

Bachelor in Physics (Academic Year 2024-25)

Classical Mechanics		Code	800498	Yea	ar	2nd	Sem.		1st
Module	General Core	Торіс	Classical Physics		Cha	aract	er	Obli	gatory

	Total	Theory	Exercises
ECTS Credits	7.5	4.5	3
Semester hours	69	39	30

Learning Objectives (according to the Degree's Verification Document)

- Write the Lagrangian and Hamiltonian of a dynamical system in different types of generalized coordinates, and derive from them the corresponding equations of motion.
- Learn how to apply conservation laws to analyzing the motion of a mechanical system.
- Study the motion of a particle in a central potential.
- Learn the elementary kinematics and dynamics of rigid bodies.
- Study in greater depth the fundamentals of special relativity.

Brief description of contents

Review of Newtonian mechanics. Motion in a central force field. Introduction to analytical mechanics. Non-inertial reference frames. Rigid body motion. Complements on special relativity.

Prerequisites

Calculus, linear algebra, vector algebra and calculus, general physics.

Coordinator		Luis Manuel González Romero				Dept.	FT
Coordinator	Room	02.320.0	e-mail	mgr	omero@u	cm.es	

	Theory/Problems – Schedule and Teaching Staff								
Grou p	Lectur e Room	Day	Time	Professor	Period/ Dates	Hour s	T/E	Dept.	
в	10	Mo W Th	10:30 – 12:00 9:00 – 11:00 9:00 – 10:30	Fernando Ruiz Ruiz	Full term	69	T/E	FT	

T: Theory, E: Exercises

	Office hours							
Group	Professor	Schedule	E-mail	Location				
В	Fernando Ruiz Ruiz	Tu, We, Th: 11:30 - 13:30	ferruiz@fis.ucm.es	0.315.0				

 one-dimensional potential. Dynamics of a system of particles. Constants of motion. Motion in a central potential Reduction of the equivalent two-body problem. Constants of motion. Integration of the equations of motion. Bounded orbits. The Kepler problem. Scattering by a central potential. Rutherford's formula. Fundamentals of Lagrangian and Hamiltonian mechanics Introduction to the calculus of variations. Hamilton's principle for unconstrained systems. Constraints and generalized coordinates. Lagrange's equations. Constants of motion and Nöther's theorem. Small oscillations. Hamilton's canonical equations. Poisson brackets. Motion relative to a non-inertial frame Three-dimensional rotations. Relative angular velocity of two orthonormal frames. Equations of motion in a non-inertial frame. Rigid body motion Angular momentum and kinetic energy of a rigid body. Inertia tensor. The equations of motion of a rigid body. Euler's equations. Inertial motion of a symmetric top. Lagrange's top. Introduction to relativistic mechanics Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic 		Syllabus
 Reduction of the equivalent two-body problem. Constants of motion. Integration of the equations of motion. Bounded orbits. The Kepler problem. Scattering by a central potential. Rutherford's formula. Fundamentals of Lagrangian and Hamiltonian mechanics Introduction to the calculus of variations. Hamilton's principle for unconstrained systems. Constraints and generalized coordinates. Lagrange's equations. Constants of motion and Nöther's theorem. Small oscillations. Hamilton's canonical equations. Poisson brackets. Motion relative to a non-inertial frame Three-dimensional rotations. Relative angular velocity of two orthonormal frames. Equations of motion in a non-inertial frame. Motion relative to the rotating Earth. Foucault's pendulum. Rigid body motion Angular momentum and kinetic energy of a rigid body. Inertia tensor. The equations of motion of a rigid body. Euler's equations. Inertial motion of a symmetric top. Lagrange's top. Introduction to relativistic mechanics Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic addition of velocities.Four-velocity and four-momentum. Relativistic energy. Conservation of the four-momentum. Mass-energyequivalence. Relativistic collisions. Particles of zero mass.	1.	Kinematics of a point particle. Inertial systems and Galilean relativity. Motion in a
 Introduction to the calculus of variations. Hamilton's principle for unconstrained systems. Constraints and generalized coordinates. Lagrange's equations. Constants of motion and Nöther's theorem. Small oscillations. Hamilton's canonical equations. Poisson brackets. 4. Motion relative to a non-inertial frame Three-dimensional rotations. Relative angular velocity of two orthonormal frames. Equations of motion in a non-inertial frame. Motion relative to the rotating Earth. Foucault's pendulum. 5. Rigid body motion Angular momentum and kinetic energy of a rigid body. Inertia tensor. The equations of motion of a rigid body. Euler's equations. Inertial motion of a symmetric top. Lagrange's top. 6. Introduction to relativistic mechanics Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic addition of velocities.Four-velocity and four-momentum. Relativistic energy. Conservation of the four-momentum. Mass-energyequivalence. Relativistic collisions. Particles of zero mass. 	2.	Reduction of the equivalent two-body problem. Constants of motion. Integration of the equations of motion. Bounded orbits. The Kepler problem. Scattering by a central potential. Rutherford's
 Three-dimensional rotations. Relative angular velocity of two orthonormal frames. Equations of motion in a non-inertial frame. Motion relative to the rotating Earth. Foucault's pendulum. 5. Rigid body motion Angular momentum and kinetic energy of a rigid body. Inertia tensor. The equations of motion of a rigid body. Euler's equations. Inertial motion of a symmetric top. Lagrange's top. 6. Introduction to relativistic mechanics Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic addition of velocities.Four-velocity and four-momentum. Relativistic energy. Conservation of the four-momentum. Mass-energyequivalence. Relativistic collisions. Particles of zero mass. 	3.	Introduction to the calculus of variations. Hamilton's principle for unconstrained systems. Constraints and generalized coordinates. Lagrange's equations. Constants of motion and
 Angular momentum and kinetic energy of a rigid body. Inertia tensor. The equations of motion of a rigid body. Euler's equations. Inertial motion of a symmetric top. Lagrange's top. Introduction to relativistic mechanics Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic addition of velocities.Four-velocity and four-momentum. Relativistic energy. Conservation of the four-momentum. Mass-energyequivalence. Relativistic collisions. Particles of zero mass. 	4.	Three-dimensional rotations. Relative angular velocity of two orthonormal frames. Equations of
Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic addition of velocities.Four-velocity and four-momentum. Relativistic energy. Conservation of the four-momentum. Mass-energyequivalence. Relativistic collisions. Particles of zero mass.	5.	Angular momentum and kinetic energy of a rigid body. Inertia tensor. The equations of motion of
	6.	Einstein's postulates. Lorentz transformations and their physical consequences. Relativistic addition of velocities.Four-velocity and four-momentum. Relativistic energy. Conservation of the four-momentum. Mass-energyequivalence. Relativistic collisions. Particles of zero mass.

Basic:

- S.T. Thornton and J.B. Marion, *Classical Dynamics of Particles and Systems*, 5th edition, Brooks/Cole, 2004.
- J.R. Taylor, *Classical Mechanics*, University Science Books, 2005.
- E.F. Taylor and J.A. Wheeler, *Spacetime Physics,* Freeman, 1992.
- A.P. French, *Special Relativity* (M.I.T. Introductory Physics), 1st edition, W. W. Norton & Company, 1968.
- A. González López, Lecture Notes on Classical Mechanics, 2020

(https://teorica.fis.ucm.es/artemio/Notas%20de%20curso/MC.pdf).

Complementary:

- F. Gantmacher, *Lectures in Analytical Mechanics, MIR Publications, 1975.*
- H. Goldstein, C. Poole, J. Safko, *Classical Mechanics*, 3rd edition, Addison Wesley, 2002.
- L.D. Landau, E.M. Lifshitz, *Mechanics* (Course of Theoretical Physics, vol. 1), 3rd edition, Butterworth-Heinemann, 1976.
- L. Meirovitch, *Methods of Analytical Dynamics*, Dover, 2010.
- F.A. Scheck, *Mechanics: From Newton's Laws to Deterministic Chaos,* 4th edition, Springer, 2005.
- W. Rindler, Introduction to Special Relativity, Oxford, 1991.

Online Resources

Material and announcements related to the course will be posted in UCM's "Campus Virtual".

Methodology

Lectures will consist of theoretical explanations (including examples) and problem solving sessions. The corresponding problems will be made available to the students in advance through UCM's "Campus Virtual" at the beginning of each topic.

The instructor will answer both theoretical and problem-related questions from the students during his office hours.

Evaluation Criteria						
Exams	Weight:	70%				
The final exam will consist of a number of practical problems similar in difficulty to those solved during the lectures.						
Other Activities	Weight:	30%				

Exercises solved individually by students during lecture hours similar to those discussed in problem-solving sessions.

Final Mark

The final grade will be computed according to the formula

$$G = \max(E, 0.7 E + 0.3 A),$$

where *E* and *A* are respectively the "Exams" and "Other activities" grades (both in the range 0-10).

The grade obtained in the "Other activities" category in the first semester term will be carried over to the second semester evaluation (when applicable).