

Grado en Física (curso 2024-25)

Fundamentos de Meteorología		Código	800555	Curso	4°	Sem.	1°
Módulo	Física Aplicada	Materia	Física de la Atmósfera y de la Tierra	Tipo		optativo)

	Total	Teóricos	Práct./Semin./Lab.
Créditos ECTS:	6	4.2	1.8
Horas presenciales	45	31	14

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

- Reconocer los fenómenos termodinámicos y el papel determinante del vapor del agua en la atmósfera.
- Ser capaz de caracterizar la estabilidad atmosférica.

Breve descripción de contenidos

Principios termodinámicos aplicados al aire no saturado y saturado. Condensación del vapor de agua en la atmósfera. Procesos atmosféricos que producen condensación en la atmósfera. Estabilidad atmosférica.

Conocimientos previos necesarios

Conocer las leyes básicas que gobiernan los procesos termodinámicos de la atmósfera.

Profesor/a	Pablo Zurita Gotor				Dpto.	FTA
coordinador/a	Despacho	04.103.0	e-mail	pzı	urita@uci	m.es

	Teoría/Prácticas/Seminarios - Detalle de horarios y profesorado							
Grupo	Aula	Día	Horario	Profesor	Fechas	horas	T/P	Dpto.
A	14	M,J	10:30-12:00	Pablo Zurita Gotor	Todo el semestre	40,5	T/P	FTA

Teoría/Prácticas/Seminarios - Detalle de horarios y profesorado							
Grupo	Lugar	sesiones Profesor		horas	Dpto.		
L1	15	03/10/2023	Pablo Zurita Gotor	1,5			
L2	A1	03/10/2023	Lucía Montoya Carramolino	1,5			
L1	A2	5/11/2023	Pablo Zurita Gotor	1,5	FTA		
L2	А3	5/11/2023	Lucía Montoya Carramolino	1,5			
L1	15	12/12/2023	Pablo Zurita Gotor	1,5			
L2	A1	12/12/2023	Lucía Montoya Carramolino	1,5			

Tutorías						
Grupo	Profesor	horarios	e-mail	Lugar		
Α	Pablo Zurita Gotor	J: 15.00h-16.30h V: 09.00h-10.30h Resto on-line	pzurita@ucm.es	04.113.0		

^{*} Resto hasta 6 horas a través del campus virtual, correo electrónico, ...

Programa de la asignatura

- 1. Introducción: la atmósfera como máquina térmica. Formas e intercambios de energía en la atmósfera. Balance global de entropía. Escalas del movimiento. Concepto de análisis de escala.
- 2. La convección en los trópicos. Repaso de termodinámica húmeda. Análisis de sondeos, flotación y estabilidad. Desarrollo de nubes y precipitación. La oscilación de Madden-Julian.
- 3. Ciclones extratropicales y frentes. Fuerzas externas, internas e inerciales. Equilibrio geostrófico: ciclones y anticiclones. Viento térmico y chorro extratropical. Perturbaciones del chorro: vaguadas y dorsales. Ciclones de núcleo frío, embolsamientos y DANAS. Estructura de un ciclón extratropical. Precursores y desarrollo. Tipología y formación de frentes.
- 4. Ciclones tropicales, huracanes y tifones. Principales diferencias con los ciclones extratropicales. Condiciones favorables y distribución geográfica. Ciclos de vida. Viento del gradiente y momento angular. Análisis termodinámico. Escala de intensidad.
- 5. Tormentas severas y tornados. Organización de la convección y tipos de tormentas. Inhibición convectiva e inestabilidad condicional. Energía potencial convectiva disponible (CAPE). Papel de la cizalla ambiental. Formación de tornados.
- 6. La circulación planetaria. Patrón global de vientos. Balance de momento y energía: el papel de la atmósfera. Transporte medio y transporte Eddy. Variabilidad de la circulación.
- 7. Microescala. Turbulencia y disipación. Importancia de la superficie y concepto de capa límite. Capa límite estable e inestable. Estructura y evolución de la capa límite. Isla de calor urbana.

Prácticas de laboratorio:

- 1 Viento geostrófico
- 2 Estructura de un ciclón tropical
- 3 Patrón global de vientos

Bibliografía

Stull, 2017. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. U British Columbia. https://www.eoas.ubc.ca/books/Practical Meteorology/

J.M. Wallace y P.V. Hobbs (1977, 1st Edn ; 2006, 2nd Edn). Atmospheric Science: An Introductory Survey. Academic Press. Elsevier

Recursos en internet

Campus virtual

Taller virtual de meteorología y clima: http://meteolab.fis.ucm.es/

Metodología

En esta asignatura se explican los mecanismos dinámicos y termodinámicos que operan en la atmósfera en distintas escalas, ilustrados a partir de fenómenos meteorológicos de relevancia.

Se desarrollarán las siguientes actividades formativas:

Lecciones de teoría donde se explicarán los principales conceptos, que se ilustrarán usando ejemplos reales de fenómenos meteorológicos.

Clases prácticas de problemas, enfocadas a asentar los conceptos estudiados.

Tres sesiones prácticas en el aula de informática. Los alumnos entregarán para su evaluación las correspondientes memorias de las prácticas.

Evaluación							
Realización de exámenes Peso: 60%							
Se realizará un examen final, cuya calificación se valorará sobre 10.							
Otras actividades de evaluación Peso: 40%							

De forma regular a lo largo del curso, se evaluará el progreso de los alumnos mediante cuestionarios de tipo test. Esta evaluación podría complementarse con la entrega de problemas o tareas de tipo práctico. La entrega de los informes de las prácticas es requisito imprescindible para la superación de la asignatura en cualquier convocatoria y la calidad de la memoria será tenida en cuenta en la calificación final. Se podrá realizar también un test sobre el contenido de las prácticas para evaluar el grado de participación y comprensión del alumno.

Calificación final

La calificación final se obtendrá como el valor más favorable entre la calificación del examen final (NExam) y la siguiente media ponderada:

CFinal = 0.60·NExam + 0.40·NOA

donde NOA es la correspondiente a Otras Actividades. En cualquier caso, la superación de la asignatura requiere que la calificación del examen final sea superior a 4.0.

La calificación de la convocatoria extraordinaria de junio/julio se obtendrá siguiendo exactamente el mismo procedimiento de evaluación.

Guía Docente del Grado en Física 2024-2025 Fundamentos de Meteorología