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Abstract
The introduction of Iberian cattle in the Americas after Columbus’ arrival imposed 
high selection pressures on a limited number of animals over a brief period of time. 
Knowledge of the genomic regions selected during this process may help in enhanc-
ing climatic resilience and sustainable animal production. We first determined taurine 
and indicine contributions to the genomic structure of modern Creole cattle. Second, 
we inferred their demographic history using approximate Bayesian computation 
(ABC), linkage disequilibrium (LD) and Ne Slope (NeS) analysis. Third, we performed 
whole genome scans for selection signatures based on cross-population extended 
haplotype homozygosity (XP-EHH) and population differentiation (FST) to disentan-
gle the genetic mechanisms involved in adaptation and phenotypic change by a rapid 
and major environmental transition. To tackle these questions, we combined SNP 
array data (~54,000 SNPs) in Creole breeds with their modern putative Iberian ances-
tors. Reconstruction of the population history of Creoles from the end of the 15th 
century indicated a major demographic expansion until the introduction of zebu and 
commercial breeds into the Americas ~180 years ago, coinciding with a drastic Ne 
contraction. NeS analysis provided insights into short-term complexity in population 
change and depicted a decrease/expansion episode at the end of the ABC-inferred 
expansion, as well as several additional fluctuations in Ne with the attainment of the 
current small Ne only towards the end of the 20th century. Selection signatures for 
tropical adaptation pinpointed the thermoregulatory slick hair coat region, identify-
ing a new candidate gene (GDNF), as well as novel candidate regions involved in im-
mune function, behavioural processes, iron metabolism and adaptation to new 
feeding conditions. The outcomes from this study will help in future-proofing farm 
animal genetic resources (FAnGR) by providing molecular tools that allow selection 
for improved cattle performance, resilience and welfare under climate change.
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1  | INTRODUC TION

Until recently, selection has occurred at a relatively slow rate in 
cattle and has been largely passive, driven by adaptations to dis-
eases, dietary variation and local climatic patterns (Russell, 2007). 
After the domestication of cattle ~7,000–10,000 years ago (YA; 
Bruford, Bradley, & Luikart, 2003), farmers started to artificially 
breed animals with preferred phenotypes, although it was not until 
~200 YA that European farmers began the formation of closed herds 
which developed into modern breeds (Taberlet, Coissac, Pansu, & 
Pompanon, 2011). However, another type of human endeavour has 
forced even higher selective pressures on a limited number of do-
mestic animals concentrated in a brief period of time: long distance 
transportation, one example of which is the introduction of Iberian 
livestock species in the Americas. After the first arrival of cattle on 
the tropical Caribbean island Hispaniola in 1493, Creole livestock 
started to evolve into distinct ecotypes specifically adapted to a va-
riety of environments and production systems. From this location, 
as well as reinforcements from Iberia and the Atlantic archipelagos 
during the 16th century, cattle populations expanded and spread 
throughout the Americas (Villalobos Cortés, Martinez, Vega-Pla, & 
Delgado, 2009), starting from an estimated founding stock below 
1,000 individuals (Rodero, Rodero, & Delgado, 1992). Introductions 
of northern European cattle into North America were also reported 
between 1608 and 1640 (Felius et al., 2014). After three centuries 
featuring the predominance of Creole cattle, population declines 
started with the introduction of other cattle around the middle of 
the 19th century, better suited to more intensive production and 
breeding systems (Willham, 1982). The introduction of European 
breeds (poorly adapted to the tropics but normally highly produc-
tive) and zebus (highly adapted to the tropics, but normally not as 
productive) resulted in the substitution of Creoles by a series of less 
adapted, admixed or commercial populations, displacing them into 
marginal areas.

Reconstructing the demographic history of Creole populations is 
therefore key to disentangling American livestock colonization dy-
namics and can contribute to a better understanding of the genomic 
signatures of breed evolution. Additionally, ongoing climate change 
is likely to lead to reductions in animal production and welfare in 
the future, which makes an understanding of the genomic regions 
selected under the major and rapid environmental changes imposed 
on Creole cattle, a useful tool for enhancing resilience and sustain-
able production in the short term. Therefore, the aims of this study 
were first to determine the contributions of different taurine and 
indicine ancestors on the genomic make-up of Creole cattle. Our 
second aim was to infer the demographic history of Creole cattle 
populations by combining different approaches to investigate trends 
in effective populations size (Ne): approximate Bayesian computa-
tion (ABC; Wegmann, Leuenberger, Neuenschwander, & Excoffier, 
2010); linkage disequilibrium (LD) structure (SNeP; Barbato, 
Orozco-terWengel, Tapio, & Bruford, 2015); and Ne Slope analysis 
(NeS). Finally, our third aim was to perform a whole genome scan 
for the signatures of selection based on cross-population extended 

haplotype homozygosity tests (XP-EHH; Sabeti et al., 2007) and 
population differentiation (FST; Wright, 1949). To tackle these ques-
tions, we combined SNP array data in modern Creole cattle with 
modern day samples from breeds comprising their putative Iberian 
ancestors. By identifying genomic regions responding to these se-
lection pressures, we aimed to provide valuable tools for improving 
cattle resilience, performance and welfare under climate change.

2  | MATERIAL S AND METHODS

2.1 | Cattle populations and SNP array data

The data set comprised SNP array data from 412 individuals geno-
typed using the Illumina BovineSNP50 array versions 1 and 2, and 
the Bovine High Density BeadChip (Bovine Hapmap et al., 2009; 
Decker et al., 2009, 2014; Gautier, Laloë, & Moazami-Goudarzi, 2010; 
Upadhyay et al., 2017; Supporting Information Table S1). Twenty-
nine animals were newly genotyped using the Illumina BovineSNP50 
version 2 and Geneseek Genomic Profiler Bovine 150k (Supporting 
Information Table S1). We included six Creole populations adapted 
either to tropical humid (three Colombian breeds: Costeño con 
Cuernos, Romosinuano, San Martinero; a North American breed: 
Florida Cracker; and a Caribbean breed sampled in Brazil: Senepol) or 
dry conditions (Texas Longhorn). We also analysed the main breeds 
comprising their putative Iberian ancestors: (i) six different Lidia 
lineages, a breed that has not been selected for productivity traits 
and may be the most representative modern descendent of Iberian 
cattle herds back in the 15th century, retaining high genetic variabil-
ity among lineages; (ii) Mostrenca, Retinta, Berrenda en Colorado, 
Cárdena Andaluza and Pajuna breeds, distributed throughout central 
and southern Iberia; and (iii) Asturiana de los Valles and Cachena, 
reflecting the northern Iberian genomic pool. The remaining breeds 
represent a hypothesized African taurine influence on Creole cattle 
(Baoule, Lagune, N’Dama, Somba; Miretti, Dunner, Naves, Contel, 
& Ferro, 2004), representatives of commercial European stock in-
troduced to the Americas around the middle of the 19th century 
(Angus, Red Poll, Holstein, Jersey, Shorthorn) and potential indicine 
introgression into Creole cattle from tropical areas (Brahman, Nelore, 
Gir). SNP array data were merged, and those SNPs detected as trial-
lelic were flipped using PLINK 1.90 (Chang et al., 2015; Purcell et al., 
2007). The data set was then phased with Beagle 3.3.2 (Browning & 
Browning, 2007) and the genomic positions for each SNP mapped 
to the UMD3.1 bovine assembly (RefSeq:GCF_000003055.5). Only 
autosomal SNPs with a minor allele frequency (MAF) above 1% and 
a call rate of at least 90% across all breeds were retained for down-
stream analyses, leaving 33,342 SNPs.

2.2 | Estimation of autosomal ancestry 
proportions and population divergence in 
Creole cattle

To determine the relative contribution of different potential taurine 
and indicine ancestors on the genomic structure of Creole cattle, 



     |  3PITT et al.

population admixture analysis was carried out using the software 
Admixture v1.3 (Alexander, Novembre, & Lange, 2009) with 2,000 
bootstraps for eight population clusters (K), corresponding to the 
African (two clusters), Iberian, Angus, Shorthorn, Holstein and 
Jersey taurine ancestries, as well as the Asian zebu ancestry. For 
this analysis, autosomal SNP array data were further pruned for LD 
higher than 0.1 using a sliding window approach of 50 SNPs and a 
step size of 10 SNPs. The results were graphically displayed using 
the POPHELPER R package (Francis, 2017).

Multidimensional scaling (MDS) was implemented using 
Hamming distances across 20 dimensions using PLINK. The first 
two (major) axes were visualized using R (R Core Team 2014). A 
Reynolds’ distance matrix was estimated between population pairs 
using Arlequin v3.5 (Excoffier & Lischer, 2010), and a neighbour-net 
tree was constructed in SplitsTree v.4.14.4 (Huson & Bryant, 2006).

2.3 | Demographic analysis

The population history of Creole cattle was reconstructed from the 
late 15th century to the present day using approximate Bayesian 
computation (ABC) as in Pitt et al. (2018). Briefly, a subset of the 
data was divided into four clusters: Col including all Colombian 
breeds (Costeño con Cuernos, Romosinuano, San Martinero), 
Senepol, Texas Longhorn and Iber (for all Iberian breeds). Eight al-
ternative demographic histories were modelled based on historical 
records, results from Admixture, MDS and neighbour-net analy-
ses, and prior Ne estimates obtained with SNeP. The scenarios in-
cluded a model of Creole cattle dispersal throughout the Americas 
and variations of this model accounting for population expansions 
and alternative migration patterns representing restocking from 
Iberian populations (Figure 1). One million reverse coalescent 
simulations were generated for each of the eight scenarios with 
Fastsimcoal2 (Excoffier, Dupanloup, Huerta-Sánchez, Sousa, & 
Foll, 2013; Excoffier & Foll, 2011) using a pipeline implemented 
in ABCtoolbox (Wegmann et al., 2010), with a required computa-
tion time of eight days per scenario splitting simulations in ~50 
parallel runs. Seventeen summary statistics were calculated in 
Arlsumstat (Excoffier & Lischer, 2010) for simulated and observed 
data (Supporting Information Table S2). A Spearman’s rank corre-
lation was calculated between each pair of summary statistics in R, 
and statistics with consistently high negative or positive correla-
tion were removed (Supporting Information Figure S1, Table S2). 
ABCtoolbox was used to perform rejection sampling on the simu-
lated data set, retaining the 5,000 (0.5%) simulations that closest 
fit to the observed data for each of the eight scenarios. Marginal 
density (MD) and posterior probability P-values (i.e., the propor-
tion of simulations that have a smaller or equal likelihood to the 
observed data) were calculated from the retained simulations 
after a postsampling regression adjustment using a general linear 
model. Bayes factors (BF) were calculated between scenarios by 
taking the quotient of the MD from two scenarios to choose the 
best modelled scenario fitting our data (i.e., if BF > 3, the alterna-
tive scenario can be rejected—Wegmann et al., 2010-).

To examine the most recent changes in Ne, the software SNeP 
v1.11 (Barbato et al., 2015) was used to estimate the demographic 
history for each population by the relationship between LD and Ne up 
until approximately 13 generations in the past. Default options were 
used apart from sample size correction for unphased genotypes, cor-
rection to account for mutation and Sved and Feldman’s (1973) muta-
tion rate modifier. To identify subtle changes in the inferred Ne curve 
that might be diagnostic of changes in Ne not visually explicit when 
observed in the Ne plot, a “Ne Slope analysis” (NeS) was used to inves-
tigate the rate and directionality of Ne changes occurring in recent 
generations (Supporting Information Figure S2). The slope of each 
segment linking pairs of neighbouring Ne estimates was first calcu-
lated and then normalized using the median of the two most  
proximal past Ne slope values as in NeSn = (Sn −

̃Xn)(1 +
̃Xn)

−1   

where Sn is the slope of the n
th pair of neighbouring Ne estimates, and 

̃Xn = med{Sn,Sn+1,Sn+2}.

2.4 | Selection signatures

We scanned for recently generated selection signatures to 
characterize differences observed between breeds that have 
remained in the Iberian Peninsula and those that colonized 
the Americas. Four Creole clusters were selected using the 
Admixture, MDS and neighbour-net results, one group (Col) 
including the three Colombian breeds (Costeño con Cuernos, 
Romosinuano, San Martinero) and three other breeds from the 
Americas, Florida Cracker, Senepol and Texas Longhorn. All pair-
wise comparisons were analysed between these four Creole clus-
ters and three Iberian clusters used as biological replicates: (i) 
IB1, including Retinta, Berrenda en Colorado and Cachena; (ii) 
IB2, including Cárdena Andaluza, Asturiana de los Valles, Pajuna 
and Mostrenca; and (iii) a third group (LID), including the six Lidia 
lineages. The data set was separated per breed using VCFtools 
0.1.15 (Danecek et al., 2011), and haplotype reconstruction was 
carried out using Beagle. All missing data were removed from the 
merged data set of the four groups using VCFtools and leaving 
15,375 SNPs.

Recent selective sweeps were identified in the Creole popu-
lations with the software Selscan 1.1.0b (Szpiech & Hernandez, 
2014) using XP-EHH (Sabeti et al., 2007) with the IB1, IB2 and LID 
groups as references. The maximum distance between adjacent 
SNPs was 500 kb to allow for inconsistencies in bovine SNP ar-
rays, whereas the remainder of the settings were left as default. 
The XP-EHH scores were standardized across the whole genome. 
XPEHH scores exceeding the extreme 1% of the standardized dis-
tribution were identified as potential locations for positive selec-
tion in each given Creole cluster. All significant SNPs of a Creole 
breed validated with at least two Iberian clusters were merged 
regardless of the Iberian ancestral group to account for breed 
specific selection signatures. Contiguous significant SNPs were 
integrated to a common signature or region within each breed, al-
lowing for one nonsignificant SNP in the middle, and including half 
of the physical distance to the neighbouring nonsignificant marker 
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on both sides. As XP-EHH searches for unusually long haplotypes, 
isolated significant SNPs were discarded, rendering this analysis 
conservative.

Selection signatures expected to have been generated prior to 
colonization of the Americas were explored using FST outliers com-
pared to the null distribution generated in nonoverlapping windows 
of 500 kb using VCFtools. We used a windowed FST as a test statis-
tic, retaining windows with values exceeding the 99% upper quan-
tile as potential locations for selection. Given that FST analysis is not 
directional, that is does not differentiate between Creole or Iberian 
signatures of selection, only windows validated in the three Iberian 

replicates were consider for downstream analysis to isolate signals 
detected only in Creole cattle.

2.5 | Ancestry estimation at candidate regions

Local Ancestry in adMixed Populations (LAMP) version 2.5 (Pasaniuc, 
Sankararaman, Kimmel, & Halperin, 2009) was used to estimate the 
ancestry proportions (Iberia, commercial, Africa and zebu) of Creole 
breeds at candidate regions. We applied the LAMPANC method 
for inferring the locus-specific ancestries providing the genotypes 
of the ancestral populations. Autosome-wide Creole ancestry 

F IGURE  1 Modelled scenarios for reconstructing Creole cattle demographic history using approximate Bayesian computation (ABC). (a) 
Scenario 1: main model of cattle dispersion throughout the Americas. (b) Scenario 2: variation that includes expansions in Creole populations 
at t2 and t3. (c) Scenario 3: variation that includes recent migration. (d) Scenario 4: variation that includes migration before t1. (e) Scenario 
5: variation that includes ongoing migration. (f) Scenario 6: variation that combines scenarios 2 and 3. (g) Scenario 7: variation that combines 
scenarios 2 and 4. (h) Scenario 8: variation that combines scenarios 2 and 5
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proportions of 76% Iberian, 12% commercial and 3% African tau-
rine groups, and 9% zebu cattle were estimated from the Admixture 
proportions α. An estimated number of 83 generations was set for 
the beginning of admixture in Creole cattle taking into account the 
introductions of North-European cattle in North America between 
1608 and 1640 (Felius et al., 2014), assuming an average generation 
length of 5 years, and otherwise using default parameters. The aver-
age excess/deficiency in the different ancestries was calculated by 
subtracting the average estimated ancestry at each significant SNP 
within candidate regions from the average estimated ancestry of all 
SNPs.

2.6 | Gene ontology analysis

Gene ontology (GO) analysis was carried out on the annotated gene 
sets included in genomic regions under selection in Colombian, 
Florida Cracker, Senepol and Texas Longhorn breeds using the 
Functional Annotation Cluster (FAC) tool from the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) v6.8 
(Huang, Sherman, & Lempicki, 2009) to determine significantly 
enriched biological functions or processes positively selected in a 
breed using high stringency ease scores. KEGG pathway analyses 
were also performed in DAVID to map clusters of genes involved 
in common pathways. In addition, the Bovine QTL Animal database 
(http://www.animalgenome.org) was used to identify any overlap 
with quantitative trait loci (QTL) described in the literature.

3  | RESULTS AND DISCUSSION

Tropical adaptation, that is the ability to tolerate heat stress, high 
humidity, tropical diseases and parasite infections while maintain-
ing standards of performance and reproduction, constitutes the 
most valuable asset of Creole cattle, assuring protein production 
within its region and providing insights into genomic and physiologic 
mechanisms selected during the transition to a tropical environment. 
Most Creole breeds included in this study (Costeño con Cuernos, 
Romosinuano, San Martinero, Florida Cracker, Senepol) have been 
developed under physiologically challenging tropical conditions and 

tolerate high temperatures and humidity, poor soils, drought, high 
rainfall, and are tick resistant, all while maintaining good perfor-
mance (de Alba, 1987). In addition, breeds such as Texas Longhorn 
have adapted to very hot and dry tropical conditions including the 
ability to reproduce very effectively with minimal human interven-
tion where forage is sparse.

3.1 | Autosomal ancestry proportions and 
population divergence in Creole cattle breeds

Admixture analysis when the number of clusters was set to eight, 
depicting zebu, African (two clusters), Iberian, Angus, Shorthorn, 
Holstein and Jersey ancestry contributions to Creole popula-
tions ascribed the major genomic component to Iberian ancestry 
(0.76 ± 0.06 SD), with minor influences from zebu and European 
commercial breeds (Table 1, Figure 2), in concordance with previous 
studies (Decker et al., 2014; Martínez et al., 2012). Among Creole 
breeds, the Florida Cracker displayed the highest level of introgres-
sion from commercial genomes (0.36 ± 0.07 SD), mainly from Jersey, 
Angus and Shorthorn, whereas the Indicine component was higher 
in Senepol (0.15 ± 0.02 SD) and Romosinuano (0.10 ± 0.02 SD). 
Creole populations included in this study were largely unaffected 
by the introduction of African taurine cattle into the Americas, 
which reached its highest proportion in the San Martinero and Texas 
Longhorn (0.05 ± 0.01 SD ; Table 1, Figure 2). This residual African 
genomic component may be explained by ancient introgression in 
the Iberian Peninsula and the Canary Islands (McTavish, Decker, 
Schnabel, Taylor, & Hillis, 2013).

Multidimensional scaling allocated ~25% and ~21% of the vari-
ance to the first two axes, respectively, which separated taurine 
from zebu cattle breeds, and African taurine from the remaining 
populations (Figure 3). Among the relationships displayed by Creole, 
Iberian and commercial breeds, Senepol showed the highest differ-
entiation, driven by the influence of zebu breeds, and Florida Cracker 
was grouped most closely with the commercial breeds. These results 
were supported by the neighbour-net analysis, which clustered the 
breeds into five main groups (zebu, Africa, commercial, Iberia and 
Creole), with Florida Cracker intermediate between Iberian and the 
commercial breeds (Figure 4).

Breed

B. p. taurus 
Iberia

B. p. taurus 
commercial

B. p. taurus 
Africa B. p. indicus

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Costeño con 
Cuernos

0.80 ± 0.08 0.07 ± 0.06 0.04 ± 0.01 0.09 ± 0.03

Florida Cracker 0.60 ± 0.03 0.36 ± 0.07 0.01 ± 0.01 0.03 ± 0.02

Romosinuano 0.80 ± 0.06 0.07 ± 0.04 0.03 ± 0.01 0.10 ± 0.02

San Martinero 0.86 ± 0.06 0.04 ± 0.03 0.05 ± 0.01 0.06 ± 0.04

Senepol 0.69 ± 0.05 0.14 ± 0.04 0.02 ± 0.01 0.15 ± 0.02

Texas Longhorn 0.81 ± 0.07 0.06 ± 0.03 0.05 ± 0.01 0.08 ± 0.06

Mean 0.76 ± 0.06 0.12 ± 0.05 0.03 ± 0.01 0.09 ± 0.03

TABLE  1 Average taurine and indicine 
ancestries in Creole cattle breeds

http://www.animalgenome.org
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The high contributions of zebu (15%) and European commercial 
breeds (14%) with minor elements of African taurine ancestry (2%) 
found in Senepol are in accordance with the results obtained by 
Flori et al. (2012) and Huson et al. (2014), and they argue against the 
reporting of direct incorporation of N’Dama into Senepol breeding 
(Miretti et al., 2004). Although these authors attributed all European 
taurine contribution to Red Poll ancestry, our results strongly imply 
a major Iberian origin (68%) with a much lower ancestral contribu-
tion from commercial breeds (14%), including Red Poll. Despite the 
claimed admixture of Romosinuano with polled British breeds to 
incorporate polledness into its phenotype (Huson et al., 2014), con-
tribution from European commercial breeds (including Red Poll sam-
ples) was inferred to be low and equal to that of Costeño con Cuernos 
(7%), from which the Romosinuano was developed. Although theo-
retically Florida Cracker has not been crossed with European com-
mercial breeds (Ekarius, 2008), this ancestry represents 36% of its 
genomic pool. Finally, despite indicine introgression having been 

described in the Texas Longhorn (Decker et al., 2014), the values 
detected here are within the mean range for all Creole cattle popu-
lations (8%).

These results illustrate the influence of taurine and indicine an-
cestry that may underlie some of the demographic patterns and se-
lection signatures found in Creole populations.

3.2 | Demographic history

ABC modelling was used to explore the recent demographic his-
tory of Creole cattle from the arrival of the first individuals to the 
Americas at the end of the 15th century to present. Thirteen sum-
mary statistics were retained after removing correlated measure-
ments (Supporting Information Figure S1, Table S2). All observed 
summary statistics were within the 95% quantiles of the simulated 
summary statistics for each scenario. Comparison of the different 
scenarios showed a BF > 3 between scenarios 2, 6 and 7 and all the 

F IGURE  2 Ancestry proportions in Creole breeds at K = 8. Complete breed names are included in Supporting Information Table S1

F IGURE  3 Multidimensional scaling 
(MDS) plot for 27 taurine and indicine 
cattle populations
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others (Table 2). Among the three best fitting scenarios, scenario 
2 displayed the highest MD value, with a BF of 1.4 and 1.7 when 
compared with scenarios 6 and 7, respectively (Table 2). Scenario 2 
supports the participation of a small number of animals (84) in the 
development of American breeds, followed by a major expansion up 
to a Ne of 57,278 180 YA, that later on collapsed to the reduced pop-
ulation sizes detected nowadays, ranging between 497 for Senepol 
and 638 for Texas Longhorn (Table 3, Supporting Information 
Figure S3). Higher Ne values were retrieved for the Colombian (755) 
and Iberian (2,577) breeds derived from the grouping of three and 
eight populations, respectively, which overestimated diversity val-
ues and therefore provide a rough estimation of effective population 
sizes of around 252 (Colombia) and 322 (Iberia) genomes per breed 

in each group. These events are in close agreement with the known 
history of foundation, expansion and later contraction of cattle of 
Iberian origin in the Americas (de Alba, 1987; Eusebi, Cortés, Dunner, 
& Cañón, 2017; Rodero et al., 1992; Villalobos Cortés et al., 2009; 
Willham, 1982), and with the general trend displayed by populations 
that successfully colonize new habitats, undergoing a bottleneck fol-
lowed by rapid growth usually due to lack of competition but here 
more likely due to habitat modification (see Gray et al., 2014 for a 
review).

To build realistic models, we used ABC analysis with priors guided 
by historical population and migration records, Admixture, MDS and 
neighbour-net results, and recent Ne estimations based on LD, and 
included a wide representation of the Iberian populations sharing a 

F IGURE  4 Neighbour-net using 
Reynolds’ distances for 27 taurine and 
indicine cattle populations. Scale for 
Reynolds’ distance is displayed in the top 
left

TABLE  2 Approximate Bayesian computation (ABC) results for the different scenarios (shown in Figure 1) modelling Creole cattle 
demographic history

Scenario P-value Marginal density

Bayes factor

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8

Sc. 1 0.42 308.1 — 0.05 0.66 0.75 3.31 0.08 0.09 2.16

Sc. 2 0.67 5627.8 18.27 — 12.06 13.75 60.45 1.41 1.69 39.38

Sc. 3 0.56 466.5 1.51 0.08 — 1.14 5.01 0.12 0.14 3.26

Sc. 4 0.38 409.2 1.33 0.07 0.88 — 4.40 0.10 0.12 2.86

Sc. 5 0.52 93.1 0.30 0.02 0.20 0.23 — 0.02 0.03 0.65

Sc. 6 0.82 3993.2 12.96 0.71 8.56 9.76 42.89 — 1.20 27.94

Sc. 7 0.69 3324.4 10.79 0.59 7.13 8.12 35.71 0.83 — 23.26

Sc. 8 0.42 142.9 0.46 0.03 0.31 0.35 1.53 0.04 0.04 —
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common ancestor with Creole breeds in the recent past. However, 
obtaining exact parameter estimates can be complex (Gray et al., 
2014), which may explain the discrepancy we found between the 
colonization time t3 (635 YA) and known dates such as the arrival of 
cattle to the Americas after 1492 (524 YA; although within the 50th 
quartile range of 460–650 years). However, the drastic Ne reduction 
from t1 (180 YA) to present closely correlates with the introduc-
tion of zebu and commercial cattle breeds to the Americas, starting 
around the middle of the 19th century and causing the gradual re-
placement of Creole populations that has led to their small current 
effective population sizes (de Alba, 1987; Willham, 1982). Despite 
the influence of European commercial breeds and zebu cattle de-
tected here and supported by historical records (Decker et al., 2014; 
Felius et al., 2014), computational constraints hampered their incor-
poration in the models. It is possible that the potential oversimplifi-
cation of the models analysed here may underestimate the complex 
demography of Creole breeds and obscure recent Iberian, European 
and zebu influences.

The LD approach implemented in the SNeP program recorded 
a declining trend in Ne for all cattle breeds since 250 YA (Figure 5), 
also captured by the ABC analysis, which is likely to reflect reduc-
tions in gene flow between herds and the start of breed forma-
tion (MacLeod, Larkin, Lewin, Hayes, & Goddard, 2013; Taberlet 
et al., 2011), as well as the replacement of Creole populations. The 
Iberian populations converged in three distinct clusters, one in-
cluding Berrenda en Colorado, Lidia and Cárdena Andaluza, with 
a second including Cachena, Asturiana de los Valles, Retinta and 
Pajuna, and a third including Mostrenca (Figure 5a). These distinct 
demographic trajectories may correspond to relatively ancient 
branches such as Black Iberian for Lidia and Cárdena Andaluza, 

Cantabrian for Cachena and Asturiana de los Valles, or the indi-
vidual trajectory of Mostrenca, a very ancient semi-feral breed 
uniquely adapted to the seasonally inundated marshes of Las 
Marismas in Andalucia (MARM, 2010). Creole breeds produced 
more homogeneous demographic trajectories, apart from the 
Texas Longhorn (Figure 5b).

To further investigate the complex, recent demographic trajec-
tories NeS was used. The novel NeS method records the change 
in slope of the inferred Ne trend obtained from LD-based demog-
raphy analysis implemented in SNeP, potentially offering a more 
detailed picture of population changes 13–50 generations ago; a 
constant rate of change is shown as a flat line proximal to 0 in the 
Y-axis, whereas deviations above and below 0 represent relative in-
creases and reductions in Ne, respectively (Supporting Information 
Figure S2). This analysis depicted a decrease in Ne towards the end 
of the expansion period, followed by a temporary recovery in effec-
tive size before a collapse to the small Ne detected in the present 
day (Figure 6). Thus, after several recent fluctuations, the current 
very small Ne was attained only towards the end of the 20th cen-
tury. The majority of the Iberian breeds recorded similar overlapping 
NeS patterns (Figure 6a). A slowly increasing reduction in Ne being 
recorded until ~35 generations ago, followed by several fluctuations 
in Ne, until ~16 generation in the past where a marked reduction in 
Ne is shown. Among the breeds, the Cachena showed the opposite 
pattern between ~22 and ~18 generations ago, depicting a sharp in-
crease followed by a reduction in Ne. In contrast (also with all other 
breeds), Mostrenca expanded ~25 generation in the past, as well 
as Asturiana de los Valles in recent generations (~15). The major-
ity of Creole breeds recorded overlapping NeS patterns (Figure 6b) 
and mirrored those recorded by the Iberian breeds, with Senepol 

TABLE  3 Prior distributions and posterior characteristics for scenario 2, the preferential ABC model with and expanded Creole 
population between t3 and t1

Parameter

Prior distributionsa Posterior characteristics

Scale Minimum Maximum Mode Q50 lower Q50 upper Q90 lower Q90 upper

Mutation rate Log10 0.0001 0.05 0.00214 0.00185 0.00292 0.00143 0.00413

Ne_1 Log10 100 500,000 57,278 10,936 116,464 2,015 343,384

Ne_2 Log10 100 500,000 40,765 8,262 99,131 1,467 32,5147

Ne_ANC Log10 100 5,000 84 61 111 39 167

Ne_Iber Log10 100 50,000 2,577 1,725 3,975 949 7,236

Ne_TXL Log10 10 5,000 638 376 1,157 176 2,515

Ne_Col Log10 10 50,000 755 378 1,622 137 4,676

Ne_SNP Log10 10 5,000 497 356 694 224 1,094

t1b Linear 5 150 36 28 68 11 100

t2b Linear 20 150 89 64 110 36 136

t3b Linear 50 150 127 92 130 64 145

Log10 scaled priors have been converted back from Log10.
Q50, 50th quantile range; Q90, 90th quantile range; Ne_1, effective population size at t1; Ne_t2, effective population size at t2; Ne_ANC, ancestral 
effective population size; Ne_Iber, Iberian cluster effective population size; Ne_TXL, Texas Longhorn effective population size; Ne_Col, Colombian clus-
ter effective population size; Ne_SNP, Senepol effective population size.
aPriors were sampled uniformly.
bTime in generations, assuming a generation length of 5 years.
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displaying a different pattern until very recently (~18 generations 
ago), whereupon it converges with the other breeds showing an in-
crease followed by a steep population decline.

The difference in inference gained using ABC and SNeP is likely 
to reflect their resolution of temporal complexity, where ABC 
only allows comparison among competing demographic scenarios 
whereas SNeP applies a single, model-free algorithm and its appli-
cation enables the inference of more complex, short-term, events 
instead. Thus, ABC reveals general trends and their relative likeli-
hood, while LD-based analysis provides an insight on the short-term 
complexity within these trends.

3.3 | Signatures of selection

We applied two methodologies that analyse different patterns of 
genetic variation, mainly related to evolutionary timescale, to in-
vestigate selection pressures enforced by the new tropical envi-
ronment in six Creole populations, five of which are adapted to 
humid and hot conditions and one to dry and hot conditions. We 
used FST, better suited to detect signals in the more distant past 

(Sabeti et al., 2006) that might reflect the zebu ancestral com-
ponent found in Creole populations, and the LD-based XP-EHH 
method, which provides better resolution for recent selection 
(Cadzow et al., 2014) and is more suitable for disentangling the dif-
ferences between Creole and Iberian populations expanding over 
the last 500 years.

Figure 7 and Supporting Information Figures S4–S5 depict the 
genomewide distribution of outliers on each autosome detected by 
XP-EHH and FST scans for signatures of selection. The total num-
ber of significant SNPs and windows identified per cluster is listed 
in Supporting Information Tables S3 and S4. Using the criteria of 
contiguous blocks of at least two SNPs from the XP-EHH analysis 
confirmed with more than one Iberian group, or windows containing 
two or more SNPs from the FST analysis confirmed with the three 
Iberian groups, we retrieved 10–14 genomic regions under selec-
tion per Creole cluster—two shared between Colombian and Texas 
Longhorn breeds, one between Colombian and Senepol clusters, 
and one between Florida Cracker and Texas Longhorn—(Table 4). 
Annotation of genomic regions under selection from both analyses 
retrieved 38, 66, 72 and 61 different genes in the Colombian, Florida 

F IGURE  5 Estimation of Ne change 
between 13 and 50 generations ago using 
SNeP
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Cracker, Senepol and Texas Longhorn clusters, respectively (Table 4). 
GO analysis using DAVID produced a total of 12 enriched functional 
clusters (Supporting Information Table S5) and 13 enriched KEGG 
signalling pathways (Table 5).

Estimation of different ancestries using LAMP allocated slightly 
different contributions to Iberian, commercial, African and zebu ge-
nomic components (Table 4), when compared with the Admixture 
results (Table 1). Several regions under selection in Creole popu-
lations showed strong deviations in ancestry contributions (two 
standard deviations—SD—above or below the genomewide aver-
age, see Table 4), mostly detecting increases in the zebu compo-
nent. Florida Cracker and Senepol displayed higher proportions of 
regions under selection with strong ancestry deviations (54% and 
60%, respectively), all involving zebu haplotypes except for one in 
Florida Cracker with an increase in Iberian ancestry. The two regions 
showing strong deviations in Texas Longhorn were driven by African 
ancestry, one of them coupled with a higher zebu component. In 
Colombian breeds, only one region displayed a clear increase above 
the genome average, again with zebu ancestry. Regions showing an 
increase in zebu ancestry have been associated with traits important 

for tropical adaptation, such as the sleek hair coat (see below), con-
formation and stature, reproduction (including a region associated 
with reproduction traits in Tropical Composite bulls) and heat toler-
ance (Table 4).

The region in BTA20 shared by Colombian (region #11) and 
Senepol (region #33) populations showed signals of selection with 
the XP-EHH analysis and demonstrated a strong increase in zebu 
ancestry of 38% (more than 6 SD) in Colombian breeds and 45% 
(almost 4 SD) in Senepol (Table 4), implying that zebu haplotypes, 
otherwise representing a small proportion genome wide, are under 
strong selection in this region and that anthropogenic selection 
and/or local adaptation rather than genetic drift is driving their 
presence. Among the genes included in this area, LIFR is implicated 
in immune processes, NUP155 displays functions in cardiac physiol-
ogy, RANBP3L is implicated in osteogenesis and myogenesis (Chen 
et al., 2015), and WDR70 and NIPBL are involved in DNA repair 
processes, highly conserved in nature to remove or tolerate DNA 
damage caused, among other exogenous factors, by ultraviolet 
daylight, especially intense in tropical latitudes (Menck & Munford, 
2014). This region overlaps with several cattle loci associated with 

F IGURE  6 Ne Slope analysis (NeS) 
between 13 and 50 generations ago
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milk traits, mastitis, feed intake, meat attributes, reproduction 
and weight. Importantly, it also partially overlaps with the region 
for the slick hair coat, a phenotype that plays an important role in 
thermotolerance in some tropical Creole breeds, including Senepol 

and Romosinuano (Flori et al., 2012; Huson et al., 2014). Slick hair 
coat is characterized by sleek, short hair coupled with increased 
perspiration. The sleek and shiny properties of this coat may re-
flect solar radiation more efficiently, and the hair coat thickness 

F IGURE  7 Manhattan plots of 
genomewide distribution of selection 
signatures detected with XP-EHH for 
Creole clusters when compared to the 
Iberian ancestral group IB1. Threshold is 
set at −log10(P-XPEHH) = 2
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Colombian breeds - IB1

 Florida Cracker - IB1

Senepol - IB1

Texas Longhorn - IB1

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 24 26 28
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and hair weight per unit surface increase heat loss via convection 
and conduction. As a result, slick animals show lower temperature 
and respiration rates and an increased production under tropical 
conditions when compared with normal-haired individuals (see 
Flori et al., 2012 for a review). Several studies have associated a 
region in BTA20 to this phenotype and suggested different can-
didate genes (PRLR, Mariasegaram et al., 2007; RAI14, Flori et al., 
2012; SKP2, SPEF2, Huson et al., 2014). However, the causative mu-
tation is still unknown. Here, the detected region under selection in 
BTA20 is located slightly downstream (36–38 Mb) compared to the 
others studies (37–40 Mb), with the most significant SNPs peak-
ing around the GDNF gene both in Senepol breed and Colombian 
group, which included the Romosinuano breed (Figure 8, Table 4, 
Supporting Information Table S3). A possible explanation for the 
lack of complete overlap with other studies may be the inclusion 

in the analyses for the first time of the Iberian populations shar-
ing a common ancestor with Creole cattle in the recent past. The 
candidate gene for the slick phenotype identified here, the glial 
cell-derived neurotrophic factor (GDNF), has important roles in 
skin homeostasis, is involved in the migration and differentiation 
of melanocytes and shows a strong expression in sebaceous and 
sweat glands (Adly, Assaf, Pertile, Hussein, & Paus, 2008). It is 
also implicated in hair follicle morphogenesis and cycling control, 
increasing the number of the proliferating HF keratinocytes (Adly 
et al., 2008). However, as in previous studies, the associated SNPs 
are located in noncoding regions and further studies are needed to 
narrow down the causative mutation.

Another region in BTA06 showing selection signal with the XP-
EHH methodology in two clusters, Colombian group (region #5) 
and Texas Longhorn (region #41), has not been associated with any 

TABLE  5 Enriched KEGG signalling pathways for genomic regions under positive selection in Florida Cracker, Senepol and Texas 
Longhorn breeds

KEGG pathway Genes p-value Fold enrichment

Florida Cracker (CRK)

bta05031: Amphetamine addiction GRIN1, SLC18A2, CAMK2D 0.007 22.64

bta05030: Cocaine addiction GRIN1, SLC18A2 0.087 20.63

Senepol (SNP)

bta04060: Cytokine-cytokine receptor 
interaction

IFNAR2, FLT3, LIFR, IFNGR2, IFNAR1 0.002 8.85

bta04630: Jak-STAT signalling pathway IFNAR2, LIFR, IFNGR2, IFNAR1 0.004 11.16

bta04620: Toll-like receptor signalling pathway IFNAR2, CD80, IFNAR1 0.023 12.04

bta04650: Natural killer cell-mediated 
cytotoxicity

IFNAR2, IFNGR2, IFNAR1 0.028 10.80

bta04380: Osteoclast differentiation IFNAR2, IFNGR2, IFNAR1 0.035 9.43

bta05162: Measles IFNAR2, IFNGR2, IFNAR1 0.038 9.03

bta05164: Influenza A IFNAR2, IFNGR2, IFNAR1 0.056 7.31

bta05168: Herpes simplex infection IFNAR2, IFNGR2, IFNAR1 0.066 6.65

Texas Longhorn (TXL)

bta04970: Salivary secretion CD38, BST1, LYZ 0.007 21.08

bta04972: Pancreatic secretion CD38, BST1, SCTR 0.010 18.23

bta00760: Nicotinate and nicotinamide 
metabolism

CD38, BST1 0.050 36.46

F IGURE  8 Selection signatures in the BTA20 genomic region shared by the Colombian cluster (Costeño con Cuernos, Romosinuano, San 
Martinero) and the Senepol breed. Plot of −log10(P-XPEHH) values (y-axis) around loci (x-axis in Mb). Dots mark significant SNPs
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QTL in cattle so far and includes genes such as C1QTNF7, related 
to Trypanosoma cruzi cardiomyopathy (Deng et al., 2013), FBXL5, 
which controls iron metabolism processes key for the regulation of 
reactive oxygen species that augment with the exposure of animals 
to high environmental temperatures (Paital et al., 2016), BST1 that 
has immune functions facilitating pre-B-cell growth, and CD38 that 
has pleiotropic functions in T-cell activation (Würsch et al., 2016), 
social behaviour through its effect on the release of oxytocin (Krol, 
Monakhov, Lai, Ebstein, & Grossmann, 2015) and cancer. BST1 and 
CD38 are also implicated in salivary and pancreatic secretion and 
nicotinate and nicotinamide metabolism pathways (Table 5). The 
genes in this region represent adaptations to new and challenging 
environments, including immune function, nervous and behavioural 
processes that may be key for animals to adapt to new environmen-
tal conditions, metabolism, high environmental temperatures and 
diet.

Although the genes included in the region under selection in 
BTA05 shared by Florida Cracker (region #12) and Texas Longhorn 
(region #38) and detected with XP-EHH are mostly uncharacterized 
novel genes in Ensembl, as well as the antimicrobial agent lysozyme 
(LYZ) and other genes with no clear role in reproduction, this region 
has been associated with reproduction traits in Tropical Composite 
bulls. Concordantly, here we found a substantial increase in zebu (by 
13%) and African (by 6%) ancestries in the Texas Longhorn, although 
this was not found in the Florida Cracker. Another region under se-
lection in two clusters, Colombian (region #9) and Texas Longhorn 
(region #42), was also detected with XP-EHH methodology and in-
cluded genes in BTA13 with roles in reproduction (CFAP61), neuro-
endocrine differentiation (INSM1), cancer (RALGAPA2) or cell cycle 
(KIZ). This region has been previously associated with QTLs related 
to production traits in cattle (Table 4) and displayed a strong in-
crease in African ancestry (10%, more than 5 SD) in Texas Longhorn, 
but again imperceptible in the Colombian cluster.

Apart from these genomic regions under selection in more than 
one cluster, we detected signatures of selection associated with a 
variety of traits (Tables 4–5, Supporting Information Table S5). These 
include regions of the genome enriched for genes involved in immune 
system activation in response to infectious diseases (tick resistance 
in the Colombian group and Florida Cracker, tuberculosis suscep-
tibility in Florida Cracker and Senepol, mastitis in the Colombian 
group and Senepol), or enriched immune pathways in Senepol (cyto-
kine–cytokine receptor interaction, Jak-STAT signalling, Toll-like re-
ceptor signalling, natural killer cell-mediated cytotoxicity, osteoclast 
differentiation, and responses to viral diseases -measles, influenza 
A, herpes simplex-). In addition, we found regions enriched for genes 
associated with heat tolerance, including regulation of blood pres-
sure and, importantly, thermoregulation in lactating cows exposed 
to heat stress in the Florida Cracker (region #24). This region in 
BTA26 showed a strong increase in zebu ancestry (43%, more than 
three SD) and was also implicated in temperament, with the SLC18A2 
gene involved in the dopamine and serotonin pathways associated 
with temperament in cows (Garza-Brenner et al., 2017). Phenotypic 
variation driven by production aims, such as beef or dairy traits, may 

have had an impact in the genomic areas under selection, highlighted 
here by the regions detected within QTLs associated with milk and 
meat production, fatty acid profile, performance, conformation and 
reproduction.

Finally, we have also validated the signal for the polled locus 
(Flori et al., 2012; Medugorac et al., 2012) in Senepol (BTA01 region 
#25), with both XP-EHH and FST methodologies. This region showed 
a strong zebu component increase of 47% (almost four SD devia-
tions above the genome mean). None of the previously described 
polled mutations are located in known coding regions. Within our 
candidate region, the most significant SNPs peaked around three 
genes, GART, DNAJC28 and TMEM50B, none of them with a clear 
role in polledness ontogenesis. The key immune functions displayed 
by several genes in this region (IFNAR2, IFNGR2, IFNAR1; Table 4), 
which could be important in responses against tropical diseases and 
parasite infections, may distort the signal from the polled locus.

Although FST-  and LD-based methodologies are widely used, 
there are other possible factors apart from selection that may 
mimic the signals obtained, such as demographic events (e.g., the 
bottlenecks and expansions detected with the ABC and SNeP 
analyses; Vitti, Grossman, & Sabeti, 2013). Moreover, the use of 
SNP array markers may underestimate genetic diversity through 
ascertainment bias, distorting allele frequencies and derived sta-
tistics such as LD (Vitti et al., 2013). Also, selection response for 
complex traits caused by weak selection at many sites across the 
genome may leave few or no classical signatures (Kemper, Saxton, 
Bolormaa, Hayes, & Goddard, 2014), reducing the signal obtained. 
However, other studies on cattle adaptation to new environments 
(Makina et al., 2015; Porto-Neto et al., 2014), including tropi-
cal adaptation, reported the slick hair coat and QTLs associated 
with tick resistance, heat tolerance and reproduction in tropical 
populations.

In conclusion, we compared modern Creole cattle with mod-
ern day samples from breeds comprising their putative Iberian an-
cestors for the first time to reconstruct their demographic history 
and search for selection signatures enforced by American environ-
ments on a small number of founder animals during a brief period 
of time. We show that despite strong evidence for rapid genomic 
adaptation to their new tropical environments (e.g., for slick hair 
coat genes improving thermotolerance), Creole cattle have recently 
undergone a major decline and will require genetic conservation 
measures if they are to continue to thrive. The outcomes from this 
study will contribute to the design of innovative breeding schemes 
that will include, apart from traditional performance traits, resil-
ience biomarkers, allowing sustainable production in harsh envi-
ronments and improving sanitary conditions in farms under the 
ongoing climate changes.
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