion and its energy to increase too.

In Section 3 above I argued that energy and momentum of a given
particle are relative to a frame of reference, i.e., they have not the same
value in whatever frame they are measured. The difference between both
classical and three-dimensional relativistic definitions of momentum lies in
that the relativistic value of momentum is proportional to the value of New-
tonian momentum, the constant of proportionality being the Einsteinian
factor γ . If the particle increases its velocity relative to a reference frame,
then γ becomes larger, and the particle’s momentum grows. Obviously its
energy becomes larger too. But the particle mass m, the intrinsic magnitude
of energy-momentum, remains constant. In a 1948 letter to Lincoln Barnett
Einstein wrote:10

It is not proper to speak of the mass M = m/(1 − v2/c2)1/2 of a moving body, because
no clear definition can be given for M . It is preferable to restrict oneself to the ‘rest mass’
m. Besides, one may well use the expression for momentum and energy when referring to
the inertial behavior of rapidly moving bodies.

Often the increase in momentum has been interpreted mistakenly as
caused by an increase in mass. For instance Max Born (1962, p. 277)
claims, that when v = c, “the mass becomes infinitely great”. But the
view that the mass of a moving object is greater than its mass at rest is
not supported by relativity theory, where mass is the same in all frames of
reference, independently of whether the object is in motion or at rest. Since
we are compelled to revise the assumption of the variability of mass with
velocity, we must reject too the claim that ‘classical mass’ is a limiting case
of ‘relativistic mass’.11 This mathematical relation holds only between the
classical and the relativistic definitions of momentum and of energy.

According to Okun (1989, p. 35), the doctrine of the dependence
of mass on velocity was postulated by Hendrik Lorentz in 1899. For
the recent acceptance of this view Okun puts the blame on Wolfgang
Pauli, who in the 1921 German edition of his Theory of Relativity “gave
an undesirably long life to the notorious notion that mass depends on
velocity”.12

Historians of physics have been captivated also by the misconception
of the variability of mass with velocity. For instance Max Jammer (1961,
pp. 164–165) does not hesitate to identify, as in classical mechanics, the
coefficient of velocity in the relativistic momentum expression as the ‘rel-
ative mass’ m(v) of the particle. Moreover, he sees in the application of the
calculus of four-vectors a help for the ‘definitional character of velocity-
dependent mass’: “It is the new relation between space and time, . . . , that
produces the peculiar functional dependence of momentum on velocity and
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consequently the velocity dependence of mass.”13 Unfortunately Jammer
was not able to see that the ‘peculiar’ functional dependence of momentum
on velocity is a consequence of the frame dependence of momentum, and
that precisely this dependence of both momentum and energy maintains
the particle mass constant.

As to the empirical testing of equation m(v) = γ m, in his 1961 book
Max Jammer has reviewed to some extent the alleged experimental evid-
ence in favour of the velocity dependence of the electron mass.14 At the
end he admits that “an unambiguous direct verification of this all-important
velocity dependence of mass is certainly still a matter of serious concern
for experimental physics”. Moreover his personal attempt to account ‘in
greater detail’ for this experimental verification fails as well, as he con-
fesses that the equation used to measure the curvature radius of an electron
beam “could equally be written [. . . ] without ever mentioning the idea of
‘variable mass’ ”.

Finally, among philosophers of science, supporters of the doctrine of in-
commensurability have been misguided also by the multiplication praeter
necessitatem of mass concepts. For instance Hartry Field (1973, p. 74),
who claimed that in Newtonian mechanics the term mass suffers from an
indeterminacy of the reference: “Newton’s word ‘mass’ partially denoted
proper mass and partially denoted relativistic mass; since it partially de-
noted each of them, it didn’t fully (or determinately) denote either.”15 More
recently Roberto Torretti (1999, pp. 287), who still maintains that ‘relativ-
istic mass’ is a “function of speed”, has argued that the ‘relative mass’
m(v) of a moving object “is not normally the ratio of force to acceleration
and thus not even a measure of inertia in the received sense”. Torretti is
misled by making use of expressions like ‘relativistic mass’ and ‘proper
mass’. Nonetheless, he points to the fact that the classical and relativistic
expressions of force are different, which is right. Indeed, since force is
frame dependent, combining the Lorentz transformations of both force and
acceleration, when the particle is at rest in its proper reference frame S ′, we
obtain that in the laboratory frame of reference S the spatial components
of the four-vector force acting upon the particle are:

Fx = γ 3.m.ax

Fy = γ.m.ay

Fz = γ.m.az.

But γ is purely a numerical coefficient that has no dimensions. Thus m is
always proportional to the ratio of force to acceleration.
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Upholders of the anti-relativistic mass viewpoint are optimistic about
the abandonment of the idea of the velocity dependence of mass.16

Nonetheless this abandonment is not occurring without resistance. The
discussion “Putting to rest mass misconceptions” in section “Letters” in
Physics Today, May 1990, containing Okun’s replies, gives signs of this
resistance. Further defences of relativistic mass, like T. R. Sandin’s (1991,
p.1036) on aesthetic grounds: “Relativistic mass paints a picture of nature
that is beautiful in its simplicity”, and his avoidance of four-vectors on ped-
agogic grounds: “instruction with four-vectors make things unnecessarily
difficult and obscure the subtle concepts of relativity by moving even fur-
ther from their [students’] experience” do not support seriously the cause
indeed. And Max Jammer (2000, p. 56) feels compelled to bring philo-
sophical considerations into play. The resort to philosophy has of course
heuristic value. But the best way to take a decision in a physical dilemma
is to go back to experience, not to philosophy. Nonetheless no experiments
describing how mass allegedly changes with velocity are referred to in
Max Jammer’s second book.

5. CONCLUSION

If the mass of a body is the same independently on whether the body is in
motion or at rest, i.e., if it has the same value in every frame of reference in
which it is measured, then the reference of the term mass has not suffered
any change in the transition from Newtonian to relativistic mechanics. This
is no reason for wondering about. Many other magnitudes like electric
charge, spin, baryonic number, etc., are intrinsic properties of each particle
as well, i.e., they are invariant scalars, whose values do not depend on any
reference frame.

Other relativistic magnitudes, like force and momentum, preserve in
three-dimensional notation the form of their homologous classical ex-
pressions, except for the fact that they are affected by a non-dimensional
coefficient, which points to their frame dependence. Dimensional analysis
guarantees that homologous magnitudes are given in the same units, oth-
erwise we should not be measuring the same. This is why it is possible
to derive mathematically Newtonian mechanics from relativity theory. I
completely agree with Dalla Chiara and Toraldo di Francia,17 that Einstein
was talking about the same magnitudes as Newton did, although Einstein
discovered some new properties of these magnitudes which Newton did
not expect them to have.

Furthermore Newtonian mechanics and relativity theory do share a
number of intended applications, although the first accounts for only a



THE NEWTONIAN LIMIT OF RELATIVITY THEORY 425

very limited number of phenomena, and fails to explain many others: light
deflection by the Sun,18 the anomalous advance of Mercury’s perihelion,19

gravitational redshift and black holes, 20 gravitational radiation, the grav-
itational lensing effect, the Shapiro time delay, etc., which are predicted
by relativity theory. Albert Einstein (1917, § 29) claims explicitly that
the observation in astronomy of the first two phenomena mentioned above
represents a failure of classical mechanics. Thus the predictive balance is
overwhelmingly favorable to relativity theory, and the decision to choose
this theory against Newton’s is intrinsically rational.

The comparison of theories, either with respect to their mathematical
relation or to their predictive power, provides the answer to the question of
the rationality of theory change.
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NOTES

1 Sneed (1977) develops formally an approach to intertheoretic reduction.
2 Nonetheless Kuhn (1977, Section 4) is very sceptical about Sneed-Stegmüller’s reduc-
tion concept.
3 Feyerabend (1981a, p. 81).
4 Cf. Jammer (2000, p. 41).
5 We obtain the energy- momentum four-vector pµ multiplying by mc the velocity four-
vector uµ = γ (1, �v/c).
6 In Goldstein (2002, §7.4) mass is merely a scalar.
7 Any case Feyerabend misunderstood Eddington (1923, §12), who was allegedly the
source of his view. Indeed, Eddington relates the ‘relative mass’ m(v) of a body to its
‘invariant mass’ m by m(v) = γ m, so that when v = 0, then γ = 1, and m(v) = m.
Eddington’s conclusion is that “the invariant mass is thus equal to the mass at rest”. Fol-
lowing, if Feyerabend’s ‘classical mass’ were the ‘invariant mass’, Eddington’s assertion
would refute Feyerabend’s claim.
8 This is also Lev B. Okun’s (1989, p.31) message. According to Adler (1987, p. 743) the
use of ‘relativistic’ mass is not fundamental to special relativity theory: “Its role in special
relativity as developed by Einstein is that of an artifact”.
9 Already Herbert Goldstein (1950, p. 205) claims that “In general the use of these various
‘masses’ (. . . ) is decreasing; they (. . . ) obscure the physics of the situation more than they
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reveal”. In the 1980 second edition of Goldstein’s Classical Mechanics any reference to
‘longitudinal’ and ‘transverse’ masses nearly disappears. Finally Goldstein et al. (2002) do
not mention them at all.
10 This is an improved translation by Siegfried Ruschin in “Putting to rest mass misconcep-
tions”, Physics Today, Letters, May 1990, p. 115, of the translation given by Adler (1987,
p. 742), and reprinted by Okun (1989, p. 32).
11 Max Born (1962, p. 273) for instance conceives of ‘classical mass’ as a limiting case of
‘relativistic mass’.
12 A history of the concept of relativistic mass is given by Jammer (2000, pp. 41–51).
13 Jammer, op. cit., p.165.
14 Cf. Jammer, op. cit., pp. 166–171.
15 However he encountered John Earman’s (1977, p. 535) answer, that “there is strong
evidence in favour of (. . . ) the hypothesis that the Newtonian term ‘mass’ has the same
denotation as the relativistic term ‘proper mass’ ”. Although Earman still makes use of the
superfluous expression ‘proper mass’, his claim is basically correct.
16 According to Adler (1987, p. 739) “the use of relativistic mass is showing signs of
progressive disfavor”. In Notes 1–4 Adler shows Sears and Zemanky’s dramatic change of
view on this subject throughout the different editions of their University Physics textbook.
And Okun (1990, p. 115) affirms that “the fact is that most leading physics journals, such as
Physical Review, Physical Review Letters and Physics Letters don’t use relativistic mass.
You will not find it in professional books on particle physics”.
17 Cf. Dalla Chiara (1999, Chapter 13, §5).
18 There can be no doubt that Newton considered the deviation of the trajectory of a photon
passing through the Sun’s gravitational field as an intended application of his gravitational
theory. Indeed, Newton (1704, Book III, Part 1, Query I) asked: “Do not bodies act upon
light at distance, and by their action bend its rays; and is not this action (coeteris paribus)
strongest at the least distance?”. This phenomenon had also been foreseen by Kant himself,
as appears in Opus postumum, volume XXI, p. 404, of Kant’s Gesammelte Schriften.

In Newtonian approximation the bending angle of a photon coming near the Sun in the
direction of the Y axis is given by

�α ≈ 2Gm

rsc2
radians = 0".87.

Unfortunately, this is only half of the observed value. On the other hand Einstein’s gen-
eral relativity theory predicts (Cf. L. Landau and E. Lifshitz 1951, §11-8) that the bending
of a light ray, given by the formula

�α = 4Gms

c2rs
,

amounts to 1".75, which fits very well with the observed value, as Sir Arthur Stanley
Eddington was already able to verify in 1919.
19 The advance of the perihelion of a planet is a disturbance of its orbit, consisting in
the fact that the main axis of the planet’s ellipse rotates around the focus where the Sun
is placed. If Newtonian mechanics did yield accurate predictions, and the planets of the
solar system did not disturb Mercury’s motion, its orbit would be a perfect ellipse. Now,
according to observations, Mercury’s perihelion shows an advance of 43".11 per century
which Newtonian mechanics cannot explain, but Einstein’s gravitational theory accounts
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for as a typical relativistic effect. Given the proximity of Mercury to the Sun, this planet
detects the effects of the solar gravitational field most significantly.

Relativity theory predicts an angular advance of any planet’s perihelion, given by (Cf.
L. Landau and E. Lifshitz 1951, §11-8, and Misner et al. 1973, § 40.5)

�ϑ = 6πGms

c2a(1 − e2)
radians per revolutions,

where a is the main half-axis of the ellipse, and e denotes its eccentricity. Since the nu-
merical value corresponding to Mercury is 43".03 per century, it is obvious that Einstein’s
prediction fits the observations completely.
20 In Newtonian approximation the redshift of a photon trying to escape a star’s gravita-
tional field is given by

z ≈
(

1 − 1

2

rg

r

)−1
− 1,

where rg is a quantity known as Schwarzschild’s radius. Thus,

lim
r→rg

z = 1.

But according to Schwarzschild’s metric of general relativity the photon’s redshift is

z =
(

1 − rg

r

)−1/2 − 1,

whereof it follows that

lim
r→rg

z = ∞.

Since the latter result is compatible with the condition for a star with radius rg to be a black
hole, it becomes evident that Newtonian mechanics completely fails to account for black
holes.
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