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Gene banks, framed within the efforts for conserving animal genetic resources to ensure 
the adaptability of livestock production systems to population growth, income, and climate 
change challenges, have emerged as invaluable resources for biodiversity and scientific 
research. Allele frequency trajectories over the few last generations contain rich information 
about the selection history of populations, which cannot be obtained from classical 
selection scan approaches based on present time data only. Here we apply a new statistical 
approach taking advantage of genomic time series and a state of the art statistic (nSL) 
based on present time data to disentangle both old and recent signatures of selection in 
the Asturiana de los Valles cattle breed. This local Spanish originally multipurpose breed 
native to Asturias has been selected for beef production over the last few generations. 
With the use of SNP chip and whole-genome sequencing (WGS) data, we detect candidate 
regions under selection reflecting the effort of breeders to produce economically valuable 
beef individuals, e.g., by improving carcass and meat traits with genes such as MSTN, 
FLRT2, CRABP2, ZNF215, RBPMS2, OAZ2, or ZNF609, while maintaining the ability to 
thrive under a semi-intensive production system, with the selection of immune (GIMAP7, 
GIMAP4, GIMAP8, and TICAM1) or olfactory receptor (OR2D2, OR2D3, OR10A4, and 
0R6A2) genes. This kind of information will allow us to take advantage of the invaluable 
resources provided by gene bank collections from local less competitive breeds, enabling 
the livestock industry to exploit the different mechanisms fine-tuned by natural and human-
driven selection on different populations to improve productivity.
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INTRODUCTION

Asturiana de los Valles is a Spanish cattle breed native to 
Asturias, in the north-western region of Spain.1 Being originally 
a multipurpose breed, it was selected for beef purposes over 
the last few generations. To this aim, the selection of homozygous 
individuals for a disruptive mutation in the myostatin (MSTN) 
gene, associated with the muscular hypertrophy phenotype 
(Dunner et  al., 2003), has led to a remarkable increase in 
the frequency of the nt821(del11) mutation in Asturiana de 
los Valles, as shown by a 93.6% frequency found in the 
animals belonging to the last generation (those born between 
2014 and 2020, Aseava unpublished data). Nowadays, the 
cattle are raised mainly under semi-intensive management 
conditions, ranging from evergreen pasturelands to harsh 
mountainous territories, and has broadened its geographical 
distribution to half of the Spanish territory, counting more 
than 60,000 individuals.

In recent decades, substantial efforts have been made for 
conserving animal genetic resources to ensure the adaptability 
of livestock production systems (Paiva et  al., 2016). New 
technologies are creating novel opportunities in this field by 
increasing information on livestock genomes and tools that 
can be used to tackle global problems derived from population 
growth, income, and climate change (Bruford et  al., 2015). 
Gene banks allow for in vitro conservation of substantial 
inventories of germplasm and tissues. They have emerged as 
invaluable resources for biodiversity and scientific research 
(Groeneveld et al., 2016), including reconstituting and enhancing 
the genetic variability of breeds (e.g., Blackburn et  al., 2014; 
Kim et  al., 2015). Far from representing breeds for one fixed 
point in time, gene bank collections have been shown to capture 
more diversity than some in-situ populations thanks to periodic 
resampling (e.g., Yue et  al., 2015; Paiva et  al., 2016).

Among gene bank applications, the genomic analysis of 
samples allows for inferences about recent natural and artificial 
selection signatures. Selection tends to cause specific changes 
in the patterns of genetic variation at both selected and neutral 
linked loci. Thus, using molecular data corresponding to 
present time individuals may identify signatures left by past 
events of positive selection in the genetic diversity of a 
population. In contrast to genome-wide association studies, 
the phenotypic response influenced by a candidate locus is 
unknown and must be  deduced from the function of genes 
or transcripts found in the region and/or the selection constraints 
known to influence the population (which is often well 
documented in livestock populations; Larson and Burger, 
2013). However, these constraints are also known to have 
varied along time, so hypotheses about the function selected 
at a given locus may strongly depend on the onset and 
intensity of its selection, which is difficult to estimate from 
present time data (Chen and Slatkin, 2013).

In this context, the analysis of samples from different time 
points available in gene banks promises to greatly improve 
the annotation of selection signatures, as this provides direct 

1 www.aseava.com

access to the temporal evolution of allele frequencies and might 
therefore indicate the time periods where an allele was selected 
(Malaspinas, 2016). In particular, gene bank data collected in 
the few last decades might allow us to distinguish alleles that 
have been selected as a result of recent selection objectives 
from those that had been selected before this period of modern 
intensive breeding. To illustrate this approach and detect selection 
using either temporal or present time sampling, we  combined 
SNP chip data from previous projects and whole-genome 
sequencing (WGS) data for the Asturiana de los Valles breed 
produced within the European Project IMAGE, and built a 
dataset covering eight generations of this population. These 
data were used to detect selection signatures in this breed 
using both a new statistical approach taking advantage of 
genomic time series (Paris et  al., 2019) and a state of the art 
statistic (nSL) based on a single sampling time (Ferrer-Admetlla 
et  al., 2014). Apart from expanding our understanding on the 
genomic grounds of Asturiana de los Valles evolution and 
providing molecular tools for enhancing the performance of 
this breed, this study outlines one potential use of gene bank 
collections in animal breeding.

MATERIALS AND METHODS

Samples
We considered genotype data from 153 animals of the Asturiana 
de los Valles bovine breed. These genotypes were obtained from 
three projects involving three distinct genotyping technologies: 
88 sires were genotyped using the Illumina’s BovineSNP50 v. 2 
chip within the Climgen project (FACCE_20171212), 50 animals 
(25 sires and 25 dams) were genotyped using the Illumina’s 
Bovine High Density BeadChip 770 k SNP within the Gene2Farm 
project (EU Seventh Framework Programme for research, 
technological development, and demonstration under grant 
agreement no. 289,592 – Gene2Farm), and WGS data were 
obtained for 15 sires within the IMAGE project (Innovative 
Management of Animal Genetic Resources. European Grant 
677353). Animal birth dates ranged from 1980 to 2015, with 
different distributions for the three origins (Figure  1).

DNA Sequencing and Bioinformatics 
Analysis
The 15 WGS samples were sequenced on a HiSeq  3,000, using 
2  ×  150  bp paired-end reads. The average coverage per  animal 
ranged from 5.81 to 13.14, with a median value of 8.9. Sequences 
were mapped to the reference genome UMD3.1 using BWA 
v0.7.17 (Li, 2013). Optical and PCR duplicates were identified 
and marked using Picard tools v2.18.2 (Picard Toolkit, 2019). 
Local realignment around indels and base quality recalibration 
were performed with GATK (Van der Auwera et  al., 2013). 
SNPs were then called using a two-step procedure. First, each 
sample was called independently using three alternative softwares: 
GATK HaplotypeCaller v3.7.0, samtools mpileup v1.8/bcftools 
v1.6 (Li, 2011), and FreeBayes v1.1.0 (Garrison and Marth, 
2012). This provided two sets of variants: high-quality variants, 
which were found by the three callers and passed standard 
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GATK quality filters, and low-quality variants that were found 
only in one caller and unfiltered. Second, GATK SNPs were 
filtered using the Variant Quality Score Recalibration (VQSR) 
of GATK, a machine learning algorithm that sets the quality 
filter thresholds based on two training datasets, respectively, 
representing true and spurious variants; these two training 
datasets were provided by the high-quality and low-quality 
variants obtained in step  1. A total of 15,768,037 autosomal 
bi-allelic SNPs and 302,181 bi-allelic SNPs on chromosome X 
were called from this procedure. In the next sections, we describe 
the different steps of the analysis for autosomal variants. Analysis 
of the X chromosome required specific treatments, which are 
described in the Supplementary Material.

Merging and Cleaning Genotypes
In vcf files generated by GATK from WGS data, the quality 
of a genotype call for a given individual and variant is 
quantified by the value GQ  =  −10*log10(Pwrong), where 
Pwrong is the probability of this genotype call being wrong.2 
For the WGS SNPs obtained as described in the previous 
section, individuals with genotype quality (GQ) below 10 
(i.e., a probability of being wrong higher than 0.1) were set 
to missing, resulting in a relatively high rate of missing values 
per marker (about 23% on average). All variants with more 
than 40% missing values (1,439,050) were removed. Call rates 
were much higher in the SNP chip data sets; thus only SNPs 
with more than 5% missing values were removed, which 
provided 49,393 and 715,454 SNPs for the 50K and 770K 
datasets, respectively. The three datasets were finally merged 
using PLINK v1.9 (Chang et  al., 2015), leading to a set of 

2 https://samtools.github.io/hts-specs/VCFv4.3.pdf

35,656 autosomal SNPs with consistent positions and reference 
and alternative alleles in the three datasets. Genetic diversity 
at these markers is summarized by principal component 
analysis, which showed no significant effect of the genotyping 
technology (Supplementary Figure S1).

Defining Temporal Samples
Generation time was set to 4  years based on the comparison 
between the birth dates of the 25 bulls of the Gene2Farm 
project used in our dataset (see Samples section) and the birth 
dates of 25 offspring of these bulls (one per bull) genotyped 
in the Gene2Farm project but not used in our study. Consequently, 
we  divided the period 1980–2013 into nine consecutive 
non-overlapping periods of 4  years and defined these periods 
as the generations of the experiment. Animals were assigned 
to one generation according to their birth date. In order to 
satisfy the hypotheses of a Wright-Fisher evolution model, as 
assumed by the HMM time series approach, we  then tried to 
limit inbreeding and relatedness within each generation by 
estimating the genetic relationship matrix in each generation 
using GCTA (Yang et  al., 2011), focusing on SNPs with a 
minor allele frequency (MAF) greater than 10%. We  removed 
animals with an inbreeding rate above 0.07 (six animals), and 
the most inbred animal of each animal pair with relatedness 
above 0.1 (30 animals). These two thresholds were based on 
a visual inspection of the empirical distributions of inbreeding 
and relatedness (Supplementary Figure S2) and aimed at 
removing outlier individuals or individual pairs. This led to 
a final set of 117 animals, with sampling times described in 
Supplementary Table S1. Only eight generations were used 
in the final analyses because generation 1 included no sample 
after filtering.

FIGURE 1 | Distribution of Asturiana de los Valles birth dates in the three original data sets.
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We also defined an alternative dataset without IMAGE’s WGS 
samples. Indeed, these animals represent a large part of the 
two most recent generations (8 and 9), so including them implies 
a focus on SNPs that are polymorphic over these two generations. 
However, SNPs that are monomorphic over generations 8 and 
9 (removed by the WGS calling procedure described in DNA 
Sequencing and Bioinformatics Analysis section) might correspond 
to interesting selection signatures where one positively selected 
allele was fixed in the population before generation 8. Repeating 
the procedure described above without WGS samples led to a 
dataset including 43,951 SNPs and 106 animals belonging to 
generations 2–8 (Supplementary Table S1, last line).

In order to evaluate the potential impact of our choice of 
generation time, we also defined a dataset including all animals 
but classifying them into seven consecutive non-overlapping 
generations of 5  years. The resulting sampling times and sizes 
are shown in Supplementary Table S2.

Detecting Selection From Time Series 
Data
We detected the loci that have been under selection in the 
Asturiana de los Valles breed between 1980 and 2013 using a 
new method that exploits the evolution of allele frequencies in 
a population along different sampling times (Paris et  al., 2019). 
This method is based on a HMM approach, which allows for 
the modeling of both the stochastic evolution of population allele 
frequencies over time, as a result of genetic drift and selection 
(if any), and the additional noise arising from the finite sample 
size at each time point. Other similar HMM approaches were 
previously proposed in the literature, but they were either less 
accurate or limited for computational reasons to very small 
population sizes; see Paris et al. (2019) for more details. We applied 
the time series approach either with or without WGS samples 
(the number of individuals and SNPs for the two analyzed are 
summarized in Table  1); for SNPs that were shared by the two 
datasets, we  kept the p-value computed with WGS samples, as 
this corresponds to the larger sample. A first look at the results 
showed four SNPs with extreme p-values, for which one allele 
was fixed in chip data while the other was almost fixed in NGS 
data. Such extreme patterns suggest an error (inversion of alleles) 
while merging the chip and NGS datasets, consistent with the 

fact that two of these SNPs were G/C SNPs. These were thus 
removed from the analysis. SNPs with a MAF below 5% over 
all the sampling times were also removed from this time series 
analysis. Indeed, some assumptions of the Likelihood Ratio Test 
used by Paris et  al. (2019) to detect selection are not satisfied 
for rare alleles, which may lead to less accurate p-values. Besides, 
such SNPs correspond to allele frequency trajectories showing 
little variation over time, which are unlikely to contribute to 
significant evidence of selection in a time series analysis. This 
lead to a final set of 35,913 SNPs, among which 33,509 were 
segregating within WGS data and 2,404 were absent from these data.

In order to exploit linkage disequilibrium information, 
we detected genomic regions with a local excess of low p-values 
(i.e., of selection candidates), using the local score approach 
proposed in Fariello et  al. (2017). The score function at each 
SNP was −log10(p-value)-1, as recommended by these authors 
to optimize detection power. As the distribution of p-values 
obtained from our test was close to uniform, we could evaluate 
the significance threshold for each chromosome using the 
closed-form formula provided in equation (3) of their study 
(p.  3703), implemented in the R code available at https://
forge-dga.jouy.inra.fr/projects/local-score.

Estimating Effective Population Size
Allele frequency trajectories not only depend on selection 
intensity but also on effective population size. Before estimating 
selection at each locus, we  thus estimated this parameter by 
combining information from all loci. We  used the method 
of Hui and Burt (2015) as implemented in the R package 
NB,3 and considered the dataset without the WGS samples 
to avoid bias against allele frequency trajectories where one 
of the alleles gets fixed before generation 8, which leads to 
an overestimation of population size.

Detecting Selection From Present Time 
Data
We also applied a method that focuses on present time data 
and screens the genome for specific patterns kept by positive 
selection during population history, possibly a long time ago. 
Among the several methods available for this purpose, 
we  computed the nSL statistic (Ferrer-Admetlla et  al., 2014) 
using the software selscan (Szpiech and Hernandez, 2014). This 
statistic looks for long haplotypes segregating at high frequency 
in the population, measuring haplotype length by the number 
of SNPs rather than the genetic distance, which makes it more 
robust to local variations of the recombination rate.

To take advantage of the higher detection power derived 
from a higher SNP density, we  computed nSL from WGS data 
using the following steps: (i) removing all variants with six 
missing genotypes or more; (ii) phasing the 15 individuals 
and imputing missing genotypes at the 13,588,815 remaining 
SNPs using shapeit (Delaneau et al., 2012); (iii) applying selscan 
to the phased and imputed haplotypes obtained at step (ii), 
which provided nSL scores at 10,556,992 SNPs (depending on 

3 https://cran.r-project.org/web/packages/NB/

TABLE 1 | Summary of the datasets used for the selection scan.

Dataset Nb. Indiv. Nb. SNPs Nb. HMM 
results

Nb. nSL 
results

All individuals 117 35,656 33,509 0
Without NGS individuals 106 43,951 35,913 0
Only NGS individuals 15 13,588,815 0 10,556,992

For each dataset, column “Nb. Indiv.” gives the number of individuals (after inbreeding 
and relatedness filters), column “Nb SNPs” gives the number of bi-allelic SNPs with 
required call rate, column “nb HMM results” gives the number of SNPs analyzed with 
the HMM approach (filtering out SNPs with MAF < 5% and likely merging errors), and 
column “nb nSL results” gives the number of SNPs with an nSL result. Note that all 
SNPs that were analyzed by the HMM based on all individuals (line 1) could also 
be analyzed by the HMM without NGS individuals (line 2); the HMM result considered 
for these SNPs in the manuscript was that based on all individuals.
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local genetic diversity, the nSL score cannot always be computed); 
and finally, (iv) dividing SNPs into 20 bins according to their 
alternative allele frequency and standardizing nSL scores within 
each bin, using homemade R scripts. Following these different 
steps, candidate SNPs under positive selection are those lying 
in the tails of the distribution. In contrast to the time series 
test described above, the distribution of nSL under neutrality 
is unknown, so p-values cannot be  easily computed. We, 
therefore, took an outlier approach, as proposed by Ferrer-
Admetlla et  al. (2014) in their analysis of human African 
populations. However, rather than defining the alternative allele 
as the derived one (based on outgroup information) and looking 
at candidate SNPs in both the lower and upper tail of the 
distribution, we  defined the alternative allele in order to get 
a positive nSL score (during step iv) and looked at candidate 
SNPs only in the upper tail of the distribution.

RESULTS

Selection Signatures Detected From the 
HMM Time Series Approach
The maximum likelihood estimation of effective population 
size in Asturiana de los Valles was equal to 408.3 animals, 
with a 95% confidence interval between 350 and 450. Based 
on this value, we  evaluated the evidence for recent selection 
at 35,913 autosomal and 238 X-linked SNPs with a MAF 
above 5% over all the sampling times using the HMM time 
series approach. The smallest p-value was equal to 2.7e-05, 
which cannot be  considered significant, given the number of 
tests performed. The p-value distribution was close to uniform 
(Supplementary Figure S3), as expected for any test under 
the null hypothesis, though with a deficit of very small p-values. 
This indicates that our testing procedure is well-calibrated 
while outlining that the dataset considered here presents little 
evidence for selection at the SNP level. However, when also 
accounting for the genomic position of tested SNPs using a 
local score approach, we  could detect five candidate genomic 
regions under selection, i.e., with a significant excess of low 
p-values, for a chromosome-wide type I  error rate of 10% 
(Table  2). Given that 28 chromosomes were analyzed, the 
expected number of false-positive signals for such a type 
I  error rate is 2.8 genome-wide. Thus, we  cannot exclude 
that some of the five regions detected are false positives, but 
we note that three of them were also detected for type I errors 
of 1 or 5% (Table  2).

In order to evaluate the influence of the generation time 
on these results, we  repeated the time series analysis using 
a generation time of 5  years, focusing on SNPs found both 
in WGS and chip data. Single SNP p-values obtained using 
four or 5  years per generation were highly correlated 
(Supplementary Figure S4).

Selection Signatures Detected From 
Present Time Data
Among the SNPs included in the HMM time series approach, 
30,649 autosomal and 190 X-linked SNPs could be  analyzed 
with the nSL procedure described in the Materials and Methods 
section. Because the p-values associated with a given nSL 
score is difficult to evaluate, we  used an outlier approach 
considering all SNPs with an nSL score above 5 as potential 
candidates (see Supplementary Figure S5 for the full 
distribution of nSL scores). This approach provided eight 
candidate SNPs under selection, which could be grouped into 
six regions (Table  3).

To take advantage of the higher SNP density available for 
this test (all recent samples were sequenced rather than just 
genotyped on a chip), we  also considered the nSL results 
obtained for 10,556,992 autosomal and 168,022 X-linked SNPs 
called from WGS data. As expected, this higher SNP density 
provided a much higher detection power, retrieving 4,217 SNPs 
with an nSL score above 5, which could be  grouped into 307 
regions. Considering that isolated outstanding nSL scores are 
unlikely for such a high SNP density and might be  due to 
false positives rather than true selection events, we  focused 
on regions with more than 10 candidate SNPs and reduced 
this first list to 42 candidate regions, as reported in 
Supplementary Table S3. Six of them were particularly 
outstanding, as they exhibited more than 10 SNPs with an 
nSL score above 6. These six regions, listed in Table 4, include 
three of the top regions detected with nSL from the merged 
SNP chip-WGS dataset (Table  3), on chromosomes 2 (two 
neighboring regions that could be  considered as one) and 10.

Because these nSL results were based on partly imputed 
genotypes (see the Materials and Methods section), we  also 
checked whether they could be  biased by the proportion of 
imputed (i.e., initially missing) genotypes in a region. We found 
no evidence of such bias, as the proportion of imputed genotypes 
in SNPs from Table  3 and regions from Table  4 was not 
significantly higher (or lower) than the genome-wide average 
of 2.60 imputed genotypes per SNP.

TABLE 2 | Candidate genomic regions under selection in Asturiana de los Valles since 1980, based on the HMM time series approach.

Chr Start (bp) End (bp) Length (kbp) Nb SNP Signif Genes

10 45,387,461 45,564,676 177 7 1% PLEKH02, PIF1, RBPMS2, OAZ2, ZNF609, RF00413, and TRIP4
13 41,414,256 41,529,941 116 3 5% -
17 4,675,045 4,750,693 76 4 10% FHDC1, ARFIP1
17 31,268,164 31,632,465 364 8 10% -
22 39,414,833 39,491,373 77 3 5% PTPRG

Single SNP p-values were cumulated using a local score approach, for a chromosome-wide type I error rate of 1, 5, or 10% (see the Signif column). Genes located less than 100 kb 
away from each region are indicated, and are in bold if included in the region.
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HMM Time Series vs. nSL Results
We compared the statistics obtained from the HMM time series 
and nSL methodologies for each SNP where the two tests 
could be  applied and observed very little correlation between 
the two signals (Supplementary Figure S6). For the five SNPs 
providing the highest nSL scores, the allele frequency trajectory 
in the last eight generations showed a constant and small 
value of the minor allele frequency (Figure 2, left). In contrast, 
at four of the five SNPs (rs109025690, rs109735272, rs41639842, 
and rs109105742) with the highest values of the HMM time 
series test, one allele segregating at an intermediate frequency 
(40–75%) in generation 2 became lost or very rare in generation 
9; while for the last one (SNP rs41611975), one allele at 
frequency 0  in generation 2 increased up to 60% in generation 
9 (Figure  2, right).

DISCUSSION

The present study, framed within the IMAGE project, aimed 
at enhancing the use of gene bank collections in animal 
breeding. To outline the invaluable resources provided by 
periodic resampling and cryopreservation of germplasm and 
tissue samples from local less competitive populations, 
we analyzed existing and new data from the Spanish Asturiana 
de los Valles beef cattle breed, using a new statistical approach 
that takes advantage of genomic time series to detect and 
characterize recent selection signatures in a population (Paris 
et  al., 2019). Results from such selection scans will help the 

livestock industry to exploit the genetic variation fine-tuned 
by natural and human-driven selection on different breeds to 
improve productivity.

In the specific dataset considered here, only a few significant 
selection signatures were detected with this approach. 
Nevertheless, at least two of them included candidate genes 
potentially related to selection objectives in Asturiana (Table 2). 
Among the seven genes included in the Chr10 candidate 
region, RBPMS2 is implicated in the bone morphogenetic 
protein pathway, OAZ2 plays a role in cell growth and 
proliferation, and ZNF609 is involved in myogenesis, all of 
them influencing the specific conformation of the double-
muscled animals. The candidate region on Chr17 (4.7  Mb) 
included ARFIP1, a gene previously associated with milk yield 
and fat in Holstein (Lee et  al., 2016).

Several non-exclusive statistical reasons may explain the 
limited number of detected regions. First, the experimental 
design (e.g., number of samples, number of generations) likely 
only allowed for the detection of SNPs under very strong 
recent selection. For instance, computer simulations performed 
in Paris et  al. (2019, Figure 6) suggest that for an effective 
population size of 100 haploids and an evolution time of 10 
generations, selected loci can be  detected with reasonably 
high power only if selection intensity is greater than 0.5 
(detection power should be  higher for an effective size of 
800 haploids as in Asturiana, but this scenario was not 
considered in the simulations). Second, only 35,913 SNPs 
were analyzed, which reduces the chance to observe markers 
in strong linkage disequilibrium with causal selected variants. 

TABLE 3 | Candidate genomic regions under historical selection in Asturiana de los Valles detected by the nSL approach from SNPs genotyped in all generations.

Chr Start (bp) End (bp) Length (bp) Nb SNP log10(pval) Genes Miss

2 7,169,804 7,270,116 100,312 2 9.82 COL5A2, COL3A1 5 & 5
2 8,476,975 9,202,511 726,536 2 8.12 CALCRL 0 & 5
6 55,360,713 - - 1 7.85 - 2
7 20,631,252 - - 1 6.90 TICAM1, FEM1A, DPP9, MYDGF, and TNFAIP8L1 5
10 98,290,813 - - 1 10.10 FLRT2 2
25 13,647,777 - - 1 7.10 PARN, BFAR, and PLA2G10 2

SNPs with an nSL score above 5 are shown and are grouped into one region if their physical distance is below 1 Mbp. Genes located less than 100 kb away from each 
region are indicated, and are in bold if included in the region. Column “miss” gives the number of missing genotypes per SNP in each region.

TABLE 4 | Strongest candidate genomic regions under historical selection in Asturiana de los Valles, detected by the nSL approach from whole-genome sequencing 
(WGS) data.

Chr Start (bp) End (bp) Length (kbp) Nb SNP Genes Miss

2 6,550,846 9,649,084 3,098 43
PMS1, ORMDL1, OSGEPL1, ANKAR, ASNSD1, SLC40A1, WDR75, COL5A2, 
COL3A1, GULP1, CALCRL, ZSWIM2, FAM171B, and ITGAV

2.57

3 13,815,189 14,308,800 494 11
ETV3, ETV3L, ARHGEF11, LRRC71, PEAR1, NTRK1, INSRR, SH2D2A, PRCC, 
HDGF, MRPL24, RRNAD1, ISG20L2, CRABP2, NES, BCAN, HAPLN2, 
GPATCH4, NAXE, TTC24, IQGAP3, and MEF2D (+1)

2.45

4 113,711,258 113,987,964 277 59 GIMAP7, GIMAP4 and GIMAP8 (+2) 2.63
10 94,233,010 94,292,043 59 19 - 2.74
10 96,843,755 98,709,965 1,866 161 RF00019, FLRT2 2.65
15 46,464,438 46,728,630 264 511 ZNF214, ZNF215, OR2D2, OR2D3, OR10A4, 0R6A2, and RF00026 (+12) 2.19

Regions with more than 10 SNPs with an nSL score above 6 and a physical distance between consecutive SNPs below 1Mbp are shown (see Supplementary Table S3 for an 
extended list of candidate regions). Genes located less than 100 kb away from each region are indicated, and are in bold if included in the region. The number of genes without an 
ID is indicated in parenthesis. Column “miss” gives the average number of missing genotypes per SNP in each region.
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The effect of SNP density on detection power has been outlined 
in previous selection scans for selection (e.g., Boitard et  al., 
2016). It can also be  seen in the present study by the much 
lower number of candidate regions detected with the nSL 
score from the merged SNP chip-WGS dataset (30,649 autosomal 
SNPs) when compared with the WGS dataset alone (10,556,992 
autosomal SNPs).

A more exhaustive deciphering of recent selection in the 
Asturiana breed, potentially revealing loci under weaker selection, 
could likely be  achieved by including more samples and/or 
increasing SNP density using 800K chips or WGS data. Additional 
samples for the period considered in this study (1980–2013) 
are available in the Spanish cryobank. The time series could 
also be  enriched by considering more recent samples, which 
may also improve detection power. However, no biological 
material is available before 1980, which corresponds to the 
creation of the bio-bank, so a retrospective time series analysis 
will not be  possible before this date.

Another interesting observation from our study was the 
low correlation observed between the scores obtained from 
the time series and the nSL methodologies. While this might 
be  due to the lack of power of the two tests in this specific 
dataset, this could also reflect a more fundamental 
complementarity between the two tests: the time series approach 
focuses on very recent selection events, and the nSL detects 
a larger variety of events, most of them being older than 
the period covered by our samples. Indeed, the allele frequency 
trajectory of the five SNPs providing the highest nSL scores 
in the last eight generations (Figure  2, left) suggests that 
the positively selected allele was already segregating at quite 
a high frequency at the starting point of our time series. 

The time series information contributes here to the annotation 
of selection signatures found by nSL: it reveals that in these 
five regions, most of the selection has likely been completed 
before 1980. In contrast, allele frequency trajectories associated 
with the five smallest p-values of the HMM time series test 
were characterized by a strong and almost monotonic variation 
(Figure  2, right). The absence of a strong nSL signal at these 
SNPs is more difficult to explain. In principle, strong nSL 
values are obtained when an initially very rare allele spreads 
in a population due to selection and reaches a frequency 
around 60–90% at the time where genomic data are collected. 
The five SNPs considered here could correspond to this 
situation, although for the four decreasing trajectories, this 
strongly depends on the shape of the trajectory further in 
the past. However, these SNPs are most likely not the causal 
variants under selection, and the allele frequency trajectory 
at the causal variants might be  quite different from the ones 
observed here, especially with the low SNP density of 
our dataset.

One of the top regions detected by the nSL methodology, 
when considering either the SNPs shared by the chip and the 
WGS data or the WGS data alone, was located on Chr2 around 
7  Mb (Tables 3 and 4). This region includes the myostatin 
(MSTN) gene, whose allele nt821(del11) associated with the 
double muscling phenotype, was probably introduced in the 
north of Spain in the 1940s through Simmental hypertrophic 
individuals, a trait inherited from Central European Frisian 
bovines (Garcia Fierro, 1972; Ménissier, 1982; Dunner et  al., 
2003). This characteristic was well accepted in the Asturiana 
de los Valles breed, where traditionally associated negative 
aspects such as dystocia, are kept below 2%, while displaying 

FIGURE 2 | Allele frequency trajectory observed over the eight analyzed generations of the top five SNPs of the nSL and HMM time series tests.
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clear advantages which include increases in carcass yield (63% 
vs. 56% in wild-type), leaner muscle (85% vs. 77%), higher 
carcass conformation (14.1 vs. 9.1  - in a 1-15 score list rank), 
and fat scores (2.4 vs. 5.4).4 In the animals belonging to the 
last generation, the frequency of the mutated allele responsible 
for this trait is 93.6%, and mutated homozygotes are at an 
89% frequency (Aseava unpublished information). In the MSTN 
gene neighborhood, the signature includes 14 other genes (see 
Table  4), probably swept by the effect of hitchhiking.

The nSL approach retrieved five other regions, including 
relevant functional candidate genes (Tables 3 and 4). A region 
on Chr4 included three GTPase genes (GIMAP7, GIMAP4, 
and GIMAP8), IMAP family members that have been related 
to the primary immunodeficiency pathway and were shown 
to play a major role in feed utilization and the metabolism 
of lipids, sugars, and proteins in Jersey cattle (Salleh et  al., 
2017). In line with these functions, a region on Chr 7 included 
the TICAM1 gene, involved in native immunity and previously 
associated with bovine trypanotolerance in some African Bos 
taurus breeds (Noyes et  al., 2011). Another region on Chr 10, 
detected with nSL on both the merged SNP chip-WGS dataset 
and WGS dataset alone, included the FLRT2 gene, which is 
related to embryonic development (Haines et  al., 2006) and 
has been associated with calf birth weight by a GWAS in 
Holstein (Cole et  al., 2014). The gene CRABP2 in the Chr 3 
region has been also related to growth traits in beef cattle 
(Wen et  al., 2020). Finally, the Chr15 region includes a cluster 
of olfactory receptor genes (OR2D2, OR2D3, OR10A4, and 
0R6A2), a family that is implicated in appetite regulation (Soria-
Gomez et  al., 2014) and for which genome-wide copy number 
variants have been associated with 10 diverse production traits 
in Holstein cattle (Zhou et  al., 2018). This region also harbors 
ZNF215, an imprinted gene associated with growth and body 
conformation traits in Holstein cattle (Magee et  al., 2010) and 
Beckwith-Wiedemann syndrome in humans, a genetic disorder 
characterized by growth abnormalities (Weksberg et  al., 2010).

All these candidate regions may be  driven by the recent 
selection of beef traits applied on Asturiana de los Valles since 
the middle of the past century. Muscular hypertrophy was 
selected through a handful of sires, and a founder effect cannot 
be  ruled out, which may also explain other regions under 
selection in this breed. Also, the pleiotropic ability of the 
myostatin responsible for muscular hypertrophy has to 
be  considered. This means that the presence of the mutation 
that disrupts the normal myostatin protein produces more 
effects than just the apparent excessive muscular growth and 
affects the activity of many key enzymes involved in fatty acid 
β-oxidation and glycolysis processes in cattle. Also, MSTN 
knockout triggers the activation of AMPK signaling pathways 
to regulate glucose and lipid metabolism by increasing the 
AMP/ATP ratio (Xin et  al., 2019). The ability of MSTN to 
alter not only beef traits, but also meat and carcass quality, 
suggests a biological (rather than statistical) explanation for 
the particular scarcity of recent selection signatures in Asturiana 
de los Valles, where MSTN has fulfilled most of the plans of 

4 https://www.aseava.com/raza_capitulo_10.aspx

selection: few genomic regions were under strong selection in 
this breed because many phenotypic changes could 
be simultaneously obtained by acting on the MSTN gene alone.

However, it is plausible that some other regions may be under 
active selection and implicated in the process of breed 
differentiation and the development of the double-muscled 
phenotype, as highlighted in previous studies (Dunner et  al., 
2003; González-Rodríguez et  al., 2017). This would allow us to 
interpret that the selection of traits such as feed conversion 
rate in Asturiana de los Valles, demonstrated by the increasing 
feed intake capability of the testing sires over the years, or the 
ability to produce good beef conformation, is advantageous. 
Also, selection of the olfactory receptor genes and immunity 
factors may be  the result of maintaining the ability of this breed 
to thrive in a semi-intensive production system that includes 
4 months outdoors in harsh mountainous territories above 2,000 
mts, where cattle have to live in completely feral conditions 
under important predation pressure from wolf populations.

In conclusion, allele frequency trajectories over the few last 
generations contain rich information about the selection history 
of populations, which cannot be obtained from classical selection 
scan approaches based on present time data only. The HMM 
time series approach combined with a statistical method allowing 
for the detection of clusters of small p-values pointed out several 
candidate regions in the Asturiana de los Valles cattle breed 
with a clear shift in allele frequencies over the few last generations. 
It also allowed for annotating historical signatures found by the 
nSL statistic by showing that the advantageous allele in these 
regions was already at high frequency in the breed in 1980 
and did not further expand over this time. The HMM time 
series and nSL signatures of selection included several candidate 
genes related to carcass and meat traits (MSTN, FLRT2, CRABP2, 
ZNF215, RBPMS2, OAZ2, and ZNF609), immunity (GIMAP7, 
GIMAP4, GIMAP8, and TICAM1), or olfactory receptors (OR2D2, 
OR2D3, OR10A4, and 0R6A2), which inform us about the 
direction of applied active selection in the last few decades in 
Asturiana de los Valles. These results reflect the effort of breeders 
to produce economically valuable beef individuals while 
maintaining the ability to thrive under a semi-intensive production 
system. Overall, the outcomes from this study outline the critical 
resource for the understanding of breed history and the detection 
of relevant functional genes and variants provided by gene banks.
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