

Bachelor in Physics (Academic Year 2024-25)

Mathematical Methods I			Code	800504	Year	2nd	S	em.	1st
Module	General Core	Торіс	Matherr ir	matical Methods in Physics Character		ter	Oblię	gatory	

	Total	Theory	Exercises
ECTS Credits	6	3.5	2.5
Semester hours	55	30	25

Learning Objectives (according to the Degree's Verification Document)

- To analyze and solve ordinary differential equations and linear systems of ordinary differential equations
- To understand the concept of complex variable analytic function and to learn its fundamental properties. To learn to use the residue theorem for integral calculus.

Brief description of contents

Ordinary differential equations. Systems of ordinary differential equations. Functions of a complex variable.

Prerequisites

Calculus with functions of one and various real variables. Linear algebra.

Coordinator	Francisco Navarro Lérida				Dept.	FT
	Room	03.306.B	e-mail	fna	avarro@fis	.ucm.es

Theory/Problems – Schedule and Teaching Staff								
Group	Lecture Room	Day	Time	Professor	Period/ Dates	Hours	T/E	Dept.
в	10	Tu We Fr	12:00 – 13:00 12:00 – 13:30 11:00 – 12:30	Federico Finkel Morgenstern	Full term	55	T/E	FT

T: Theory, E: Exercises

Office hours								
Group	Professor	Schedule	E-mail	Location				
В	Federico Finkel Morgenstern	Primer semestre: L: 10:00–13:00 y 14:30–16:30 J: 12:00–13:00 Segundo semestre: X: 9:30–13:00 y 14:30–17:00	ffinkel@fis.ucm.es	02.311.0				

Syllabus

ORDINARY DIFFERENTIAL EQUATIONS

- 1. Introduction to ordinary differential equations and systems of ordinary differential equations. Solutions. Basic integration methods for first order equations. Existence and uniqueness of solutions.
- Linear equations. Second order linear equations. Homogeneous equations. Nonhomogeneous equations. Method of variation of constants. Equations with constant coefficients. Higher order linear equations.
- 3. Linear systems. Homogeneous systems. Nonhomogeneous systems. Method of variation of constants. Systems with constant coefficients. Matrix exponential.

COMPLEX VARIABLE

- 1. **Analytic functions.** Definition and algebraic properties of complex numbers. Elementary functions. Differentiability. Cauchy–Riemann equations.
- 2. **Cauchy theorem.** Contour integrals. Cauchy theorem. Cauchy integral formula and its consequences.
- 3. Series. Power series. Taylor theorem. Laurent series. Laurent theorem. Classification of isolated singular points.
- 4. **Residues.** Residue theorem. Methods for calculating residues. Evaluation of definite integrals using residues.

Bibliography

- Boyce, W.E., DiPrima, R.C., Elementary Differential Equations and Boundary Value Problems, 11th ed., Wiley, 2016.
- Marsden, J.E., Hoffman, M.J., Basic Complex Analysis, 3rd ed., Freeman, 1999.
- Simmons, G.F., Differential Equations with Applications and Historical Notes, 3rd ed., Chapman and Hall/CRC, 2016
- Spiegel, M.R., Schaum's Outline of Complex Variables, 2nd ed., McGraw-Hill, 2009

Online Resources

• Diverse teaching material shall be available at the "Campus Virtual"

Methodology

• Theory lectures to present and explain the subject's concepts, with examples and applications (2.5 hours per week approx.)

• Problem-solving sessions (1.5 hours per week approx.)

Both types of sessions will be carried out mostly in the blackboard although the lecturer may also use other tools including, for instance, computer presentations.

• Individual tutorials to sort out questions or clarify concepts with the aim of explaining and solving doubts.

• Handouts will be available prior to the corresponding problem-solving sessions, together with other teaching material at the "Campus Virtual".

Evaluation Criteria

Exams	Weight:	70%					
Final exam.							
Other Activities	Weight:	30%					
Problems and exercises evaluated by means of a test or by presenting classroom.	their solutio	n in the					
Final Mark							
If the final exam score is higher than 3.5, then the final mark FM obtained by the student will be calculated using the following formula:							
FM = max(E, 0.7 E + 0.3 A),							

where E and A are the marks in the final exam and in the other activities, respectively, both in the range 0-10.

Guía Docente del Grado en Física 2024-2025 Mathematical Methods I