Discurso de investidura como doctor “honoris causa’ del
Excmo. Sir Charles Antony Richard Hoare

10 de mayo de 2013

It is with immense pleasure that | accept the high distinction which you
confer on me by the Award of an Honorary Doctorate of the Universidad
Complutense of Madrid. | would like to express my heartfelt gratitude to the
University, and to all of you who join me here today as witnesses of this
magnificent ceremony.

| also thank the previous speaker, Prof. Ricardo Pefia for his flattering
story of the successful accomplishments of my fifty-year career as a Computer
Scientist. His laudation started with my first and most lucky achievement,
namely the invention of the sorting algorithm Quicksort. In 1960 | was a
visiting graduate scholar at Moscow State University. | became interested in
sorting by computer. My first idea for sorting was an algorithm now known as
bubblesort. But | rapidly rejected this idea because it was too slow, taking time
proportional to the square of the size of the list to be sorted. My next idea came
immediately after rejecting the first one. It was quicksort. | think | was
extremely lucky. What better start could there be for an academic career,
especially since | never obtained a doctoral degree?

I was rarely so lucky again. Nearly all my subsequently successful research
ideas were preceded by a long series of bad ideas, to which | gave long and
laborious consideration and then rejected. Often the published version of a
paper was preceded by three or occasionally even seven earlier versions. Each
version was a complete rewrite of the previous version. It has been a
characteristic of my scientific research that all the good ideas are just a by-
product of the laborious process of investigating and rejecting my more



numerous bad ideas. So in my response to the laudation that you have just
heard, | would like to create a balanced picture. | would like to tell you the
stories of some of the mistakes | have made in my long career. But each story
will have a moral: that failure was often the direct stimulus for a subsequent
success,

My first and best known failure was in the mid nineteen-sixties, when |
was working in my first job with Elliott Automation Computing Division. | had
been promoted to the position of the Chief Engineer of a project to implement
an operating system for the current range of computers marketed by the
Company. After more than thirty man-years of implementation effort, the
project failed to meet its promised delivery date (not just once but several
times). In the end, it failed to be deliverable at all! As a result of memory
thrashing, it was just ridiculously slow. | had wasted two years of the working
life of everyone engaged in the project. Fortunately my Company forgave me,
and even entrusted me with the task of recovering from the failure. | gave a full
account of it some fifteen years later, in my acceptance speech for the Turing
Award in 1980. This speech has been published and republished many times
under the title of ‘The Emperor’s Old Clothes’.

Personally, | learnt a lot from the failure. It was the impetus for my life-
long interest in the phenomenon of concurrency in computer programming: how
cans one plan for simultaneous execution of different parts of the same
program, either on the same computer or on a distributed system? My research
into concurrency led to the development of the theory of Communicating
Sequential Processes, and its application by the British Microcomputer
manufacturer INMOS in the design of the architecture of their transputer. | have
continued since then to develop and generalise the theory of concurrency, right
up to the present day.

The next of my failures was even more expensive. | call it my billion-dollar
mistake. In the early 1960’s, | encountered the programming language Simula,
brilliantly designed and implemented in Oslo by Kristen Nygaard and Ole-Johan
Dahl. They later jointly won the Turing Award for their work. Simula included
one of the very first versions of what is now known as object-oriented
programming.

My contribution to the language was my discovery that every pointer or
reference to an object can and should be typed according to the type of the
value which it points to. As a result, simple type-checking, conducted wholly
before a program starts execution, could guarantee the type-consistency of



every use of the reference, and so guarantee the security and structural
soundness of any object-oriented program. This solution was first adopted in the
design of the ALGOL W programming language, which was designed and
implemented by Niklaus Wirth. The language itself failed to get approval from
the international ALGOL committee which originally commissioned it. However,
the idea of type-checked references was also adopted in the widely admired
1967 version of Simula, and the more recent languages C++ and Java.

The idea of properly typed references was actually my very first idea
about making object orientation available in a high-level programming
language. Unfortunately | then went on to spoil everything by retention in my
design of a well-known feature, known as the null pointer. The null-pointer is
very useful to represent the absence of information, for example, information
about the wife of a man who is not married. But it is also notoriously dangerous.
It is the cause of innumerable programming errors, leading to unpredictable
consequences, which make them difficult to detect and correct.

Many of these errors remain in software that is delivered to customers,
and it is they who have to suffer the unpredictable and uncontrollable
consequences. Some of the errors can expose a computer to malicious or
fraudulent attack, of the kind that still costs the world economy many billions of
dollars per year. This estimate includes not only the direct damage, but the cost
of all the precautions necessary to reduce the risk. Over the period of fifty years
since the mistake was made, | am sure that the total cost has exceeded a billion
dollars. | have even heard estimates of a billion dollars per year.

In the later 1980’s, | worked with Robin Milner in Edinburgh and Jan
Bergstra of the Netherlands on a project called CONCUR, funded by the
European Community as a Basic Research Action. Its stated goal was to unify
three different theories of concurrency, as propounded by the three principal
investigators. | contributed CSP, Milner contributed CCS, his Calculus of
Communicating Systems, and Bergstra contributed his ACP, an Algebra for
Concurrent Programming.

I’m afraid | must add the CONCUR project to my list of failures. The three
principal investigators made great progress in the advancement and application
of their own theories, but we could never bring ourselves to concur (that is, to
agree) on a single unifying theory of concurrency. This is a serious matter,
because no sensible engineer or industrial manager is going to adopt a theory
that is still disputed by the leading experts in the field.



Again, the failure inspired the direction of my subsequent research. |
turned my attention to mathematical and logical techniques that would lead to
a more successful unification of a still wider range of theories of programming,
including familiar sequential programs as well as programs that called for
concurrent execution. The significance of unification in the progress of Science
has already been explained in my laudation; but it has not yet been widely
recognised by Computer Scientists.

So together with my long-term research colleague and friend He Jifeng,
we embarked on a programme of research which in the end lasted more than
ten years, much longer than we ever expected. It led to publication in 1998 of a
book entitled ‘Unifying Theories of Programming’. Unfortunately, the book
failed to attract the attention of Computer Scientists, and the publisher never
exerted much effort to sell it. It is now (freely) available, but only on the web.

This was the last failure of my academic career, since shortly afterwards |
reached retirement age at Oxford University. Fortunately, | was invited by Roger
Needham to join the staff of a new Microsoft Research Laboratory, recently
established in Cambridge, England.

Since | joined Microsoft, | have been exceptionally fortunate in witnessing
at first hand an extraordinary spread of the use of program assertions and other
formal methods in the daily practice of software development. This was
encouraged by the use of Software Engineering tools like PREFIX, which was able
to detect many of the kinds of error that are known to occur in computer
programs, including the null reference error that | described earlier. More
modern tools can automatically supply missing assertions, and use them to
generate test cases that will reveal errors in newly written code. There are now
hundreds of specialist verification engineers and scientists employed throughout
Microsoft. They have developed and evolved a wide range of verification and
analysis and testing tools, and helped in installing them in routine use.

In my last five years with Microsoft research, my interests have returned
back to unifying theories, the subject of the final failure of my academic career.
But now | am taking a completely different approach. | have formulated a
couple of dozen algebraic Laws of Programming. They are very similar to the
laws of arithmetic taught to generations of school-children. They could be
taught at the beginning of any undergraduate curriculum in Computer Science.
They could be illustrated by exercises of their use in optimising computer
programs by correctness-preserving transformations. | think they would make
an excellent introduction to formal methods for all computer scientists.



Strangely, my first publication on the Laws of Programming was in 1987, before
the start of the CONCUR project, and before the start of the research leading to
publication of the book on Unifying theories. This article already contained all
the laws relevant for sequential programming languages. But somehow,
throughout the next twenty years, | never recognised that this article already
showed the simplest way of unifying theories of programming. It is only in the
last five years that | have seen how to introduce laws for concurrency into a
programming language. As a result, the laws apply equally to sequential and to
concurrent programs.

Using these laws, it is possible to prove the correctness not only of Hoare
logic, but also its extension to separation logic by Peter O’Hearn. The same laws
can also prove the correctness of the operational semantics which Robin Milner
used to define his process algebra CCS. As a result | believe that the Laws of
Programming at last fulfil the objectives of the CONCUR project, which failed
some twenty years ago.

I am very happy if this should turn out to be the last achievement of my
working career. It is an achievement which has the property of simplicity and
elegance, which is often a distinctive characteristic of the most convincing
theories in science. The algebraic approach to computer programming will be
for many people quite surprising. But for me, the main surprise has been how
long it took me to gain the relevant insight, to realise that | already knew how to
solve the problem of unification. The moral of this story is quite the opposite of
those that have gone before. | have spent the main part of this address telling
you stories about how much | have learnt from my failures. But in this last story
about unification of theories, | have told you how much | failed to learn from one
of my successes.

In conclusion, may | refer again to the laudation. | was most flattered to
hear how many of my discoveries in Computer Science have been incorporated in
the undergraduate curriculum of the Universidad Complutense. | hope that your
undergraduates find the subject interesting at first and useful later. But please
do not think that what we now know and teach in Computing Science is the end
of the story. There are many new topics opening up in our subject, and many
new insights and understanding to be revealed, and new applications to be
opened up. | shall be very happy if your new researches are built on my earlier
successes; but | should be equally happy if they were built on my failures.



