

Bachelor in Physics

(Academic Year 2023-24)

Scientif Laborat	_	puter	Code	800496	Yea	ar	1º	S	em.	1°
Module	Basic Core	Topic	Com	Computer Science C		Ch	aract	er	В	asic

	Total	Theory	Laboratory
ECTS Credits	6	1	5
Hours in to attend	70	10	60

Learning Objectives

The course aims to:

- Get to know the computer as a useful tool for numerical analysis and for experimental data analysis.
- Learn how to use computational tools for solving physics problems and illustrating mathematical concepts.
- Learn basic, general-purpose programming structures.
- Learn, program and use basic algorithms of numerical analysis.

Brief description of contents

Introduction to computer programming. Graphical representation. Application to physics problems.

Prerequisites

Only basic computer user's skills are required.

Related Subjects

Scientific computing has a global impact. Nowadays, the development of science is, in some way, linked to the development of computers.

Thus, The Scientific Computing Laboratory has an impact on almost any other subject of the Physics degree.

Coordinator:	Lía García Pérez				Dpt.: DACY		
	Room:	Room: 02.225.0 E-m			liagar05@ucm.es		
	Álvar	o de la Cámara III	escas		Dpt.:	FTA	
	Room:	04.229.0	E-mail	a	ıcamarai@ı	ucm.es	

	Theory/Problems – Schedule and Teaching Staff									
Group	Lecture Room	Day	Time	Professor	Period/ Dates	Hours	T/E	Dept.		
В	7	Т	13:00 – 14:00	Mohammadreza Rezaei	Full term	10	Т	DACYA		

Office hours							
Group	Professor	Schedule	E-mail	Location			
В	Mohammadreza Rezaei	1er. sem: L 15:00 - 16:30 X 15:00-16:30 2° sem: X 11:30-13:00 y 15:00-16:30	mrezaei@ucm.es	02.227			

	Laboratory Schedule			No. of sessions:	28		
Group	Computer Lab	Day - Hours	Remarks				
LB1	A2		one of two h	k is split into two sessions peours and another one of tw	er week: o and a		
LB2	A3	Mo 12:00-14:00 Th 13:45-16:00	quarter hours. There are four and a quarter hours of practic work per week.				
	-		Tutorials are conducted via e-mail. Face-to-face tutorials can be requested by e-mail.				

	Laboratory Teaching Staff									
Group	Computer Lab	Professor	Hours	Dpt.	e-mail					
LB1	A2	Mohammadreza Rezaei	60	DACYA	mrezaei@ucm.es					
LB2	А3	Daniel Ángel Chaver Martínez Handy Kurniawan	20 40	DACYA	dani02@dacya.ucm.es handykur@ucm.es					
LB1-2	A2/A3	Blanca Ayarzagüena Porras	30	FTA	bayarzag@ucm.es					

Syllabus

Topic 1: Introduction to scientific computing

- Main parts of a computer
- Computer description levels: hardware and software
- Introduction to scientific software

Topic 2: Floating-point Arithmetic

- Numerical representation: Integers and real numbers
- Round-off Errors. Relative errors. Error units in last place (ulps)

Topic 3: Roots (zeros) of a function

- Local methods for root computing
- Fundamentals of successive approximation methods.
- Convergence
- Numerical instability

Topic 4: Systems of linear algebraic equations

- Solving linear systems by direct methods
- Solving linear systems by iterative methods

Topic 5: Curve Fitting and Data interpolation

- Curve Fitting and Data interpolation fundamentals
- Global interpolation methods
- Local interpolation methods
- Least Square Regression Methods

Topic 6: Differentiation and Integration

- Finite difference approximations for derivatives
- Numerical Integration
- Discrete solution for initial value problems

Laboratory Exercises	Sessions
Exercise 1: Introduction to Matlab & GNUs Tools	12
Exercise 2: Roots (zeros) of a function Iterative methods Matlab functions	4
Exercise 3: Systems of linear algebraic equations	4
Exercise 4: Curve fitting and Data interpolation	4

Global interpolation methods	
Local interpolation methods	
Least Square Regression Method	
Exercise 5: Differentiation and Integration	
Finite difference approximations for derivatives	4
Numerical Integration	7
Discrete solution for initial value problems	

Bibliography

Recommended reading

- Lindfield GR, Penny JET. Numerical Methods Using Matlab. 4th ed. Upper Saddle River, New Jersey: Prentice Hall; 2019.
- John H. Mathews, Kurtis D. Fink (2005). Numerical Methods Using Matlab. Prentice Hall.
- Jiménez, J. (2014). *Laboratorio de Computación Científica*, e-prints-UCM. http://eprints.sim.ucm.es/21710/

Complementary reading

- Stormy Attaway, (2009). *Matlab: A practical introduction to programming and problem solving.* Ed Butterwrth-Heinemann (Elsevier)
- Dianne P. O'Leary, (2009). Scientific Computing with case studies. Ed. SIAM

Online Resources

The course has a dedicated page at the UCM CAMPUS VIRTUAL

Methodology

The course is mainly practical.

Course Activities:

- Lectures: Theoretical presentations covering the main topics for each subject. Lectures will
 introduce the basic problems and methods that will be fully developed during the laboratory
 sessions.
- Laboratory sessions: A series of guided exercises of Matlab programming undertaken by the students.
 - Each laboratory exercise covers one or more laboratory sessions. The student should prepare beforehand these sessions, using the laboratory exercise sheets available at CAMPUS VIRTUAL. Upon exercise completion, the student should submit to the professor a written report for assessment.
- Students may optionally undertake a project applying the methods covered in the course to some physics problem. The subject of this project must be previously agreed with the professor.

During the laboratory sessions every student will have a computer available with Matlab software installed to perform his or her exercises individually.

Students can attend tutorial sessions individually or in group, at the established times.

Assessment procedure		
Exams	Weight:	40%

There will be two examinations, one in the ordinary call and another one in the extraordinary call. The examination will include theoretical questions, problems and practical exercises with the

computer, similar to those covered during the practical sessions.

The exam will be performed through the CAMPUS VIRTUAL, so it may be done in a possible confinement scenario.

A minimum mark of 3.5 points out of 10 in the examinations is needed to compensate with the laboratory work.

Laboratory

Weight:

60%

Laboratory practical work assessments will consist of tests and exercises. They will be performed during laboratory sessions.

These tests will be performed through the CAMPUS VIRTUAL, so a possible confinement scenario will not affect them.

Assistance to laboratory sessions, submission of guided exercise reports in the deadline data and performing of tests and exercises are mandatory to pass the course. Only in exceptional and justified cases can the delivery of reports and tests be recovered.

The assessment of Other Activities (rank 0-10) results of the mean of the test marks. Some type of weighting may be adopted according to the development of the course.

Final Mark

In the ordinary call the final examination (Exm) will count the 40% of the final course mark, provided the minimum examination mark has been achieved. The Other activities mark (Lab) will count 60% of the final course mark, provided the minimum examination mark has been achieved.

FinalMark = $0.4 \times Exm + 0.6 \times Lab$

if Exam >= 3.5

FinalMark = Exm

if Exam < 3.5

In the extraordinary call the final mark will be the higher of these two options:

Option 1: the final examination will count the 40% of the final course mark, provided the minimum examination mark has been achieved. The laboratory mark will count 60% of the final course mark, provided the minimum examination mark has been achieved.

Option 2: the final examination will count the 100%.

In all the cases the realization of the laboratory practical work will be mandatory.

Marks rewarded for optional coursework will be used to improve the course mark, according to criteria established by the professor.