

UNIVERSIDAD COMPLUTENSE DE MADRID

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA LOS MAYORES DE 25 AÑOS AÑO **2014**

MATERIA: QUÍMICA

INSTRUCCIONES GENERALES Y VALORACIÓN

TIEMPO : 1 Hora y 30 minutos.

INSTRUCCIONES: El alumno deberá escoger una de las dos opciones y responder a todas las

preguntas de la opción elegida. No se contestará ninguna pregunta en este impreso.

PUNTUACIÓN : Cada pregunta se puntuará sobre un máximo de 2,5 puntos.

OPCIÓN A

1. Considere las siguientes sustancias: N₂, CO, Al y CaF₂.

- a) Indique razonadamente el tipo de enlace químico presente en cada una de ellas.
- b) Justifique cuál de ellas tendrá menor punto de fusión.
- c) Justifique cuál de ellas conduce la electricidad solo en estado fundido.

Puntuación máxima por apartado: 1 punto apartados a) y b); 0,5 puntos apartado c).

- 2. Justifique si son verdaderas o falsas las siguientes afirmaciones:
 - a) La velocidad de una reacción tiene unidades $M \cdot s^{-1}$, independientemente de cuál sea su orden.
 - b) Cuando aumenta la temperatura en una reacción exotérmica, la velocidad de reacción disminuye.
 - c) La reacción $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ es de orden 1 + 3 = 4.
 - d) La adición de un catalizador hace disminuir la entalpía de una reacción.
 - e) Si la reacción del apartado c) estuviera en equilibrio, la velocidad de la reacción directa debería ser igual a la velocidad de la reacción inversa.

Puntuación máxima por apartado: 0,5 puntos.

- 3. El ácido oxálico (HOOC-COOH) reacciona con permanganato de potasio en presencia de ácido clorhídrico obteniéndose, entre otras sustancias, dióxido de carbono y dicloruro de manganeso.
 - a) Ajuste las semirreacciones que se producen, indicando qué especie actúa como oxidante y cuál como reductor.
 - b) Ajuste la reacción molecular global.
 - c) Calcule el volumen de dióxido de carbono desprendido, medido a 700 mm Hg y 30 °C, si se utilizan 500 mL de permanganato de potasio 0,2 M y un exceso de ácido oxálico, suponiendo que el rendimiento de la reacción es del 80%.

Datos. $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$.

Puntuación máxima por apartado: 1 punto apartados a) y c); 0,5 puntos apartado b).

- 4. Considere la reacción de combustión del propanol líquido a 30 °C.
 - a) Ajuste la reacción, y calcule su entalpía de reacción.
 - b) Razone el signo de su variación de entropía.
 - c) Justifique si la reacción será espontánea a cualquier temperatura.
 - d) Calcule la cantidad de calor intercambiado cuando se queman 25 mL de propanol líquido.

Datos. ΔH_f^o (kJ·mol⁻¹): propanol líquido = -303; agua líquida = -286; dióxido de carbono = -394. R = 0,082 atm·L·mol⁻¹·K⁻¹. Densidad propanol líquido (30 °C) = 0,80 g·cm⁻³. Masas atómicas: H = 1; C = 12; O = 16.

Puntuación máxima por apartado: 0,75 puntos apartados a) y d); 0,5 puntos apartados b) y c).

OPCIÓN B

- 1. Dos elementos X e Y se encuentran en el mismo periodo, siendo el primero de ellos un alcalino y el segundo un halógeno. Justifique si son verdaderas o falsas las siguientes afirmaciones:
 - a) El potencial de ionización de X es mayor que el de Y.
 - b) El radio atómico de X es mayor que el de Y.
 - c) La sustancia pura a que da lugar el elemento X presenta una temperatura de fusión mayor que la sustancia pura de Y.
 - d) El compuesto formado por X e Y no conduce la electricidad en estado fundido.
 - e) Si X es el litio, entonces Y debe ser el cloro.

Puntuación máxima por apartado: 0,5 puntos.

- 2. Complete las siguientes reacciones, indicando a qué tipo pertenecen y el nombre de todos los compuestos orgánicos presentes:
 - a) $CH_2=C(CH_3)-CH_3+H_2$ (catalizador) \rightarrow
 - b) CH₃OH + CH₃CH₂COOH (medio ácido) →
 - c) CH_3 -CHOH- CH_3 + oxidante suave \rightarrow
 - d) $CH_2=C(CH_3)-CH_3+HBr \rightarrow$
 - e) CH₃−CHCl−CH₃ + KOH (medio alcohólico) →

Puntuación máxima por apartado: 0,5 puntos.

- 3. En un recipiente de 5 L se introducen 417 g de PCl_5 , que se calienta hasta que sublima completamente. Cuando se alcanza la temperatura de 200 °C se establece el equilibrio PCl_5 (g) \leftrightarrows PCl_3 (g) + Cl_2 (g), y se encuentra que se ha descompuesto un 65% del reactivo.
 - a) Calcule las concentraciones de todas las especies en el equilibrio.
 - b) Calcule la constante de equilibrio K_p a 200 °C.
 - c) Calcule la presión total en el recipiente en las condiciones de equilibro mencionadas.
 - d) Si la reacción es endotérmica en el sentido en el que está escrita, indique cómo cambia la cantidad de reactivo descompuesto si aumenta la temperatura.

Datos. Masas atómicas: P = 31,0; Cl = 35,5. R = 0,082 atm·L·mol⁻¹·K⁻¹.

Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartados c) y d).

- 4. Se quieren preparar 400 mL de una disolución 0,5 M de ácido fluorhídrico.
 - a) Calcule la masa de ácido necesaria.
 - b) Calcule el pH de la disolución resultante.
 - c) Calcule el grado de disociación del ácido.
 - d) Calcule el volumen de una disolución de hidróxido de sodio 0,2 M necesaria para neutralizar la disolución de ácido fluorhídrico preparada.

Datos. Masas atómicas: H = 1, F = 19. pKa (ácido fluorhídrico) = 3,45.

Puntuación máxima por apartado: 0,5 puntos apartados a) y c); 0,75 puntos apartados b) y d).

CRITERIOS ESPECÍFICOS DE CORRECCIÓN QUÍMICA

Cada pregunta se calificará sobre un máximo de 2,5 puntos.

Se tendrá en cuenta:

- 1. Claridad de expresión y exposición de conceptos.
- 2. Uso correcto de formulación, nomenclatura y lenguaje químico.
- 3. Capacidad de análisis y relación.
- 4. Desarrollo de la resolución de forma coherente en las preguntas de naturaleza cuantitativa.
- 5. Uso correcto de unidades.

Distribución de la puntuación para este ejercicio:

OPCIÓN A:

- Pregunta 1. Puntuación máxima por apartado: 1 punto apartados a) y b); 0,5 puntos apartado c).
- Pregunta 2. Puntuación máxima por apartado: 0,5 puntos.
- Pregunta 3. Puntuación máxima por apartado: 1 punto apartados a) y c); 0,5 puntos apartado b).
- Pregunta 4. Puntuación máxima por apartado: 0,75 puntos apartados a) y d); 0,5 puntos apartados b) y c).

OPCIÓN B:

- Pregunta 1. Puntuación máxima por apartado: 0,5 puntos.
- Pregunta 2. Puntuación máxima por apartado: 0,5 puntos.
- Pregunta 3. Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartados c) y d).
- Pregunta 4. Puntuación máxima por apartado: 0,5 puntos apartados a) y c); 0,75 puntos apartados b) y d).